Characteristics of Rebound Deformation Caused by Groundwater Level Recovery: A Case Study of the Yuhuazhai Area in Xi’an, China
Abstract
1. Introduction
2. The Characteristics of Ground Rebound and Groundwater Level
2.1. Current Ground Rebound Conditions
2.2. Groundwater Dynamics
3. Numerical Simulation of the Decline and Rise of the Groundwater Level
3.1. Control Equations
- Equations of Solid Mechanics (Equilibrium Equations)
- : Total stress tensor (effective stress + pore water pressure);
- : average density of the porous medium ( is the solid density, is the fluid density, and n is the porosity);
- u: solid displacement vector.
- 2.
- Fluid Flow Equations (Modified Darcy’s Law)
- q: seepage rate (Darcy flow rate);
- k: coefficient of permeability;
- μ: hydrodynamic viscosity;
- p: pore water pressure.
- 3.
- Effective Stress Principle
- : Effective stress (determines solid deformation);
- a: Biot coefficient (usually close to 1);
- I: Unit Tensor.
3.2. The Establishment of a Three-Dimensional Geological Model
3.3. Boundary Conditions and Parameters
3.4. Simulation of the Decline and Rise of the Groundwater Level
4. Soil Deformation Resulting from Groundwater Level Change
4.1. Theoretical Basis
4.1.1. Yield Criterion (Mohr–Coulomb Criterion)
4.1.2. Plastic Flow Law
4.2. Deformation Characteristics of the Aquifer
4.3. Deformation Characteristics of Different Aquifers
4.3.1. Deformation Characteristics of the Phreatic Aquifer
4.3.2. Deformation Characteristics of the Confined Aquifer
4.4. Dynamic Prediction of Ground Rebound
5. Discussion
5.1. Effect of Elastic Modulus on Ground Rebound
5.2. The Influence of the Permeability Coefficient on Ground Rebound
5.3. The Influence of the Water Level Recovery Rate on Ground Rebound
6. Conclusions
- In the water level recovery stage, the rebound amount of the hanging wall of the second confined aquifer was 38.32 mm, accounting for 61.12% of the total rebound amount. The rebound amount of the first confined aquifer was 7.69 mm, accounting for 12.26%, and that of the phreatic aquifer was 16.69 mm, accounting for 26.62%. The second confined aquifer contributed the most to the total rebound.
- The formation structure affected the rebound. The soil layers of the hanging walls of the three aquifers exhibited different rebound values in the water level recovery stage. The thicker the sand layer, the higher the rebound amount.
- Based on the current water level trend, the predicted maximum rebound amount of the hanging wall (footwall) in the next five years was 2.8 mm (2.6 mm). The difference (0.2 mm) will not significantly impact existing buildings.
- The elastic modulus exhibited a significant linear correlation with the ground rebound. The difference in the permeability coefficient between the clay and sand layers is the dominant reason for the different rebound values. Continuous water level recovery increases ground rebound.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tian, M. Response and contral factors of surface deformation in the middle and upper regions of the Chaobai River alluvial fan for the groundwater recharge of South-North Water Diversion Project. Geol. Rev. 2024, 70, 1571–1586. [Google Scholar]
- Zhang, J.; Hu, K.; Yue, W.; Liu, B.; Wang, J.; Gao, Q. Land subsidence in shanghai city and its response to groundwater exploitation and reinjection. Resour. Environ. Yangtze Basin 2016, 25, 567–572. [Google Scholar]
