Modeling of Hydrocarbon Migration and Hydrocarbon-Phase State Behavior Evolution Process Simulation in Deep-Ultradeep Reservoirs of the Mo-Yong Area, Junggar Basin
Abstract
1. Introduction
2. Geological Background
3. Data and Method
3.1. Data and Samples
3.2. Two-Dimensional Geological Modeling
3.2.1. Geochemical Characteristics and Parameter Settings of Source Rocks
3.2.2. Fault Activity and Timing Constraints
3.2.3. Other Parameter Settings
3.3. Hydrocarbon Phase Behavior Simulation and Validation
4. Results
4.1. Model Calibration and Thermal History of Source Rocks
4.1.1. Model Reliability Validation
4.1.2. Thermal Evolution and Hydrocarbon Generation History of Source Rocks
4.2. Hydrocarbon Migration and Accumulation Simulation Results
4.3. Results of Hydrocarbon Phase States Simulation
5. Discussion
5.1. Influence of Source Rocks on Hydrocarbon Migration, Accumulation, Phase Behavior, and Composition
5.2. Fault Activation Impacts on Hydrocarbon Migration and Phase Behavior
5.3. Hydrocarbon Migration and Phase Evolution in the Mo-Yong Reservoirs
5.4. The Influence of Other Parameters on Hydrocarbon Migration and Phase Behavior
6. Conclusions
- (1)
- The simulation results confirm that the hydrocarbon reservoirs in the Permian, Triassic, and Jurassic areas of the study area originate from both the Lower Wuerhe Formation and Fengcheng Formation source rocks. The P2w source rocks entered the oil generation window during the Late Triassic to Early Jurassic, reached the peak oil generation stage by the end of the Early Cretaceous, and began to generate gas in large quantities at the end of the Late Cretaceous. The P1f source rocks started generating in the Early Permian, with the oil generation window lasting until the end of the Early Jurassic, entered the peak oil generation stage during the Late Triassic, and began to generate gas in large quantities at the end of the Early Cretaceous.
- (2)
- The coupling relationship between source rock configuration, hydrocarbon generation peaks, and fault activity influences hydrocarbon migration-accumulation, hydrocarbon composition, and phase evolution. Compared to a single source rock system (only the P2w), the dual-source system (P1f + P2w) can form larger-scale, more numerous, higher-saturation, and lighter-component-rich hydrocarbon accumulations, with hydrocarbon fluid phases tending more toward condensate gas or gas phases. As a critical pathway for hydrocarbon migration, the matching relationship between the multi-stage opening of faults and the hydrocarbon generation peaks of source rocks has a significant influence on hydrocarbon migration efficiency, hydrocarbon fluid component composition, and phase evolution. In particular, the sustained activity of faults during and after the hydrocarbon generation peak not only promotes the migration and accumulation of lighter components but also leads to a shift in fluid phase toward condensate gas by increasing the gas-oil ratio.
- (3)
- The deep to ultradeep petroleum systems in the Mo-Yong area have experienced a characteristic “early-oil and late-gas” mixed migration process. During the Late Triassic to Middle Jurassic, when the P1f source rocks reached the peak oil generation and the P2w source rocks entered the early mature stage, activated first-order and second-order faults served as conduits for hydrocarbon migration. This resulted in the formation of small-scale initial accumulations dominated by liquid-phase hydrocarbons in the Upper Wuerhe Formation (Permian), Baikouquan Formation (Triassic), and Karamay Formation (Triassic) reservoirs.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
P1j | Jiamuhe Formation |
P1f | Fengcheng Formation |
P2x | Xiazijie Formation |
P2w | Lower Wuerhe Formation |
P3w | Upper Wuerhe Formation |
T1b | Baikouquan Formation |
T2k | Karamay Formation |
T3b | Baijiantan Formation |
J1b | Badaowan Formation |
J1s | Sangonghe Formation |
J2x | Xishanyao Formation |
J3q | Qigu Formation |
J3k | Karazha Formation |
TOC | total organic carbon |
Ro | vitrinite reflectance |
HI | Hydrogen Index |
SWIT | Paleo-sediment–water interface temperature |
GOR | gas-oil ratio |
SRK | Soave–Redlich–Kwong |
Tc | critical point temperature |
Pc | critical point pressure |
Tm | critical condensation temperature |
Pm | critical condensation pressure |
Mt | metric tons |
mgHC/gTOC | milligrams of hydrocarbon per gram of total organic carbon |
PVT | pressure-volume-temperature |
EoS | equation of state |
References
- Cao, Y.; Yuan, G.; Yang, H.; Wang, Y.; Liu, K.; Zan, N.; Xi, K.; Wang, J. Current status of oil and gas exploration and research progress on the genesis of high-quality reservoirs in deep–ultra-deep clastic rocks of petroliferous basins. Acta Petrol. Sin. 2022, 43, 112–140. [Google Scholar]
- Ma, Y.; Xunyu, C.; Lu, Y.; Zongjie, L.; Huili, L.; Shang, D.; Peirong, Z. Practice and theoretical and technical progress in exploration and development of Shunbei ultra-deep carbonate oil and gas field, Tarim Basin, NW China. Pet. Explor. Dev. 2022, 49, 1–20. [Google Scholar] [CrossRef]
