Towards a Methodology for Spatially and Temporally Resolved Estimation of Emissions from Reservoirs: Learnings from Australia
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Characterising Reservoir Ebullition Patterns
2.3. Equivalent Water Level as Ebullition Driver
2.4. Data Analyses
3. Results
3.1. Patterns of Ebullition
3.2. Equivalent Water Level as Ebullition Driver
4. Discussion
- Identify the temporal cycle that is appropriate for the reservoir. The duration of the hydrological cycle in the reservoirs in this study ranges from sub-annual to decadal.
- Identification of likely zones of ebullition: This is informed by bathymetry and likely depositional areas. If a measurement approach is adopted, surveillance methods (for example, OMD) should be used to confirm ebullition under favourable equivalent water level conditions (stable, falling water levels and air pressures). This mapping will allow the identification of suitable deployment sites that cover the key reservoir zones and their relative surface area.
- Quantification of areal emissions rates: It is suggested these key reservoir zones are separated based on the water depth categories identified in Figure 6. To overcome the challenge of spatial weighting within the key zones, chamber deployments can be undertaken within each zone to estimate areal emission rates. Total reservoir emissions will, therefore, be a function of the key zone relative surface area and chamber derived emission rates for that zone. A conceptual representation of this approach is provided in Figure 11 illustrating the importance of representative areal emission rates from ebullition zones in determining total storage emissions.
- Identification of equivalent water level conditions that favour ebullition: This will require consideration of hydrological cycle (item 1), water depth, and air pressure conditions. The coincidence of falling water levels and falling air pressures is likely to be the most favourable for ebullition.
- Integration of spatially weighted areal emissions with the appropriate temporal resolution for the reservoir to derive spatially and temporally resolved estimation of ebullition emissions.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Agriculture, Forestry and Other Land Use. Available online: https://www.ipcc-nggip.iges.or.jp/public/2019rf/vol4.html (accessed on 16 April 2025).
- Johnson, M.S.; Matthews, E.; Bastviken, D.; Deemer, B.; Du, J.; Genovese, V. Spatiotemporal methane emission from global reservoirs. J. Geophys. Res. Biogeosci. 2021, 126, 2. [Google Scholar] [CrossRef]
- Deemer, B.R.; Harrison, J.A.; Li, S.; Beaulieu, J.J.; DelSontro, T.; Barros, N.; Bezerra-Neto, J.F.; Powers, S.M.; Dos Santos, M.A.; Vonk, J.A. Greenhouse gas emissions from reservoir water surfaces: A new global synthesis. BioScience 2016, 66, 949–964. [Google Scholar] [CrossRef] [PubMed]
- Beaulieu, J.J.; Waldo, S.; Balz, D.A.; Barnett, W.; Hall, A.; Platz, M.C.; White, K.M. Methane and carbon dioxide emissions from reservoirs: Controls and upscaling. J. Geophys. Res. Biogeosci. 2020, 125, e2019JG005474. [Google Scholar] [CrossRef] [PubMed]
- Harrison, J.A.; Prairie, Y.T.; Mercier-Blais, S.; Soued, C. Year-2020 global distribution and pathways of reservoir methane and carbon dioxide emissions according to the greenhouse gas from reservoirs (G-res) model. Glob. Biogeochem. Cycles 2021, 35, e2020GB006888. [Google Scholar] [CrossRef]
- Sturm, K.; Keller-Lehmann, B.; Werner, U.; Raj Sharma, K.; Grinham, A.R.; Yuan, Z. Sampling considerations and assessment of Exetainer usage for measuring dissolved and gaseous methane and nitrous oxide in aquatic systems. Limnol. Oceanogr. Methods 2015, 13, 375–390. [Google Scholar] [CrossRef]
- Hofmann, H.; Federwisch, L.; Peeters, F. Wave-induced release of methane: Littoral zones as source of methane in lakes. Limnol. Oceanogr. 2010, 55, 1990–2000. [Google Scholar] [CrossRef]
- Bogard, M.J.; Del Giorgio, P.A.; Boutet, L.; Chaves, M.C.G.; Prairie, Y.T.; Merante, A.; Derry, A.M. Oxic water column methanogenesis as a major component of aquatic CH4 fluxes. Nat. Commun. 2014, 5, 5350. [Google Scholar] [CrossRef]