- Wang, X.; Luo, Z.J.; Li, Z.; Zhao, Q.; Dai, J. The impact of groundwater recharge on land subsidence: A case study from the Cangzhou test area, Hebei Province, China. Hydrogeol. J. 2023, 31, 813–825. [Google Scholar] [CrossRef]
- Qu, C. Analysis on Recharge Test at Lujiazui Area in Shanghai. Chin. J. Undergr. Space Eng. 2014, 10, 295–298. [Google Scholar]
- Coda, S.; Tessitore, S.; Di Martire, D.; Calcaterra, D.; De Vita, P.; Allocca, V. Coupled ground uplift and groundwater rebound in the metropolitan city of Naples (southern Italy). J. Hydrol. 2019, 569, 470–482. [Google Scholar] [CrossRef]
- Shi, X.; Feng, Z.; Yao, B.; Huang, X.; Wu, J. Study on the deformation characteristics of soil layers after banning groundwater pumping in su-xi-chang area. Quat. Sci. 2014, 34, 1062–1071. [Google Scholar]
- Luo, Y.; Yan, X.; Yang, T.; Ye, S.; Wu, J. Space-time characteristics of exploitation and recharge of groundwater and land subsidence of Shanghai’s land area. J. Nanjing Univ. Nat. Sci. 2019, 55, 449–457. [Google Scholar]
- Luo, Y.; Ye, S.; Wu, J.; Jiao, X.; Wang, H. Characterization of Land Subsidence During Recovery of Groundwater Levels in Shanghai. Geol. J. China Univ. 2015, 21, 243–254. [Google Scholar]
- Bai, Z.C.; Wang, Y.P.; Balz, T. Beijing Land Subsidence Revealed Using PS-InSAR with Long Time Series TerraSAR-X SAR Data. Remote Sens. 2022, 14, 2529. [Google Scholar] [CrossRef]
- Dong, J.; Guo, S.K.; Wang, N.; Zhang, L.; Ge, D.Q.; Liao, M.S.; Gong, J.Y. Tri-decadal evolution of land subsidence in the Beijing Plain revealed by multi-epoch satellite InSAR observations. Remote Sens. Environ. 2023, 286, 17. [Google Scholar] [CrossRef]
- Wang, Y.K.; Gong, H.L.; Zhou, C.F.; Wang, Q.; Wang, H.T.; Zhang, J.C. Decomposition and attribution analysis of the coupled evolution characteristics of groundwater and land subsidence in the Beijing-Tianjin-Hebei Plain. J. Hydrol. Reg. Stud. 2025, 59, 17. [Google Scholar] [CrossRef]
- Shi, W.; Chen, G.; Meng, X.M.; Jiang, W.Y.; Chong, Y.; Zhang, Y.; Dong, Y.; Zhang, M.S. Spatial-Temporal Evolution of Land Subsidence and Rebound over Xi’an in Western China Revealed by SBAS-InSAR Analysis. Remote Sens. 2020, 12, 3756. [Google Scholar] [CrossRef]
- Wang, B.H.; Zhao, C.Y.; Zhang, Q.; Peng, M.M. Sequential InSAR Time Series Deformation Monitoring of Land Subsidence and Rebound in Xi’an, China. Remote Sens. 2019, 11, 2854. [Google Scholar] [CrossRef]
- Li, G.R.; Zhao, C.Y.; Wang, B.H.; Peng, M.M.; Bai, L. Evolution of spatiotemporal ground deformation over 30 years in Xi’an, China, with multi-sensor SAR interferometry. J. Hydrol. 2023, 616, 14. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, T.; Lu, Q.; Liu, C.; Zhan, J. Spatial-temporal evolution characteristics of land subsidence and ground fissure in yuhua village of xi’an city using sbas-insar technique. J. Eng. Geol. 2022, 30, 553–564. [Google Scholar]
- Feng, M.; Qi, Q.; Dong, Y.; Zeng, L.; Zhang, X.; Liu, W.; Li, Y.; Wang, T.; Zhang, G. Monitoring Surface Deformation in Xi’an City from 2019 to 2022 Based on Sentinel-1A Data. Northwest. Geol. 2023, 56, 178–185. [Google Scholar]
- Wei, D.; Wang, S. Settlement monitoring and analysis along Xian metro line based on time series insar technology. Prog. Geophys. 2024, 39, 498–509. [Google Scholar]