- Zhang, Z.; Guo, Y.; Lv, D.; Lu, M.; Wang, T.; Wang, L.; Zheng, G.; Zhang, Y.; Wang, B.; Duan, G. High-latitude continental evidence of the Jenkyns Event: Insights from the Southern Junggar Basin, NW China. Glob. Planet. Change 2025, 254, 105007. [Google Scholar] [CrossRef]
- Zhi, D.; Gong, D.; Liu, M.; Santosh, M.; Qin, Z.; Ren, Q.; Chen, X.; Zou, H. Evolution of Paleozoic West Junggar Basin, NW China: Seismic data, detrital zircon evidence from Earth’s oldest alkali lake deposit. Geosci. Front. 2024, 15, 101887. [Google Scholar] [CrossRef]
- Zhang, J.-Q.; Yu, F.-S.; Wang, Y.-F.; Shen, Z.-Y.; Xiu, J.-L.; Xue, Y.; Shao, L.-F. Multi-phase deformation and analogue modelling of the Junggar Basin, NW China. Pet. Sci. 2024, 21, 3720–3741. [Google Scholar] [CrossRef]
- Li, B.; Tang, Y.; Chen, Z.; Wang, Y.; He, D.; Yan, K.; Chen, L. The Geochemical Characteristics of Source Rock and Oil in the Fukang Sag, Junggar Basin, NW China. Minerals 2023, 13, 432. [Google Scholar] [CrossRef]
- Wang, X. Source Rocks and Gas Gepchemistry in Junggar Basin; Petroleum Industry Press: Beijing, China, 2013. [Google Scholar]
- Zhang, Z.; Zhang, Y.; Zhang, M.; Lu, H.; Zhang, R.; Chen, Y.; Wang, H.; Li, P. Main Controlling Factors of Oil and Gas Accumulation and Exploration Direction in the Permian-Triassic of the Central Depression, Junggar Basin. Pet. Geol. Exp. 2022, 44, 559–568. [Google Scholar]
- Li, J.; Wang, X.; Yang, F.; Song, Y.; Abulimiti, Y.; Bian, B.; Liu, H.; Wang, X.; Gong, D. Hydrocarbon Accumulation Patterns and Exploration Prospects of the Lower Combination in the Western Part of the Central Depression, Junggar Basin. Oil Gas Geol. 2022, 43, 1059–1072. [Google Scholar] [CrossRef]
- Cai, H.; Jin, J.; Li, E.; Zhang, Z.; Yu, S.; Pan, C. Chemometric differentiation of oil families in the Mahu sag, Junggar Basin, NW China. Pet. Sci. 2025; in press. [Google Scholar] [CrossRef]
- Wang, D.; Hu, H.; Zou, J.; Wang, T.; Zhu, G.; Chen, X.; Liang, S. Formation and Enrichment Conditions of Lower Permian Shale Gas in the Dongdaohaizi Depression, Junggar Basin, and Its Main Controlling Factors. Bull. Geol. Sci. Technol. 2024, 43, 98–112. [Google Scholar]
- Wei, L.; Zhihuan, Z.; Yongcai, Y.; Xianlong, M. Oil source of reservoirs in the hinterland of the Junggar basin. Pet. Sci. 2007, 4, 34–43. [Google Scholar] [CrossRef]
- Ablimiti, Y.; He, W.; Li, N.; Ma, D.; Liu, H.; Bian, B.; Ding, X.; Jiang, M.; Wang, J.; Cao, J. Mechanisms of deep oil–gas accumulation: New insights from the Carboniferous Central Depression, Junggar Basin, China. Front. Earth Sci. 2022, 10, 987822. [Google Scholar] [CrossRef]
- Xu, B.; Lei, Y.; Zhang, L.; Li, C.; Wang, J.; Zeng, Z.; Li, S.; Cheng, M.; Zhang, Z.; Xie, J. Hydrocarbon Phase State Evolution and Accumulation Process of Ultradeep Permian Reservoirs in Shawan Sag, Junggar Basin, NW China. Energy Fuels 2023, 37, 12762–12775. [Google Scholar] [CrossRef]
- Pang, X.; Zhou, X.; Jiang, Z.; Wang, Z.; Li, S.; Tian, J.; Xiang, C.; Yang, H.; Chen, D.; Yang, W.; et al. Hydrocarbon Reservoirs Formation, Evolution, Prediction and Evaluation in the Superimposed Basins. Acta Geol. Sin. 2012, 86, 1–103. [Google Scholar]
- Luo, X.; Zhang, L.; Fu, X.; Pang, H.; Zhou, B.; Wang, Z. Advances in the Study of Deep Oil and Gas Accumulation Dynamics. Bull. Mineral. Petrol. Geochem. 2016, 35, 876–889. [Google Scholar] [CrossRef]
- Di Primio, R.; Dieckmann, V.; Mills, N. PVT and phase behaviour analysis in petroleum exploration. Org. Geochem. 1998, 29, 207–222. [Google Scholar] [CrossRef]
- Primio, R.D.; Horsfield, B. From petroleum-type organofacies to hydrocarbon phase prediction. AAPG Bull. 2006, 90, 1031–1058. [Google Scholar] [CrossRef]
- Wei, G.; Yang, W.; Du, J.; Xu, C.; Zou, C.; Xie, W.; Wu, S.; Zeng, F. Tectonic features of Gaoshiti-Moxi paleo-uplift and its controls on the formation of a giant gas field, Sichuan Basin, SW China. Pet. Explor. Dev. 2015, 42, 283–292. [Google Scholar] [CrossRef]
- Su, J.; Yang, H.; Wang, Y.; Xiao, Z.; Zhang, B.; Wang, X.; Bi, L. Controls by organic geochemistry trackers of secondary hydrocarbon accumulation during Neotectonic central uplift of the Tarim basin. J. Pet. Sci. Eng. 2015, 128, 150–159. [Google Scholar] [CrossRef]
- Liu, X.; Fan, J.; Jiang, H.; Pironon, J.; Chen, H.; Li, C.; Lu, X.; Yu, X.; Ostadhassan, M. Fluid history of the lower Cambrian Longwangmiao Formation in the Anyue gas field (Sichuan Basin, SW China). Geoenergy Sci. Eng. 2023, 231, 212308. [Google Scholar] [CrossRef]
- Horstad, I.; Larter, S.R.; Mills, N. A quantitative model of biological petroleum degradation within the Brent Group reservoir in the Gullfaks Field, Norwegian North Sea. Org. Geochem. 1992, 19, 107–117. [Google Scholar] [CrossRef]