- Soued, C.; Prairie, Y.T. Patterns and regulation of hypolimnetic CO2 and CH4 in a tropical reservoir using a process-based modeling approach. J. Geophys. Res. Biogeosci. 2022, 127, e2022JG006897. [Google Scholar] [CrossRef]
- Bastviken, D.; Tranvik, L.J.; Downing, J.A.; Crill, P.M.; Enrich-Prast, A. Freshwater methane emissions offset the continental carbon sink. Science 2011, 331, 50. [Google Scholar] [CrossRef]
- Wik, M.; Johnson, J.E.; Crill, P.M.; DeStasio, J.P.; Erickson, L.; Halloran, M.J.; Fahnestock, M.F.; Crawford, M.K.; Phillips, S.C.; Varner, R.K. Sediment characteristics and methane ebullition in three subarctic lakes. J. Geophys. Res. Biogeosci. 2018, 123, 2399–2411. [Google Scholar] [CrossRef]
- Aben, R.C.; Barros, N.; Van Donk, E.; Frenken, T.; Hilt, S.; Kazanjian, G.; Lamers, L.P.; Peeters, E.T.; Roelofs, J.G.; de Senerpont Domis, L.N.; et al. Cross continental increase in methane ebullition under climate change. Nat. Commun. 2017, 8, 1682. [Google Scholar] [CrossRef]
- Grinham, A.; Dunbabin, M.; Gale, D.; Udy, J. Quantification of ebullitive and diffusive methane release to atmosphere from a water storage. Atmos. Environ. 2011, 45, 7166–7173. [Google Scholar] [CrossRef]
- Joyce, J.; Jewell, P.W. Physical controls on methane ebullition from reservoirs and lakes. Environ. Eng. Geosci. 2003, 9, 167–178. [Google Scholar] [CrossRef]
- Kellner, E.; Baird, A.J.; Oosterwoud, M.; Harrison, K.; Waddington, J.M. Effect of temperature and atmospheric pressure on methane (CH4) ebullition from near-surface peats. Geophys. Res. Lett. 2006, 33, L18405. [Google Scholar] [CrossRef]
- Grinham, A.; Dunbabin, M.; Albert, S. Importance of sediment organic matter to methane ebullition in a sub-tropical freshwater reservoir. Sci. Total Environ. 2018, 621, 1199–1207. [Google Scholar] [CrossRef]
- Surface Hydrology Polygons (National). Available online: https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/83135 (accessed on 2 February 2025).
- Lehner, B.; Liermann, C.R.; Revenga, C.; Vörösmarty, C.; Fekete, B.; Crouzet, P.; Döll, P.; Endejan, M.; Frenken, K.; Magome, J. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 2011, 9, 494–502. [Google Scholar] [CrossRef]
- Dunbabin, M.; Grinham, A. Quantifying spatiotemporal greenhouse gas emissions using autonomous surface vehicles. J. Field Robot. 2017, 4, 151–169. [Google Scholar] [CrossRef]
- Varadharajan, C.; Hemond, H.F. Time-series analysis of high-resolution ebullition fluxes from a stratified, freshwater lake. J. Geophys. Res. Biogeosci. 2012, 117, G02004. [Google Scholar] [CrossRef]
- Water Data Online. Available online: www.bom.gov.au/waterdata/ (accessed on 15 March 2025).
- Climate Data Online. Available online: www.bom.gov.au/climate/data/ (accessed on 15 March 2025).
- Berglund, Ö.; Berglund, K. Influence of water table level and soil properties on emissions of greenhouse gases from cultivated peat soil. Soil Biol. Biochem. 2011, 43, 923–931. [Google Scholar] [CrossRef]
- Grinham, A.; Albert, S.; Deering, N.; Dunbabin, M.; Bastviken, D.; Sherman, B.; Lovelock, C.E.; Evans, C.D. The importance of small artificial water bodies as sources of methane emissions in Queensland, Australia. Hydrol. Earth Sys. Sci. 2018, 22, 5281–5298. [Google Scholar] [CrossRef]
- Dell Inc. 2016. Available online: http://www.statsoft.com/Products/STATISTICA-Features (accessed on 20 April 2025).
- Beaulieu, J.J.; McManus, M.G.; Nietch, C.T. Estimates of reservoir methane emissions based on a spatially balanced probabilistic-survey. Limnol. Oceanogr. 2016, 61, S27–S40. [Google Scholar] [CrossRef]
- de Mello, N.A.S.T.; Brighenti, L.S.; Barbosa, F.A.R.; Staehr, P.A.; Bezerra Neto, J.F. Spatial variability of methane (CH4) ebullition in a tropical hypereutrophic reservoir: Silted areas as a bubble hot spot. Lake Reserv. Manag. 2018, 34, 105–114. [Google Scholar] [CrossRef]
- Hansen, C.H.; Iftikhar, B.; Pilla, R.M.; Griffiths, N.A.; Matson, P.G.; Jager, H.I. Temporal variability in reservoir surface area is an important source of uncertainty in GHG emission estimates. Water Resour. Res. 2025, 61, e2024WR037726. [Google Scholar] [CrossRef]
- Shi, W.; Chen, Q.; Zhang, J.; Lu, J.; Chen, Y.; Pang, B.; Yu, J.; Van Dam, B.R. Spatial patterns of diffusive methane emissions across sediment deposited riparian zones in hydropower reservoirs. J. Geophys. Res. Biogeosci. 2021, 126, e2020JG005945. [Google Scholar] [CrossRef]
