Rayleigh Optic Strain Sensor for Creep Monitoring
Abstract
1. Introduction
2. Materials and Methods
2.1. Calibration of Experimental Setups
2.2. Material and Mechanical Testing
2.3. Specimens Surface Preparation and Sensor Mounting
- Surface Preparation: Cleaning of the surface of the test specimen.
- Sensor Placement: Aligning the fiber optic strain sensor along the axis of symmetry of the test specimen.
- Adhesive Preparation: A high-temperature two-component adhesive was used for bonding the optical fiber. The adhesive mixture was prepared by combining 100 parts by the weight of component A with 40 parts by the weight of component B. Component A comprises 50 wt% powdered iron, 20 wt% chromium, 8 wt% alkali hexafluorosilicates, 10 wt% magnesium, 10 wt% nickel, and 2 wt% molybdenum. Component B is an aqueous solution of sodium hydroxide at a concentration of 2.5 wt%. The composition of the adhesive was selected to ensure both chemical and mechanical stability at 540 °C. Chromium and nickel provided oxidation resistance, while iron and molybdenum improved structural rigidity at elevated temperature. Magnesium enhanced fiber–substrate bonding, and alkali hexafluorosilicates acted as fluxing agents promoting interfacial adhesion. The aqueous NaOH solution (Component B) acted as an activator, enabling the metallic powders to form a durable matrix.
- Application of Adhesive: The prepared adhesive mixture was applied over the entire length of the fiber optic strain sensor situated on the surface designated for strain measurements.
- Curing Process: The adhesive bond was cured at a temperature of 20 °C for 12 h.
3. Results
3.1. Strain Monitoring
3.2. Microstructural Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kopec, M. The analysis of strain response for as-received and exploited 10H2M power engineering steel subjected to low cycle fatigue in plastic regime. Int. J. Press. Vessel. Pip. 2024, 207, 105110. [Google Scholar] [CrossRef]
- Kopec, M.; Kukla, D.; Brodecki, A.; Kowalewski, Z.L. Effect of high temperature exposure on the fatigue damage development of X10CrMoVNb9-1 steel for power plant pipes. Int. J. Press. Vessel. Pip. 2021, 189, 104282. [Google Scholar] [CrossRef]
- ASTM E1351-01; Standard Practice for Production and Evaluation of Field Metallographic Replicas. ASTM International: West Conshohocken, PA, USA, 2012.
- ASTM E139-11; Standard Test Methods for Conducting Creep, Creep-Rupture, and Stress-Rupture Tests of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2018.
- Sun, W.; Li, S.; Zhou, G.-Y.; Li, M.; Wen, Z.-X.; Yue, Z.-F.; Tu, S.T. Interpretation of non-conventional miniaturized creep test: Derivation of equivalent gauge length. J. Mater. Res. Technol. 2023, 24, 4390–4404. [Google Scholar] [CrossRef]
- Morris, A.; Cacciapuoti, B.; Sun, W. The role of hardness on condition monitoring and lifing for high temperature power plant structural risk management. Measurement 2019, 131, 501–512. [Google Scholar] [CrossRef]
- Kazakeviciute, J.; Rouse, J.P.; De Focatiis, D.S.A.; Hyde, C.J. The development of a novel technique for small ring specimen tensile testing. Theor. Appl. Fract. Mech. 2019, 99, 131–139. [Google Scholar] [CrossRef]
- Sakanashi, Y.; Gungor, S.; Forsey, A. Measurement of Creep Deformation across Welds in 316H Stainless Steel Using Digital Image Correlation. Exp. Mech. 2017, 57, 231–244. [Google Scholar] [CrossRef]
- van Rooyen, M.; Becker, T.H.; Westraadt, J.E.; Marx, G. Measurement of creep deformation of ex-service 12% Cr steel using digital image correlation. J. Strain Anal. Eng. Des. 2020, 55, 71–85. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, G.; Wang, W.; Zhong, J.; Wang, Q.; Xu, T.; Guan, K. Evaluation of residual creep life of steels using macro-pillar creep testing and Omega method. Measurement 2021, 174, 108991. [Google Scholar] [CrossRef]
- Omprakash, C.M.; Kumar, A.; Kamaraj, M.; Srivathsa, B.; Satyanarayana, D.V.V. Measurement of local creep strain in the notch region using AC potential drop technique. Measurement 2019, 145, 500–502. [Google Scholar] [CrossRef]
- Corcoran, J.; Hooper, P.; Davies, C.; Nagy, P.B.; Cawley, P. Creep strain measurement using a potential drop technique. Int. J. Mech. Sci. 2016, 110, 190–200. [Google Scholar] [CrossRef]
- Guo, Y.; Hu, Z.; Xiong, L.; Zhou, X.; Zhu, P. Fiber Bragg grating based quasi-distributed bolt force sensor with torque resistance. Measurement 2022, 195, 111063. [Google Scholar] [CrossRef]
- Singh, M.J.; Choudhary, S.; Chen, W.B.; Wu, P.C.; Goyal, M.K.; Rajput, A.; Borana, L. Applications of fibre Bragg grating sensors for monitoring geotechnical structures: A comprehensive review. Measurement 2023, 218, 113171. [Google Scholar] [CrossRef]