- Larter, S.; Huang, H.; Adams, J.; Bennett, B.; Jokanola, O. The controls on the composition of biodegraded oils in the deep subsurface: Pan II—Geological controls on subsurface biodegradation fluxes and constraints on reservoir-fluid property prediction. AAPG Bull. 2006, 90, 921–938. [Google Scholar] [CrossRef]
- Boles, J.R.; Eichhubl, P.; Garven, G.; Chen, J. Evolution of a hydrocarbon migration pathway along basin-bounding faults: Evidence from fault cement. AAPG Bull. 2004, 88, 947–970. [Google Scholar] [CrossRef]
- Zhang, L.; Li, C.; Luo, X.; Zhang, Z.; Zeng, Z.; Ren, X.; Lei, Y.; Zhang, M.; Xie, J.; Cheng, M.; et al. Vertically transferred overpressures along faults in Mesozoic reservoirs in the central Junggar Basin, northwestern China: Implications for hydrocarbon accumulation and preservation. Mar. Pet. Geol. 2023, 150, 106152. [Google Scholar] [CrossRef]
- Yuan, F.; Tian, J.; Hao, F.; Liu, Z.; Zhang, K.; Wang, X. Fault characterization and its significance on hydrocarbon migration and accumulation of western Tazhong Uplift, Tarim Basin: Insight from seismic, geochemistry, fluid inclusion and in situ U-Pb dating. Mar. Pet. Geol. 2024, 170, 107137. [Google Scholar] [CrossRef]
- Kissin, Y.V. Catagenesis and composition of petroleum: Origin of n-alkanes and isoalkanes in petroleum crudes. Geochim. Cosmochim. Acta 1987, 51, 2445–2457. [Google Scholar] [CrossRef]
- Huang, H.; Huang, B.; Huang, Y.; Li, X.; Tian, H. Condensate origin and hydrocarbon accumulation mechanism of the deepwater giant gas field in western South China Sea: A case study of Lingshui 17-2 gas field in Qiongdongnan Basin. Pet. Explor. Dev. 2017, 44, 409–417. [Google Scholar] [CrossRef]
- Li, C.; Zhang, L.; Luo, X.; Lei, Y.; Yu, L.; Cheng, M.; Wang, Y.; Wang, Z. Overpressure generation by disequilibrium compaction or hydrocarbon generation in the Paleocene Shahejie Formation in the Chezhen Depression: Insights from logging responses and basin modeling. Mar. Pet. Geol. 2021, 133, 105258. [Google Scholar] [CrossRef]
- Wang, C.; Zeng, J.; Zhang, G.; Yin, X. Formation processes of gas condensate reservoirs in the Baiyun Depression: Insights from geochemical analyses and basin modeling. J. Nat. Gas Sci. Eng. 2022, 100, 104464. [Google Scholar] [CrossRef]
- Xiang, B.; Zhou, N.; Ma, W.; Wu, M.; Cao, J. Multiple-stage migration and accumulation of Permian lacustrine mixed oils in the central Junggar Basin (NW China). Mar. Pet. Geol. 2015, 59, 187–201. [Google Scholar] [CrossRef]
- Chen, J.; Deng, C.; Wang, X.; Ni, Y.; Sun, Y.; Zhao, Z.; Liao, J.; Wang, P.; Zhang, D.; Liang, D. Formation mechanism of condensates, waxy and heavy oils in the southern margin of Junggar Basin, NW China. Sci. China Earth Sci. 2017, 60, 972–991. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, D.; Gao, X.; Li, M.; Shi, X.; Wang, F.; Chang, S.; Yao, D.; Li, S.; Chen, S. Overpressure origins and evolution in deep-buried strata: A case study of the Jurassic Formation, central Junggar Basin, western China. Pet. Sci. 2023, 20, 1429–1445. [Google Scholar] [CrossRef]
- Deng, R.; Wang, Y.; Chen, C. Fluid Phase Modeling and Evolution of Complex Reservoirs in the Halahatang Depression of the Tabei Uplift, Tarim Basin. ACS Omega 2022, 7, 14933–14943. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wang, Y.; Beagle, J.R.; Liao, L.; Shi, S.; Deng, R. Reconstruction of the evolution of deep fluids in light oil reservoirs in the Central Tarim Basin by using PVT simulation and basin modeling. Mar. Pet. Geol. 2019, 107, 116–126. [Google Scholar] [CrossRef]
- Kröner, A.; Windley, B.F.; Badarch, G.; Tomurtogoo, O.; Hegner, E.; Jahn, B.M.; Gruschka, S.; Khain, E.V.; Demoux, A.; Wingate, M.T.D. Accretionary growth and crust formation in the Central Asian Orogenic Belt and comparison with the Arabian-Nubian shield. In 4-D Framework of Continental Crust; Hatcher, R.D., Jr., Carlson, M.P., McBride, J.H., Catalán, J.R.M., Eds.; Geological Society of America: Boulder, CO, USA, 2007; Volume 200. [Google Scholar] [CrossRef]
- He, D.; Zhang, L.; Wu, S.; Li, D.; Zhen, Y. Tectonic evolution stages and features of the Junggar Basin. OilGas Geol. 2018, 39, 845–861. [Google Scholar] [CrossRef]
- Rao, S.; Zhu, Y.; Hu, D.; Hu, S.; Wang, Q. The Thermal History of Junggar Basin: Constraints on the Tectonic Attribute of the Early-Middle Permian Basin. Acta Geol. Sin. 2018, 92, 1176–1195. [Google Scholar]
- Cheng, C. Characteristics of Strike-Slip Faults in No.4 Blocks in Central Junggar Basin and Its Significance of Petroleum Geology. J. Shengli Coll. China Univ. Pet. 2018, 32, 8–10. [Google Scholar]
- Zhi, D.; Liu, W.; Hu, W.; Cao, J.; Zheng, M.; Wang, T. Source identification and accumulation restoration of complex oil reservoirs in Mahu Sag, Junggar Basin. Energy Explor. Exploit. 2023, 42, 146–177. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, S.; Deng, G.; Shao, X.; Zhang, H.; Aminov, J.; Chen, X.; Ma, Z. Basement Structure and Properties of the Western Junggar Basin, China. J. Earth Sci. 2019, 30, 223–235. [Google Scholar] [CrossRef]