- Yang, Y.; Li, G.-M.; Dong, Y.-H.; Li, M.; Yang, J.-Q.; Zhou, D.; Yang, Z.-S. Simulation of the impact of the South to North Water Transfer Project on groundwater in the Beijing plain. In Proceedings of the 7th International Groundwater Quality Conference, Zurich, Switzerland, 13–18 June 2010; Eawag: Dübendorf, Switzerland, 2011; pp. 88–91. [Google Scholar]
- Glass, J.; Rico, D.A.V.; Stefan, C.; Nga, T.T.V. Simulation of the impact of managed aquifer recharge on the groundwater system in Hanoi, Vietnam. Hydrogeol. J. 2018, 26, 2427–2442. [Google Scholar] [CrossRef]
- Luo, Z.; Yao, B.; Wang, X. Three Dimension Numerical Model of Groundwater Resource Evaluation of Complex Aquifer System. J. Jilin Univ. 2005, 35, 188–194. [Google Scholar]
- Yang, K.L.; Xu, C.J.; Zeng, C.F.; Zhu, L.; Xue, X.L.; Han, L. Analysis of Recharge Efficiency Under Barrier Effects Incurred by Adjacent Underground Structures. Water 2025, 17, 257. [Google Scholar] [CrossRef]
- Du, J.J.; Zhang, Y.; Luo, Z.J.; Zhang, C.H. Prediction of Ground Subsidence Induced by Groundwater Mining Using Three-Dimensional Variable-Parameter Fully Coupled Simulation. Water 2024, 16, 2487. [Google Scholar] [CrossRef]
- Li, B.L.; Jiang, L.L.; Wang, D.L.; Yin, Y.; Shen, Y.P.; Han, Y.X. Study on the Deformation Characteristics of Railway Subgrade Structures Induced by Groundwater Level Changes. Adv. Civ. Eng. 2025, 2025, 5559122. [Google Scholar] [CrossRef]
- Intui, S.; Inazumi, S.; Soralump, S. Sustainability of Soil/Ground Environment under Changes in Groundwater Level in Bangkok Plain, Thailand. Sustainability 2022, 14, 10908. [Google Scholar] [CrossRef]
- Xiong, X.; Luo, Y.; Shi, X.; Wu, J.; Wu, J. Three-dimensional Land Subsidence Modeling Based on TOUGH2-FLAC~(3D)and Control Strategies Evaluation. Geol. J. China Univ. 2017, 23, 172–180. [Google Scholar]
- Xu, C.H.; Yu, D.D.; Liu, G.; Luo, Z.J.; Li, Z. Numerical Simulation of Artificial Recharge Groundwater Effect on Overlying Soft Clay Compression Control. Adv. Civ. Eng. 2023, 2023, 6615699. [Google Scholar] [CrossRef]
- Liu, X.; Song, X.; Tan, Y.; Jing, X. Field tests on groundwater recharge of deep excavations in Nantong water-rich sandy stratum. Chin. J. Geotech. Eng. 2020, 42, 1331–1340. [Google Scholar]
- Chang, Y.S.; Lv, L.; Wang, X.D.; Xie, R.Z.; Wang, Y.P. The influence of withdrawal-recharging pattern on the deformation characteristics of sand in confined aquifer. Heliyon 2024, 10, 9. [Google Scholar] [CrossRef]
- Wang, B.; Zhu, L.; Pan, D.; Guo, L.; Peng, P. Research on temporal and spatial evolution law of land subsidence in Zhengzhou. Remote Sens. Land Resour. 2020, 32, 143–148. [Google Scholar]
- Zhang, S.; Li, M.; Liu, Z.; Si, J.; Wu, W.; Zhang, Y. Temporal and Spatial Distribution Characteristics of Land Subsidence in Xian-Xianyang Interpreted by Time-Series InSAR. J. Geod. Geodyn. 2024, 44, 391–397. [Google Scholar]
- Liu, M.Y.; Zhang, Q.Q.; Gong, X.L.; Xu, S.G.; Gu, C.S.; Zhang, Y. Study on soil deformation characteristic and the life process of land subsidence in Changzhou Area of Jiangsu Province. Shanghai Land Resour. 2022, 43, 50–55+72. [Google Scholar]
- Wu, J.H.; Shi, B.; Cao, D.F.; Jiang, H.T.; Wang, X.F.; Gu, K. Model test of soil deformation response to draining-recharging conditions based on DFOS. Eng. Geol. 2017, 226, 107–121. [Google Scholar] [CrossRef]