- Tran, H.V.; Seo, S.Y. Short-Term Creep Effect on Strain Transfer from Fiber-Reinforced Polymer Strips to Fiber Bragg Grating-Optical Fiber Sensors. Sensors 2023, 23, 1628. [Google Scholar] [CrossRef]
- Matveenko, V.P.; Kosheleva, N.A.; Serovaev, G.S. Strain measurements by FBG-based sensors embedded in various materials manufactured by different technological processes. Procedia Struct. Integr. 2022, 37, 508–516. [Google Scholar] [CrossRef]
- He, X.Y.; Xia, J.; Quan, C.; Tay, C.J.; Tu, S.D. Creep deformation measurement using quartz optical fiber. Opt. Commun. 2001, 190, 79–86. [Google Scholar] [CrossRef]
- Yazdizadeh, Z.; Marzouk, H.; Hadianfard, M.A. Monitoring of concrete shrinkage and creep using Fiber Bragg Grating sensors. Constr. Build. Mater. 2017, 137, 505–512. [Google Scholar] [CrossRef]
- Chen, C.; Wu, Q.; Zhang, Z.; Liu, Z.; Xiong, K. Long-term creep monitoring of composite wing leading edge using embedded fiber Bragg grating. Struct. Health Monit. 2023, 23, 2001–2012. [Google Scholar] [CrossRef]
- Hampshire, T.A.; Adeli, H. Monitoring the behavior of steel structures using distributed optical fiber sensors. J. Constr. Steel Res. 2000, 53, 267–281. [Google Scholar] [CrossRef]
- Zdanowicz, K.; Gebauer, D.; Koschemann, M.; Speck, K.; Steinbock, O.; Beckmann, B.; Marx, S. Distributed fiber optic sensors for measuring strains of concrete, steel, and textile reinforcement: Possible fields of application. Struct. Concr. 2022, 23, 3367–3382. [Google Scholar] [CrossRef]
- Howiacki, T.; Sieńko, R.; Bednarski, Ł.; Zuziak, K. Structural monitoring of concrete, steel, and composite bridges in Poland with distributed fibre optic sensors. Struct. Infrastruct. Eng. 2023, 20, 1213–1229. [Google Scholar] [CrossRef]
- Bado, M.F.; Casas, J.R. A Review of Recent Distributed Optical Fiber Sensors Applications for Civil Engineering Structural Health Monitoring. Sensors 2021, 21, 1818. [Google Scholar] [CrossRef] [PubMed]
- Berrocal, C.G.; Fernandez, I.; Rempling, R. Crack monitoring in reinforced concrete beams by distributed optical fiber sensors. Struct. Infrastruct. Eng. 2021, 17, 124–139. [Google Scholar] [CrossRef]
- Herbers, M.; Richter, B.; Marx, S. Rayleigh-based crack monitoring with distributed fiber optic sensors: Experimental study on the interaction of spatial resolution and sensor type. J. Civ. Struct. Health Monit. 2025, 15, 1439–1463. [Google Scholar] [CrossRef]
- Grzywa, A. High-Temperature Strain Change Measurement System and the Method of Fixing the Strain Sensor to the Tested Surface When Measuring High-Temperature Strain Change. Patent No. 244901, 25 March 2024. [Google Scholar]
- Alias, M.A.; Ahmad, H.; Zaini, M.K.A.; Samion, M.Z.; Sa’ad, M.S.M.; Sing, L.K.; Grattan, K.T.V.; Rahman, B.M.A.; Brambilla, G.; Reduan, S.A.; et al. Optical fiber Bragg grating (FBG)-based strain sensor embedded in different 3D-printed materials: A comparison of performance. Measurement 2024, 225, 114060. [Google Scholar] [CrossRef]
- Riza, M.A.; Go, Y.I.; Harun, S.W.; Maier, R.R.J. FBG Sensors for Environmental and Biochemical Applications—A Review. IEEE Sens. J. 2020, 20, 7614–7627. [Google Scholar] [CrossRef]
- Yassin, M.H.; Farhat, M.H.; Soleimanpour, R.; Nahas, M. Fiber Bragg grating (FBG)-based sensors: A review of technology and recent applications in structural health monitoring (SHM) of civil engineering structures. Discov. Civ. Eng. 2024, 1, 151. [Google Scholar] [CrossRef]





| ΔL (µm) | Strain (µε) | Spectral Shift (GHz) |
|---|---|---|
| 0 | 0 | 0 |
| 50 | 159.4 | −23.1 |
| 100 | 318.9 | −47.4 |
| 150 | 478.3 | −69.7 |
| 200 | 637.8 | −93.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kopec, M.; Mierzejewska, I.; Grzywa, A.; Gontarczyk, A.; Kowalewski, Z.L. Rayleigh Optic Strain Sensor for Creep Monitoring. Appl. Sci. 2025, 15, 9796. https://doi.org/10.3390/app15179796
Kopec M, Mierzejewska I, Grzywa A, Gontarczyk A, Kowalewski ZL. Rayleigh Optic Strain Sensor for Creep Monitoring. Applied Sciences. 2025; 15(17):9796. https://doi.org/10.3390/app15179796
Chicago/Turabian StyleKopec, Mateusz, Izabela Mierzejewska, Arkadiusz Grzywa, Aleksandra Gontarczyk, and Zbigniew L. Kowalewski. 2025. "Rayleigh Optic Strain Sensor for Creep Monitoring" Applied Sciences 15, no. 17: 9796. https://doi.org/10.3390/app15179796
APA StyleKopec, M., Mierzejewska, I., Grzywa, A., Gontarczyk, A., & Kowalewski, Z. L. (2025). Rayleigh Optic Strain Sensor for Creep Monitoring. Applied Sciences, 15(17), 9796. https://doi.org/10.3390/app15179796