- Huang, L.; Su, J.; Pan, S.; Li, C.; Wang, Z. Tectonic evolution of the early permian Junggar basin: Insights into a foreland basin shaped by lithospheric folding. Mar. Pet. Geol. 2025, 171, 107178. [Google Scholar] [CrossRef]
- Zhong, K.; Guo, P.; Li, Z.; Wang, J.; Liu, W.; Zhang, B.; Song, M.; Li, C.; Xu, J. Hydrothermal structures in alkaline lake shales, the Permian Fengcheng Formation of the Junggar Basin, NW China. Mar. Pet. Geol. 2025, 182, 107578. [Google Scholar] [CrossRef]
- Tang, W.; Zhang, Y.; Pe-Piper, G.; Piper, D.J.W.; Guo, Z.; Li, W. Permian rifting processes in the NW Junggar Basin, China: Implications for the post-accretionary successor basins. Gondwana Res. 2021, 98, 107–124. [Google Scholar] [CrossRef]
- Tang, W.; Zhang, Y.; Pe-Piper, G.; Piper, D.J.W.; Guo, Z.; Li, W. Permian to early Triassic tectono-sedimentary evolution of the Mahu sag, Junggar Basin, western China: Sedimentological implications of the transition from rifting to tectonic inversion. Mar. Pet. Geol. 2021, 123, 104730. [Google Scholar] [CrossRef]
- Hou, M.; Zha, M.; Liu, H.; Liu, H.; Qu, J.; Imin, A.; Ding, X.; Jiang, Z. The coupling control of biological precursors and environmental factors on β-carotane enrichment in alkaline lacustrine source rocks: A case study from the Fengcheng formation in the western Junggar Basin, NW China. Pet. Sci. 2024, 21, 836–854. [Google Scholar] [CrossRef]
- Li, S.; Yu, X.; Tan, C.; Steel, R.; Hu, X. Jurassic sedimentary evolution of southern Junggar Basin: Implication for palaeoclimate changes in northern Xinjiang Uygur Autonomous Region, China. J. Palaeogeogr. 2014, 3, 145–161. [Google Scholar]
- Liu, S.; Gao, G.; Gang, W.; Xiang, B.; Wang, M.; Wang, C. Comparison of Formation Conditions of Source Rocks of Fengcheng and Lucaogou Formations in the Junggar Basin, NW China: Implications for Organic Matter Enrichment and Hydrocarbon Potential. J. Earth Sci. 2023, 34, 1026–1040. [Google Scholar] [CrossRef]
- Yu, S.; Wang, X.; Xiang, B.; Ren, J.; Li, E.; Wang, J.; Huang, P.; Wang, G.; Xu, H.; Pan, C. Molecular and carbon isotopic geochemistry of crude oils and extracts from Permian source rocks in the northwestern and central Junggar Basin, China. Org. Geochem. 2017, 113, 27–42. [Google Scholar] [CrossRef]
- Carroll, A.R.; Liang, Y.; Graham, S.A.; Xiao, X.; Hendrix, M.S.; Chu, J.; Cleavy, L. McKnight Junggar basin, northwest China: Trapped Late Paleozoic ocean. Tectonophysics 1990, 181, 1–14. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, Y.; Hu, W.; Yao, S.; Wang, X.; Zhang, Y.; Tang, Y. The Permian hybrid petroleum system in the northwest margin of the Junggar Basin, northwest China. Mar. Pet. Geol. 2005, 22, 331–349. [Google Scholar] [CrossRef]
- Chen, J.; Wang, X.; Deng, C.; Liang, D.; Zhang, Y.; Zhao, Z.; Ni, Y.; Zhi, D.; Yang, H.; Wang, Y. Geochemical Features of Source Rocks and Crude Oil in the Junggar Basin, Northwest China. Acta Geol. Sin. 2016, 90, 37–67. [Google Scholar]
- Dong, X.; Li, J.; Pan, T.; Xu, Q.; Chen, L.; Ren, J.; Jin, K. Hydrocarbon accumulation conditions and exploration potential of Hongche fault zone in Junggar Basin. Acta Pet. Sin. 2023, 44, 748–764. [Google Scholar]
- Liu, H.; Meng, X.; Ren, X.; Cheng, B.; Cheng, C.; Deng, X.; Zhang, H.; Fang, X. Origin and source of Jurassic crude oil in well Pen-1 western Depression, Junggar Basin. J. China Univ. Pet. (Ed. Nat. Sci.) 2023, 47, 25–37. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, X.; Zhao, M.; Zhuo, Q.; Gui, L. Hydrocarbon Generation and Accumulation in the South Junggar Basin, Northwest China: Insights From Basin Modeling. Front. Earth Sci. 2022, 10, 920011. [Google Scholar] [CrossRef]
- Liu, G.; Wei, Y.; Chen, Y.; Jia, K.; Gong, D.; Wang, F.; Sun, J.; Zhu, F.; Ma, W. Genetic mechanism and distribution characteristics of Jurassic-Cretaceous secondary reservoirs in the hinterland of Junggar Basin. Acta Pet. Sin. 2019, 40, 914–927. [Google Scholar]
- Li, Z.; Tang, L.; Ding, W.; Yao, S.; Wang, Y.; Liu, H.; Wang, Y. Fault characteristic analysis for the hinterland of Junggar basin. Pet. Explor. Dev. 2002, 29, 40–43. [Google Scholar]
- Li, C. Study on the Genesis Mechanism and Evolution Process of Abnormal Pressure in the Mesozoic of the Central Junggar Basin. Ph.D. Dissertation, University of Chinese Academy of Sciences (Institute of Geology and Geophysics, Chinese Academy of Sciences), Beijing, China, 2019. [Google Scholar]
- Hong, T.Y. Characteristics and Controlling Role of the Lower Cretaceous Unconformity on Oil Accumulation in the Central Junggar Basin. Ph.D. Dissertation, China University of Geosciences (Beijing), Beijing, China, 2006. [Google Scholar]
- Lin, H.; Wang, J.; Cao, J.; Ren, X. Jurassic compression-torsion fault patterns of the central Junggar basin and their controlling role on reservoir. Acta Geol. Sin. 2019, 93, 3259–3268. [Google Scholar]
- SY/T 5124-2012; Method of Determining Microscopically the Reflectance of Vitrinite in Sedimentary. SINOPEC: Beijing, China, 2012.