- Bastviken, D.; Cole, J.; Pace, M.; Tranvik, L. Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate. Glob. Biogeochem. Cycles 2004, 18, GB4009. [Google Scholar] [CrossRef]
- West, W.E.; Creamer, K.P.; Jones, S.E. Productivity and depth regulate lake contributions to atmospheric methane. Limnol. Oceanogr 2016, 61, S51–S61. [Google Scholar] [CrossRef]
- Keller, M.; Stallard, R.F. Methane emission by bubbling from Gatun Lake, Panama. J. Geophys. Res. Atmos. 1994, 99, 8307–8319. [Google Scholar] [CrossRef]
- Wik, M.; Crill, P.M.; Bastviken, D.; Danielsson, Å.; Norbäck, E. Bubbles trapped in arctic lake ice: Potential implications for methane emissions. J. Geophys. Res. Biogeoscie. 2011, 116, G03044. [Google Scholar] [CrossRef]
- Maeck, A.; Hofmann, H.; Lorke, A. Pumping methane out of aquatic sediments–ebullition forcing mechanisms in an impounded river. Biogeosciences 2014, 11, 2925–2938. [Google Scholar] [CrossRef]
- Mattson, M.D.; Likens, G.E. Air pressure and methane fluxes. Nature 1990, 347, 718–719. [Google Scholar] [CrossRef]
- Wik, M.; Crill, P.M.; Varner, R.K.; Bastviken, D. Multiyear measurements of ebullitive methane flux from three subarctic lakes. J. Geophys. Res. Biogeosci. 2013, 118, 1307–1321. [Google Scholar] [CrossRef]
- Rosentreter, J.A.; Borges, A.V.; Deemer, B.R.; Holgerson, M.A.; Liu, S.; Song, C.; Melack, J.; Raymond, P.A.; Duarte, C.M.; Allen, G.H.; et al. Half of global methane emissions come from highly variable aquatic ecosystem sources. Nat. Geosci. 2021, 14, 225–230. [Google Scholar] [CrossRef]
- International Sustainability Standards Board (ISSB). IFRS S2 climate-related Disclosures; IFRS Foundation: London, UK, 2023; Available online: https://www.ifrs.org/issued-standards/ifrs-sustainability-standards-navigator/ifrs-s2-climate-related-disclosures/ (accessed on 25 August 2025).
Size Class | Water Storage Name | Construction Year | Water Area (km2) | Catchment Area (km2) | Climatic Zone | Figure |
---|---|---|---|---|---|---|
>100 km2 | Lake Gordon | 1978 | 278 | 2042 | Temperate | Figure 4 |
Lake Pedder | 1972 | 239 | 734 | Temperate | Figure S15 | |
Lake Wivenhoe | 1984 | 107.5 | 7020 | Subtropical | Figure S13 | |
10–100 km2 | Somerset Dam | 1959 | 42.1 | 1340 | Subtropical | Figure S12 |
North Pine Dam | 1976 | 20.8 | 348 | Subtropical | Figure S9 | |
Wyaralong Dam | 2011 | 12.3 | 546 | Subtropical | Figure S14 | |
1–10 km2 | Borumba Dam | 1963 | 4.8 | 465 | Subtropical | Figure 3 |
Baroon Pocket Dam | 1988 | 3.8 | 67 | Subtropical | Figure S3 | |
Sideling Creek Dam | 1957 | 3.5 | 53 | Subtropical | Figure S11 | |
Lake Manchester | 1916 | 2.6 | 74 | Subtropical | Figure S7 | |
Mt Crosby Weir | 1926 | 1.1 | 10,600 | Subtropical | Figure S4 | |
0.1–1 km2 | Enoggera Dam | 1866 | 0.7 | 33 | Subtropical | Figure S5 |
Little Nerang Dam | 1961 | 0.5 | 35.2 | Subtropical | Figure S8 | |
Gold Creek Dam | 1885 | 0.2 | 10.5 | Subtropical | Figure S6 | |
O’Reilly’s Weir | 1948 | 0.2 | 2978 | Temperate | Figure S10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grinham, A.; Maxwell, C.; Sturm, K.; Hickman, L.; Ringe, R. Towards a Methodology for Spatially and Temporally Resolved Estimation of Emissions from Reservoirs: Learnings from Australia. Appl. Sci. 2025, 15, 9795. https://doi.org/10.3390/app15179795
Grinham A, Maxwell C, Sturm K, Hickman L, Ringe R. Towards a Methodology for Spatially and Temporally Resolved Estimation of Emissions from Reservoirs: Learnings from Australia. Applied Sciences. 2025; 15(17):9795. https://doi.org/10.3390/app15179795
Chicago/Turabian StyleGrinham, Alistair, Carolyn Maxwell, Katrin Sturm, Luke Hickman, and Rodney Ringe. 2025. "Towards a Methodology for Spatially and Temporally Resolved Estimation of Emissions from Reservoirs: Learnings from Australia" Applied Sciences 15, no. 17: 9795. https://doi.org/10.3390/app15179795
APA StyleGrinham, A., Maxwell, C., Sturm, K., Hickman, L., & Ringe, R. (2025). Towards a Methodology for Spatially and Temporally Resolved Estimation of Emissions from Reservoirs: Learnings from Australia. Applied Sciences, 15(17), 9795. https://doi.org/10.3390/app15179795