Thermal Performance Analysis and Structural Optimization of Main Functional Components of Computers
Abstract
Featured Application
Abstract
1. Introduction
2. Models and Methods
2.1. Finite Element Simulation Model
2.2. Parameters of the Study
3. Results and Discussions
3.1. Thermal Performance Mechanism
3.2. Background Temperature
3.3. Heat Consumption Rate
3.3.1. Transistor Heat Dissipation Rate
3.3.2. Heat Consumption Rate of Large Transformers
3.3.3. Residual Heat Consumption Rate
3.4. Thermal Conductivity
3.4.1. Heat Sink Thermal Conductivity
3.4.2. Remaining Thermal Conductivity
4. Optimization
4.1. Optimization Methods
4.2. Optimization Results and Discussion
5. Conclusions
- (1)
- By the finite element simulation method, the computer mainframe box simulation model was established. Meanwhile, the influences of temperature, velocity field, pressure, wall resolution and temperature of the fluid flow on the thermal performance were investigated, which indicated that the temperature is the most important factor.
- (2)
- Three major factors, which include the background temperature, heat dissipation rate, and thermal conductivity, were selected as the primary influences on temperature distribution. A series of temperature distribution diagrams were obtained through the parametric scanning function of finite element simulation, and the phenomena observed in these diagrams were explained and discussed. The study found that background temperature is the most significant factor. At a background temperature of 35 °C, the operating temperature is around 86 °C, exceeding the normal operating temperature range for electronic components, which is the reason for subsequent optimization. Among the seven heat dissipation rates, the transistor heat dissipation rate has the greatest impact. Among the nine thermal conductivities, the heat sink’s thermal conductivity is the most influential. The highest temperature generally appears at the transistor core, while the lowest temperature is at the air intake grille.
- (3)
- Understanding that the operating temperature range for electronic components is −40 °C to 85 °C, the PSO algorithm was used in conjunction with finite element simulation software for joint simulation. Without affecting the positions of electronic components relative to each other, the positions of the components were adjusted to optimize the base model, resulting in an overall decrease in working temperature of approximately 10 °C. Originally, at a background temperature of 35 °C, the working temperature was 86 °C, but after optimization, it reached 86 °C only at a background temperature of 45 °C. This ensures that the computer can function normally during high summer temperatures, enhancing its practicality.
- (4)
- Surprisingly, under certain conditions, the large transformer’s temperature can exceed that of the transistor, making it the main heat source. This indicates that even though the transistor is the most sensitive to temperature, once it is not the main heat source, the highest temperature is not at the transistor but at the electronic component that replaces the transistor as the main heat source. However, in most cases, the highest temperature is always at the transistor.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carns, P.; Dorier, M.; Latham, R.; Ross, R.B.; Snyder, S.; Soumagne, J. Mochi: A Case Study in Translational Computer Science for High–Performance Computing Data Management. Comput. Sci. Eng. 2023, 25, 35–41. [Google Scholar] [CrossRef]
- da Silva, E.C.; Sato, L.M.; Midorikawa, E.T. Distributed File System to Leverage Data Locality for Large–File Processing. Electronics 2023, 13, 106. [Google Scholar] [CrossRef]
- Kwon, S.; Ji, M.; Kim, M.; Leung, J.Y.; Min, B. Determination of Sequential Well Placements Using a Multi–Modal Convolutional Neural Network Integrated with Evolutionary Optimization. Mathematics 2024, 13, 36. [Google Scholar] [CrossRef]
- Lin, Z.; Amano, H.; Takigahira, M.; Terakado, N.; Itoyama, K.; Gulzar, H.; Nakadai, K. Advancing Applications of Robot Audition Systems: Efficient HARK Deployment with GPU and FPGA Implementations. Chips 2024, 4, 2. [Google Scholar] [CrossRef]
- Mohapatra, S.; Sahoo, P.K.; Mohapatra, S.K. Healthcare Big Data Analysis with Artificial Neural Network for Cardiac Disease Prediction. Electronics 2023, 13, 163. [Google Scholar] [CrossRef]
- Saber, H.H.; AlShehri, S.A.; Maref, W. Performance optimization of cascaded and non–cascaded thermoelectric devices for cooling computer chips. Energy Convers. Manag. 2019, 191, 174–192. [Google Scholar] [CrossRef]
- Xia, G.; Liu, J.; Hong, Q.; Zhu, P.; Xu, P.; Zhu, Z. An Efficient Frequency Encoding Scheme for Optical Convolution Accelerator. Photonics 2024, 12, 26. [Google Scholar] [CrossRef]
- Zou, S.; Liu, J.; Dai, Y. Performance of a multi–cooling sources cooling system with photovoltaics and waste heat recovery in data center. Energy Convers. Manag. 2025, 324, 119319. [Google Scholar] [CrossRef]