- Li, Y.; Lu, J.; Liu, X.; Wang, J.; Chen, S.; He, Q. Geochemical characteristics of source rocks and gas exploration direction in Shawan Sag, Junggar Basin. Nat. Gas Geosci. 2022, 33, 1319–1331. [Google Scholar] [CrossRef]
- Zhang, L.; Lei, D.; Tang, Y.; Abulimiti; Chen, G.; Hu, W.; Cao, J. Hydrocarbon Fluid Phase in the Deep-Buried Strata of the Mahu Sag in the Junggar Basin. Acta Geol. Sin. 2015, 89, 957–969. [Google Scholar]
- Qu, J.; Zhang, Q.; Hou, M.; Ding, X.; Ablimit, I. Source and Accumulation Process of Deep-Seated Oil and Gas in the Eastern Belt around the Penyijingxi Sag of the Junggar Basin, NW China. Processes 2023, 11, 2340. [Google Scholar] [CrossRef]
- Zhao, Z.; Feng, Q.; Liu, X.; Lu, H.; Peng, P.a.; Liu, J.; Hsu, C.S. Petroleum Maturation Processes Simulated by High-Pressure Pyrolysis and Kinetic Modeling of Low-Maturity Type I Kerogen. Energy Fuels 2022, 36, 1882–1893. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, C.; Jiang, F.; Hu, T.; Lv, J.; Zhang, C.; Guo, X.; Huang, L.; Hu, M.; Huang, R.; et al. Geological characteristics and shale oil potential of alkaline lacustrine source rock in Fengcheng Formation of the Mahu Sag, Junggar Basin, Western China. J Pet. Sci. Eng. 2022, 216, 110823. [Google Scholar] [CrossRef]
- Hou, M.; Qu, J.; Zha, M.; Swennen, R.; Ding, X.; Imin, A.; Liu, H.; Bian, B. Significant contribution of haloalkaliphilic cyanobacteria to organic matter in an ancient alkaline lacustrine source rock: A case study from the Permian Fengcheng Formation, Junggar Basin, China. Mar. Pet. Geol. 2022, 138, 105546. [Google Scholar] [CrossRef]
- Dang, W.; Gao, G.; You, X.; Fan, K.; Wu, J.; Lei, D.; He, W.; Tang, Y. Geochemical identification of a source rock affected by migrated hydrocarbons and its geological significance: Fengcheng Formation, southern Mahu Sag, Junggar Basin, NW China. Pet. Sci. 2024, 21, 100–114. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, G.; Song, L.; Huang, L.; Wang, S.; Zhang, Y.; Huang, Y.; Dai, Q.; Fan, X. Identification of fluid types and their implications for petroleum exploration in the shale oil reservoir: A case study of the Fengcheng Formation in the Mahu Sag, Junggar Basin, Northwest China. Mar. Pet. Geol. 2023, 147, 105996. [Google Scholar] [CrossRef]
- Gong, D.; Liu, Z.; Zhou, C.; Ownsworth, E.; Selby, D.; He, W.; Qin, Z. Carboniferous–Permian interglacial warming and volcanism temporally linked to the world’s oldest alkaline lake deposit of the Fengcheng Formation, NW China. Palaeogeogr. Palaeocl. 2024, 654, 112441. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, F.; Niu, Z.; Jin, K.; Li, P.; Duo, S.; Chen, G. Hydrocarbon generation kinetics of source rocks of Permian Fengcheng Formation in Mahu Sag, Junggar Basin. Lithol. Reserv. 2022, 34, 116–127. [Google Scholar]
- Carroll, A.R.; Bohacs, K.M. Lake-Type Controls on Petroleum Source Rock Potential in Nonmarine Basins. AAPG Bull. 2001, 85, 1033–1053. [Google Scholar] [CrossRef]
- He, W.J. Causes and Evolution of Abnormal Pressure in the Deep Part of the Central Junggar Basin. Master’s Thesis, China University of Petroleum (East China), Qingdao, China, 2020. [Google Scholar]
- Wygrala, B.P. Integrated Study of an Oil Field in the Southern Po Basin, Northern Italy. Ph.D. Thesis, University of Cologne, Cologne, Germany, 1989. [Google Scholar]
- Zhou, L.; Zheng, J.; Lei, D.; He, D.; Tang, Y.; Shi, X.; Pang, L.; Yang, Z. Recovery of eroded thickness of the Jurassic of Chemo palaeouplift in Junggar Basin. J. Palaeogeogr. 2007, 9, 243–252. [Google Scholar] [CrossRef]
- Hantschel, T.; Kauerauf, A.I. Fundamentals of Basin and Petroleum Systems Modeling; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar] [CrossRef]
- Mullins, O.; Zuo, J.; Wang, K.; Hammond, P.; Santos, R.; Dumont, H.; Mishra, V.; Chen, L.; Pomerantz, A.; Dong, C.; et al. The Dynamics of Reservoir Fluids and their Substantial Systematic Variations. Petrophysics 2014, 55, 96–112. [Google Scholar]
- Mullins, O.; Chen, L.; Betancourt, S.; Achourov, V.; Dumont, H.; Cañas, J.; Forsythe, J.; Pomerantz, A. Reservoir fluid geodynamics. In Fluid Chemistry, Drilling and CompletionFluid Chemistry, Drilling and Completion; Oil and Gas Chemistry Management Series; Elsevier: Amsterdam, The Netherlands, 2022; pp. 1–39. [Google Scholar] [CrossRef]