- Wang, Q.; Peng, J.; Jiang, Z.; Teng, H. Numerical simulation and layerwise mark monitoring of land subsidence and ground fissures of typical section in Xian. Rock Soil Mech. 2014, 35, 3298–3302. [Google Scholar]
- Li, N.; Li, M.; Zhao, F.; Wang, Q. Numerical Simulation Analysis of Xian Land Subsidence by FLAC~(2D). J. Catastrophol. 2013, 28, 210–214. [Google Scholar]
- Jiang, Z.; Peng, J.; Wang, Q. Influence of pre-existing fault on ground fissures during pumping action. J. Eng. Geol. 2010, 18, 651–656. [Google Scholar]
- Jiang, Z.; Peng, J.; Wang, Q. Numerical Simulation of the Effect of Preexisting Fault on Land Subsidence and Ground Fissures During Pumping. J. Jilin Univ. Earth Sci. Ed. 2012, 42, 1099. [Google Scholar]
- Yun, J.S.; Yoo, H.K.; Hwang, S.P.; Kim, W.S.; Kim, H.E. Prediction of Settlement Due to Shield TBM Tunneling Based on Three-Dimensional Numerical Analysis. Buildings 2025, 15, 2235. [Google Scholar] [CrossRef]
- Zhang, L.L.; Cheng, H. Layered mechanics model for surface movement and deformation due to confined aquifer pumping. J. Theor. Appl. Mech. 2025, 63, 59–74. [Google Scholar] [CrossRef]
- Ma, F.H.; Li, S.L.; Wang, Q.Y. Study on the Impact of Deep Foundation Excavation of Reclaimed Land on the Deformation of Adjacent Subway Tunnels. Buildings 2024, 14, 1771. [Google Scholar] [CrossRef]
- Kim, H.; Nam, K.M.; Ha, S.-G.; Yoo, H.K. A numerical study on the behavior of existing and enlarged tunnels when widened by applying the pre-cutting method. J. Korean Tunn. Undergr. Space Assoc. 2020, 22, 451–468. [Google Scholar]
- Isotton, G.; Ferronato, M.; Gambolati, G.; Teatini, P. On the possible contribution of clayey inter-layers to delayed land subsidence above producing aquifers. In Proceedings of the Prevention and Mitigation of Natural and Anthropogenic Hazards Due to Land Subsidence, Nagoya, Japan, 15–19 November 2015; pp. 519–523. [Google Scholar]
- Ding, G.; Hu, C.; Chen, H.; Chen, G.; Li, L. Permeability characteristics of clay in land subsidence center at Hengshui, Hebei, China. J. Eng. Geol. 2012, 20, 82–87. [Google Scholar]
- Qin, H.H.; Andrews, C.B.; Tian, F.; Cao, G.L.; Luo, Y.; Liu, J.R.; Zheng, C.M. Groundwater-pumping optimization for land-subsidence control in Beijing plain, China. Hydrogeol. J. 2018, 26, 1061–1081. [Google Scholar] [CrossRef]
- Xiong, X.; Shi, X.; Wu, J.; Wu, J. 3D numerical simulation of elasto-plastic land subsidence induced by groundwater pumping. Hydrogeol. Eng. Geol. 2017, 44, 151–159. [Google Scholar]
- He, G.F.; Yan, X.X.; Zhang, Y.; Yang, T.L.; Wu, J.C.; Bai, Y.; Gu, D. Experimental Study on the Vertical Deformation of Soils due to Groundwater Withdrawal. Int. J. Geomech. 2020, 20, 12. [Google Scholar] [CrossRef]
Model Layer Elevation | Layer Number | Soil Type | Aquifer Division | Model Layer Elevation | Layer Number | Soil Type | Aquifer Division |
---|---|---|---|---|---|---|---|
300 | 1 | filling | phreatic layer | 300 | 1 | filling | phreatic layer |
292 | 2 | silty clay | 290 | 2 | silty clay | ||
255 | 3 | fine sand | 274 | 3 | fine sand | ||
242 | 4 | silty clay | 268 | 4 | silty clay | ||
204 | 5 | coarse sand | first confined aquifer | 259 | 5 | fine sand | |
198 | 6 | silty clay | 246 | 6 | silty clay | ||