- Mullins, O.C.; Elshahawi, H.; Chen, L.; Forsythe, J.C.; Betancourt, S.S.; Hakim, B.; Messonnier, T.; Mohamed, T.S.; Kristensen, M.; Pan, S.; et al. Compositional Mixing Characteristics of Separate Gas and Oil Charges into Oil Field Reservoirs. Energy Fuels 2023, 37, 7760–7776. [Google Scholar] [CrossRef]
- Yang, S. Reservoir Physics; Petroleum Industry Press: Beijing, China, 2007. [Google Scholar]
- Qiao, R.; Chen, Z. Petroleum phase evolution at high temperature: A combined study of oil cracking experiment and deep oil in Dongying Depression, eastern China. Fuel 2022, 326, 124978. [Google Scholar] [CrossRef]
- Losh, S.; Cathles, L.; Meulbroek, P. Gas washing of oil along a regional transect, offshore Louisiana. Org. Geochem. 2002, 33, 655–663. [Google Scholar] [CrossRef]
- Wei, X.; Liu, K.; Yang, X.; Yang, P.; Liu, J.; Ding, X. Evolution of the Dibei condensate gas reservoirs in the northern Kuqa Foreland Basin, western China: Insight for hydrocarbon in-reservoir alteration. Mar. Pet. Geol. 2025, 174, 107306. [Google Scholar] [CrossRef]
- Xi, S.; Li, W.; Li, R. Hydrocarbon generation and reservoir formation: A case from Chang 7 source rock in Majiatan area, west margin of Ordos Basin. Pet. Explor. Dev. 2008, 35, 657–663. [Google Scholar]
- Meng, L.; Yuan, H.; Zhang, Y.; Zhang, Y. Prediction of Oil Source Fault-Associated Traps Favorable for Hydrocarbon Migration and Accumulation: A Case Study of the Dazhangtuo Fault in the Northern Qikou Sag of the Bohai Bay Basin. Processes 2024, 12, 1609. [Google Scholar] [CrossRef]
- Chu, R.; Wang, Y.-G.; Shi, H.-T. Quantitative evaluation of fault sealing capacity and hydrocarbon migration: Insight from the Liuzhuang fault in the Bohai Bay Basin, China. Int. J. Earth Sci. 2024, 113, 459–475. [Google Scholar] [CrossRef]
- Zeng, Z.; Wang, J.; Li, C.; Xu, B.; Fan, J.; Liu, D.; Li, S.; Zhang, Z. Research on the source rock types and thermal evolution of the Permian Lower Wuerhe Formation in the Shawan Sag, Junggar Basin. Chin. J. Geol. 2024, 59, 330–340. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, J.; Hu, W. Timing of petroleum accumulation and the division of reservoir-forming assemblages, Junggar Basin, NW China. Pet. Explor. Dev. 2010, 37, 257–262. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, H.; Han, Z.; Li, J.; Zhang, W. Characteristics of Fluid Inclusions and Pressure Recovery during Hydrocarbon Accumulation Period in Jurassic Sangonghe Formation in Fukang Sag, Junggar Basin. Earth Sci. 2024, 49, 2420–2433. [Google Scholar]
- Li, B.; He, D.; Li, M.; Chen, L.; Yan, K.; Tang, Y. Biomarkers and Carbon Isotope of Monomer Hydrocarbon in Application for Oil–Source Correlation and Migration in the Moxizhuang–Yongjin Block, Junggar Basin, NW China. ACS Omega 2022, 7, 47317–47329. [Google Scholar] [CrossRef]
- Wu, M.; Jin, J.; Ma, W.; Xiang, B.; Zhou, N.; Ren, J.; Cao, J. Deep-Buried Triassic Oil-Source Correlation in the Central Junggar Basin, NW China. Geofluids 2017, 2017, 7581859. [Google Scholar] [CrossRef]
- Peng, D.-Y.; Robinson, D.B. A New Two-Constant Equation of State. Ind. Eng. Chem. Fundam. 1976, 15, 59–64. [Google Scholar] [CrossRef]
- Mullins, O.; Zuo, J.; Dong, C.; Elshahawi, H.; Seifert, D.; Cribbs, M. The Dynamics of Fluids In Reservoirs. In Proceedings of the SPE Annual Technical Conference and Exhibition, New Orleans, LA, USA, 30 September–2 October 2013; Volume 1. [Google Scholar] [CrossRef]
- Steffens, B.; Corlay, Q.; Suurmeyer, N.; Noglows, J.; Arnold, D.; Demyanov, V. Can Agents Model Hydrocarbon Migration for Petroleum System Analysis? A Fast Screening Tool to De-Risk Hydrocarbon Prospects. Energies 2022, 15, 902. [Google Scholar] [CrossRef]
- Altamar, R.P. Modeling hydrocarbon pathways from accumulation to source: A stochastic agent-based approach with permeability-driven matrices. Lead. Edge 2025, 44, 566–570. [Google Scholar] [CrossRef]
- Yang, J.; Liu, Y.; Dai, H.; Yuan, S.; Jiao, T.; Wen, Z.; Ye, M. Development of an integrated global sensitivity analysis strategy for evaluating process sensitivities across single- and multi-models. J. Hydrol. 2024, 643, 132014. [Google Scholar] [CrossRef]
Well | Formation | Temperature | Pressure | Density | Viscosity | Gas-Oil Ratio | Oil Testing Data | Oil Show |
---|---|---|---|---|---|---|---|---|
°C | MPa | g/cm3 | mPa·s | m3/m3 | ||||