179 | 7 | coarse sand | 200 | 7 | coarse sand | first confined aquifer | |
173 | 8 | silty clay | 183 | 8 | silty clay | ||
134 | 9 | medium sand | second confined aquifer | 165 | 9 | medium sand | |
118 | 10 | silty clay | 158 | 10 | silty clay | ||
107 | 11 | medium sand | 124 | 11 | medium sand | second confined aquifer | |
85 | 12 | silty clay | 107 | 12 | silty clay | ||
67 | 13 | coarse sand | 100 | 13 | medium sand | ||
22 | 14 | silty clay | 75 | 14 | silty clay | ||
7 | 15 | coarse sand | 57 | 15 | coarse sand | ||
29 | 16 | silty clay | |||||
20 | 17 | coarse sand |
Strata Number | Stratigraphic Sequence | The Depth of the Thickness H/m | Gravity γ/kN·m−3 | Elastic Modulus E/Mpa | Force of Cohesion C/MPa | Angle of Internal Friction φ/° | Poisson Ratio /μ | Porosity/n | Permeab-Ility Coefficient /(m/s) |
---|---|---|---|---|---|---|---|---|---|
1 | filling | 10 | 1850 | 30 | 0.25 | 20 | 0.35 | 0.5 | 6 × 10−9 |
2 | silty clay | 16 | 1950 | 50 | 0.28 | 23 | 0.35 | 0.45 | 2 × 10−9 |
3 | fine sand | 6 | 2000 | 80 | 30 | 0.25 | 0.32 | 2 × 10−7 | |
4 | silty clay | 9 | 1950 | 60 | 0.35 | 21 | 0.35 | 0.44 | 2 × 10−9 |
5 | fine sand | 13 | 2000 | 90 | 32 | 0.25 | 0.32 | 2 × 10−7 | |
6 | silty clay | 46 | 1950 | 70 | 0.38 | 19 | 0.35 | 0.44 | 1.5 × 10−9 |
7 | coarse sand | 17 | 2000 | 200 | 30 | 0.25 | 0.31 | 4 × 10−7 | |
8 | silty clay | 18 | 1950 | 90 | 0.35 | 23 | 0.35 | 0.43 | 1.5 × 10−9 |
9 | medium sand | 7 | 2000 | 180 | 34 | 0.25 | 0.31 | 3 × 10−7 | |
10 | silty clay | 34 | 1950 | 100 | 0.39 | 23 | 0.35 | 0.43 | 1.5 × 10−9 |
11 | medium sand | 17 | 2000 | 220 | 34 | 0.25 | 0.3 | 3 × 10−7 | |
12 | silty clay | 7 | 1950 | 110 | 0.45 | 20 | 0.35 | 0.42 | 1.5 × 10−9 |
13 | medium sand | 25 | 2000 | 250 | 35 | 0.25 | 0.3 | 3 × 10−7 | |
14 | silty clay | 18 | 1950 | 120 | 0.5 | 21 | 0.35 | 0.4 | 1.5 × 10−9 |
15 | coarse sand | 18 | 2000 | 290 | 35 | 0.25 | 0.3 | 4 × 10−7 | |
16 | silty clay | 9 | 1950 | 150 | 0.55 | 23 | 0.35 | 0.4 | 1.5 × 10−9 |
17 | coarse sand | 20 | 2000 | 300 | 35 | 0.25 | 0.3 | 4 × 10−7 |
Shear Stiffness Ks/MPa/m | Normal Stiffness Kn/MPa/m | Cohesion c/MPa | Internal Friction Angle Ψ/° | Tensile Strength T/MPa |
---|---|---|---|---|
107 | 108 | 0 | 10 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, G.; Chen, F.; Lu, Q.; Sun, Y.; Qiang, F.; Zhang, S. Characteristics of Rebound Deformation Caused by Groundwater Level Recovery: A Case Study of the Yuhuazhai Area in Xi’an, China. Appl. Sci. 2025, 15, 9470. https://doi.org/10.3390/app15179470
Hao G, Chen F, Lu Q, Sun Y, Qiang F, Zhang S. Characteristics of Rebound Deformation Caused by Groundwater Level Recovery: A Case Study of the Yuhuazhai Area in Xi’an, China. Applied Sciences. 2025; 15(17):9470. https://doi.org/10.3390/app15179470
Chicago/Turabian StyleHao, Guangyao, Feilong Chen, Quanzhong Lu, Yuemin Sun, Fei Qiang, and Shaoyi Zhang. 2025. "Characteristics of Rebound Deformation Caused by Groundwater Level Recovery: A Case Study of the Yuhuazhai Area in Xi’an, China" Applied Sciences 15, no. 17: 9470. https://doi.org/10.3390/app15179470
APA StyleHao, G., Chen, F., Lu, Q., Sun, Y., Qiang, F., & Zhang, S. (2025). Characteristics of Rebound Deformation Caused by Groundwater Level Recovery: A Case Study of the Yuhuazhai Area in Xi’an, China. Applied Sciences, 15(17), 9470. https://doi.org/10.3390/app15179470