Zheng 10 | J1s | Fluorescence, Oil Stain | ||||||
J1b | Fluorescence | |||||||
T2k | 150 | 138.24 | 0.81–0.82 | 5.31–5.93 | 101–154 | Oil zone—oil-bearing water zone | Fluorescence | |
P3w | 166 | 155 | 0.79 | 2.87 | 1351 | Oil-water co-bearing zone | ||
Zhuang 2 | J1s | 103.9 | 75.07 | 0.86 | 10.8 | Gas-bearing water zone | Fluorescence, Oil Stain Oil Soaked | |
J1b | Fluorescence | |||||||
T2k-T1b | 144.4 | 99.34 | Water-bearing oil zone |
Components | N2 | C1 | C2 | C3 | C4 | C5 | C6+ |
---|---|---|---|---|---|---|---|
Fluid composition in reservoir/mol% | 0.52 | 78.94 | 8.21 | 2.59 | 1.59 | 0.76 | 7.39 |
Well | Depth (m) | Average Vitrinite Reflectance (%) |
---|---|---|
Zheng 10 | 7693 | 1.24 |
Zheng 10 | 7732 | 1.26 |
Zheng 10 | 7761 | 1.27 |
Zheng 10 | 7791 | 1.30 |
Zhuang 2 | 5035 | 0.49 |
Zhuang 2 | 5274 | 0.56 |
Zhuang 2 | 5303 | 0.55 |
Zhuang 2 | 5351 | 0.59 |
Zhuang 2 | 5412 | 0.61 |
Zhuang 2 | 5551 | 0.62 |
Zhuang 2 | 5635 | 0.64 |
Zhuang 2 | 5738 | 0.66 |
Zhuang 2 | 5831 | 0.64 |
Zhuang 2 | 5870 | 0.63 |
Zhuang 2 | 5944 | 0.71 |
Zhuang 2 | 6000 | 0.73 |
Zhuang 2 | 6083 | 0.73 |
Model | Fault | Fault Opening Time/Ma | Source Rocks | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
298.9 | 242 | 174.1 | 155 | 120 | 97 | 90 | 66 | 50 | 23 | 15 | 10 | 2 | |||
Model 1 | 1, 2 6, 7 | √ 1 | √ | √ | √ | √ | √ | × | √ | × | √ | × | × | × | P2w |
11–14 | × | √ | √ | √ | √ | √ | × | √ | √ | × | × | × | |||
3, 8 | √ | √ | √ | √ | × | × | √ | × | √ | × | √ | × | √ | ||
15, 16 | × | √ | √ | √ | × | × | √ | × | √ | × | √ | × | √ | ||
4, 5 9, 10 | √ | √ | √ | √ | × | √ | × | × | × | √ | × | √ | × | ||
17–20 | × | √ | √ | √ | × | √ | × | × | × | √ | × | √ | × | ||
Model 2 | 1, 2 6, 7 | √ | √ | √ | √ | √ | √ | × | √ | × | √ | × | × | × | P2w |
11–14 | × | √ | √ | √ | √ | × | × | × | × | × | × | × | × | ||
3, 8 | √ | √ | √ | √ | × | × | √ | × | √ | × | √ | × | √ | ||
15, 16 | × | √ | √ | √ | × | × | × | × | × | × | × | × | × | ||
4, 5 9, 10 | √ | √ | √ | √ | × | √ | × | × | × | √ | × | √ | × | ||
17–20 | × | √ | √ | √ | × | × | × | × | × | × | × | × | × | ||
Model 3 | 1, 2 6, 7 | √ | √ | √ | √ | × | × | × | × | × | × | × | × | × | P2w |
11–14 | × | √ | √ | √ | × | × | × | × | × | × | × | × | × | ||
3, 8 | √ | √ | √ | √ | × | × | × | × | × | × | × | × | × | ||
15, 16 | × | √ | √ | √ | × | × | × | × | × | × | × | × | × | ||
4, 5 9, 10 | √ | √ | √ | √ | × | × | × | × | × | × | × | × | × | ||
17–20 | × | √ | √ | √ | × | × | × | × | × | × | × | × | × | ||
Model 4 | 1, 2 6, 7 | √ | √ | √ | √ | √ | √ | × | √ | × | √ | × | × | × | P2w P1f |
11–14 | × | √ | √ | √ | √ | √ | × | √ | × | √ | × | × | × | ||
3, 8 | √ | √ | √ | √ | √ | × | √ | × | √ | × | √ | × | √ | ||
15, 16 | × | √ | √ | √ | √ | × | √ | × | √ | × | √ | × | √ | ||
4, 5 9, 10 | √ | √ | √ | √ | × | √ | × | × | × | √ | × | √ | × | ||
17–20 | × | √ | √ | √ | × | √ | × | × | × | √ | × | √ | × | ||
Model 5 | 1, 2 6, 7 | √ | √ | √ | √ | √ | √ | × | √ | × | √ | × | × | × | P2w P1f |
11–14 | × | √ | √ | √ | × | × | × | × | × | × | × | × | × | ||
3, 8 | √ | √ | √ | √ | × | × | √ | × | √ | √ | × | √ | |||
15, 16 | × | √ | √ | √ | × | × | × | × | × | × | × | × | × | ||
4, 5 9, 10 | √ | √ | √ | √ | × | √ | × | × | × | √ | × | √ | × | ||
17–20 | × | √ | √ | √ | × | × | × | × | × | × | × | × | × | ||
Model 6 | 1, 2 6, 7 | √ | √ | √ | √ | × | × | × | × | × | × | × | × | × | P2w P1f |
11–14 | × | √ | √ | √ | × | × | × | × | × | × | × | × | × | ||
3, 8 | √ | √ | √ | √ | × | × | × | × | × | × | × | × | × | ||
15, 16 | × | √ | √ | √ | × | × | × | × | × | × | × | × | × | ||
4, 5 9, 10 | √ | √ | √ | √ | × | × | × | × | × | × | × | × | × | ||
17–20 | × | √ | √ | √ | × | × | × | × | × | × | × | × | × |
Model | Target Formation | Reservoir Number | Accumulation Quantity/Mt | Hydrocarbon Saturation of Well Zheng 10/% | Hydrocarbon Saturation of Well Zhuang 2/% |
Model 1 | J1s | 4 | 32.43 | 0 | 20.88 |
J1b | 1 | 0.08 | 0 | 0 | |
T3b | 2 | 2.08 | 0 | 0 | |
T2k | 3 | 0.79 | 0 | 0 | |
T1b | 1 | 0.82 | 0 | 0 | |
P3w | 9 | 16.22 | 30.93 | 23.72 | |
Model 2 | J1b | 2 | 6.65 | 0 | 0 |
P3w | 9 | 21.49 | 30.19 | 47.55 | |
Model 3 | J1s | 1 | 0.05 | 0 | 0 |
T2k | 1 | 0.02 | 0 | 0 | |
P3w | 5 | 0.62 | 2.67 | 0 |
Model | Target Formation | Reservoir Number | Accumulation Quantity/Mt | Hydrocarbon Saturation of Well Zheng 10/% | Hydrocarbon Saturation of Well Zhuang 2/% |
---|---|---|---|---|---|
Model 4 | J1s | 9 | 92.7 | 23.95 | 47.55 |
J1b | 6 | 36.17 | 47.55 | 0 | |
T2k | 7 | 6.2 | 18.35 | 16.49 | |
T1b | 5 | 0.93 | 0 | 23.85 | |
P3w | 20 | 22.12 | 11.15 | 47.89 | |
Model 5 | J1b | 3 | 2.29 | 23.97 | 0 |
T2k | 6 | 0.51 | 0 | 0 | |
T1b | 5 | 0.84 | 0 | 0 | |
P3w | 23 | 109.09 | 49.35 | 47.40 | |
Model 6 | J1s | 4 | 2.78 | 0 | 0 |
J1b | 1 | 0.19 | 0 | 0 | |
T2k | 2 | 0.31 | 0 | 0 | |
T1b | 8 | 0.67 | 0 | 11.71 | |
P3w | 39 | 24.69 | 15.86 | 15.85 |
Model | Target Formation | Gas-Oil Ratio m3/m3 | Density g/cm3 | Viscosity mPa·s | Phase State of Well Zheng 10 | Phase State of Well Zhuang 2 |
---|---|---|---|---|---|---|
Model 1 | J1s | 20.13–95.59 | 0.83 | 6.67–7.48 | Liquid phase | |
J1b | 2.28 | 0.83 | 7.21 | |||
T3b | 7.99–10.38 | 0.83 | 7.27–7.36 | |||
T2k | 16.88–34.27 | 0.83 | 6.92–7.68 | |||
T1b | 144.05 | 0.83 | 7.18 | |||
P3w | 32.88–198.25 | 0.82–0.83 | 4.95–7.35 | Liquid phase | Liquid phase | |
Model 2 | J1b | 0.89–43.11 | 0.83 | 7.15–7.50 | ||
P3w | 27.80–131.42 | 0.83 | 5.98–7.18 | Liquid phase | Liquid phase | |
Model 3 | J1s | 0.06 | 0.83 | 6.18 | ||
T2k | 2.27 | 0.83 | 6.32 | |||
P3w | 13.78–61.20 | 0.83 | 5.73–7.07 | Liquid phase | ||
Model 4 | J1s | 9.65–558.69 | 0.82 | 4.88–7.61 | Liquid phase | Liquid phase |
J1b | 2.29–230.94 | 0.82–0.83 | 5.24–7.75 | Liquid phase | ||
T2k | 24.88–531.58 | 0.82–0.83 | 5.16–7.35 | Liquid phase | Liquid phase | |
T1b | 118.34–413.90 | 0.82–0.83 | 5.27–6.11 | Liquid phase | ||
P3w | 113.68–1042.74 | 0.80–0.83 | 2.66–6.15 | Condensate phase | Condensate phase | |
Model 5 | J1b | 4.78 | 0.83 | 8.15 | Liquid phase | |
T2k | 3.61–7.99 | 0.83 | 7.09–7.27 | |||
T1b | 7.92–205.22 | 0.83 | 5.87–7.21 | |||
P3w | 79.16–1807.46 | 0.79–0.83 | 2.16–6.84 | Condensate phase | Condensate phase | |
Model 6 | J1s | 2.40–3.61 | 0.83 | 7.19–7.62 | ||
J1b | 2.28 | 0.83 | 7.28 | |||
T2k | 2.28 | 0.83 | 6.96 | |||
T1b | 9.37–22.95 | 0.83 | 7.37–7.41 | Liquid phase | ||
P3w | 13.87–59.69 | 0.83 | 6.98–7.34 | Liquid phase | Liquid phase |
Well | Formation | Gas-Oil Ratio m3/m3 | Density g/cm3 | Viscosity mPa·s | Phase State | |
---|---|---|---|---|---|---|
Zheng 10 | Measured results | P3w | 1351 | 0.79 | 2.87 | condensate phase |
T2k | 101–154 | 0.81–0.82 | 5.31–5.93 | liquid phase | ||
Simulated results | P3w | 1041.60 | 0.80 | 2.50 | condensate phase | |
T2k | 134.69 | 0.81 | 5.35 | liquid phase | ||
Zhuang 2 | Measured results | J1s | 0.86 | 10.8 | liquid phase | |
Simulated results | J1s | 158.151 | 0.85 | 5.72 | liquid phase |
Components | Measured Results | Simulated Results |
---|---|---|
C1/mol% | 78.94 | 80.02 |
C2–C5/mol% | 13.15 | 11.20 |
C6+/mol% | 7.39 | 8.78 |
Mass [Mt] | Remaining Potential | Generation Balance | Accumulated in Source | Expulsion Balance | Accumulated in Extra-Reservoir |
---|---|---|---|---|---|
Sample 1 | 72.77 | 441.84 | 151.89 | 289.95 | 158.13 |
Sample 2 | 60.38 | 441.86 | 119.26 | 322.6 | 192.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, B.; Lei, Y.; Zhang, L.; Liu, N.; Li, C.; Li, Y.; Jia, Y.; Wang, J.; Zeng, Z. Modeling of Hydrocarbon Migration and Hydrocarbon-Phase State Behavior Evolution Process Simulation in Deep-Ultradeep Reservoirs of the Mo-Yong Area, Junggar Basin. Appl. Sci. 2025, 15, 9694. https://doi.org/10.3390/app15179694
Xu B, Lei Y, Zhang L, Liu N, Li C, Li Y, Jia Y, Wang J, Zeng Z. Modeling of Hydrocarbon Migration and Hydrocarbon-Phase State Behavior Evolution Process Simulation in Deep-Ultradeep Reservoirs of the Mo-Yong Area, Junggar Basin. Applied Sciences. 2025; 15(17):9694. https://doi.org/10.3390/app15179694
Chicago/Turabian StyleXu, Bingbing, Yuhong Lei, Likuan Zhang, Naigui Liu, Chao Li, Yan Li, Yuedi Jia, Jinduo Wang, and Zhiping Zeng. 2025. "Modeling of Hydrocarbon Migration and Hydrocarbon-Phase State Behavior Evolution Process Simulation in Deep-Ultradeep Reservoirs of the Mo-Yong Area, Junggar Basin" Applied Sciences 15, no. 17: 9694. https://doi.org/10.3390/app15179694
APA StyleXu, B., Lei, Y., Zhang, L., Liu, N., Li, C., Li, Y., Jia, Y., Wang, J., & Zeng, Z. (2025). Modeling of Hydrocarbon Migration and Hydrocarbon-Phase State Behavior Evolution Process Simulation in Deep-Ultradeep Reservoirs of the Mo-Yong Area, Junggar Basin. Applied Sciences, 15(17), 9694. https://doi.org/10.3390/app15179694