- Kumar, D.R.; Samui, P.; Wipulanusat, W.; Keawsawasvong, S.; Sangjinda, K.; Jitchaijaroen, W. Bearing Capacity of Eccentrically Loaded Footings on Rock Masses Using Soft Computing Techniques. Eng. Sci. 2023, 24, 929. [Google Scholar] [CrossRef]
- Kumar, D.R.; Samui, P.; Wipulanusat, W.; Keawsawasvong, S.; Sangjinda, K.; Jitchaijaroen, W. Soft Computing Techniques for Predicting Penetration and Uplift Resistances of Dual Pipelines in Cohesive Soils. Eng. Sci. 2023, 24, 897. [Google Scholar] [CrossRef]
- Jilte, R.; Ahmadi, M.H.; Kumar, R.; Kalamkar, V.; Mosavi, A. Cooling Performance of a Novel Circulatory Flow Concentric Multi–Channel Heat Sink with Nanofluids. Nanomaterials 2020, 10, 647. [Google Scholar] [CrossRef]
- Asim, M.; Siddiqui, F.R. Hybrid Nanofluids—Next–Generation Fluids for Spray–Cooling–Based Thermal Management of High–Heat–Flux Devices. Nanomaterials 2022, 12, 507. [Google Scholar] [CrossRef]
- Feike, F.; Oltmanns, J.; Dammel, F.; Stephan, P. Evaluation of the waste heat utilization from a hot–water–cooled high performance computer via a heat pump. Energy Rep. 2021, 7, 70–78. [Google Scholar] [CrossRef]
- Lin, X.; Wu, H.; Liu, Z.; Ying, B.; Ye, C.; Zhang, Y.; Li, Z. Design and Analysis of the IGBT Heat Dissipation Structure Based on Computational Continuum Mechanics. Entropy 2020, 22, 816. [Google Scholar] [CrossRef] [PubMed]
- Rafati, M.; Hamidi, A.A.; Shariati Niaser, M. Application of nanofluids in computer cooling systems (heat transfer performance of nanofluids). Appl. Therm. Eng. 2012, 45–46, 9–14. [Google Scholar] [CrossRef]
- Shanmuganathan, M.; Sandeep Kumar, S.; Hosanna Princye, P.; Aravind, A.R.; Chhabria, S.; Jyothirmayee, C.A. Improving the cooling performance of the straight finned heat sink (SHS) for computer processor using an inorganic PCM. Mater. Today Proc. 2022, 69, 749–753. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, C.; Jin, W.; Tang, J.; Wu, Z.; Chen, K.; Hong, H. A Linear–Power–Regulated Wireless Power Transfer Method for Decreasing the Heat Dissipation of Fully Implantable Microsystems. Sensors 2022, 22, 8765. [Google Scholar] [CrossRef]
- Lv, H.; Zhang, S.; Han, W.; Liu, Y.; Liu, S.; Chu, Y.; Zhang, L. Design and Realization of an Aviation Computer Micro System Based on SiP. Electronics 2020, 9, 766. [Google Scholar] [CrossRef]
- Zhao, T.; Sun, R.; Hou, X.; Huang, J.; Geng, W.; Jiang, J. Simulation Study of Influencing Factors of Immersion Phase–Change Cooling Technology for Data Center Servers. Energies 2023, 16, 4640. [Google Scholar] [CrossRef]
- Poojeera, S.; Vengsungnle, P.; Jongpluempiti, J.; Sirikasemsuk, S.; Naphon, N.; Srichat, A.; Manatura, K.; Naphon, P. Embedded Copper Foam Effect on the Nanofluids Thermal Cooling Performance of the Electric Vehicle Battery Pack. Eng. Sci. 2025, 33, 1389. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, X.; Annamareddy, S.H.K.; Gao, S.; Xu, Q.; Algadi, H.; Sridhar, D.; Wasnik, P.; Xu, B.B.; Weng, L.; et al. Dielectric Properties and Thermal Conductivity of Polyvinylidene Fluoride Synergistically Enhanced with Silica@Multi-walled Carbon Nanotubes and Boron Nitride. ES Mater. Manuf. 2023, 22, 847. [Google Scholar] [CrossRef]
- Xue, R.; Lin, X.; Zhang, B.; Zhou, H.; Lai, T.; Hou, Y. CFD and Energy Loss Model Analysis of High-Speed Centrifugal Pump with Low Specific Speed. Appl. Sci. 2022, 12, 7435. [Google Scholar] [CrossRef]
- Di Vito, D.; Kanerva, M.; Järveläinen, J.; Laitinen, A.; Pärnänen, T.; Saari, K.; Kukko, K.; Hämmäinen, H.; Vuorinen, V. Safe and Sustainable Design of Composite Smart Poles for Wireless Technologies. Appl. Sci. 2020, 10, 7594. [Google Scholar] [CrossRef]
- Chen, J.; Xuan, D.; Wang, B.; Jiang, R. Structure Optimization of Battery Thermal Management Systems Using Sensitivity Analysis and Stud Genetic Algorithms. Appl. Sci. 2021, 11, 7440. [Google Scholar] [CrossRef]
- He, W.; Zhang, J.; Guo, R.; Pei, C.; Li, H.; Liu, S.; Wei, J.; Wang, Y. Performance analysis and structural optimization of a finned liquid–cooling radiator for chip heat dissipation. Appl. Energy 2022, 327, 120048. [Google Scholar] [CrossRef]
- Yuan, S.; Long, L.; Xu, K.; Zuo, P.; Ye, Z.; Meng, X.; Zhu, J.; Ye, H. Multi–objective optimization of thermal modules in high heat flux laptops. Appl. Therm. Eng. 2024, 239, 122105. [Google Scholar] [CrossRef]
- Li, R.; Zhang, J. Heat dissipation models by convection and radiation during the real–time operation of office equipment: A case study of computers. Energy Build. 2023, 300, 113592. [Google Scholar] [CrossRef]
- Jin, R.; Yan, Y.; Xue, Z.; Zhang, C.; He, Z.; You, J.; Chen, Y. Numerical investigation of the influence of heat–generating components on the heat dissipation in a tower server. Appl. Therm. Eng. 2024, 257, 124313. [Google Scholar] [CrossRef]
- Martinez, A.; Barker, J. Quantum Transport in a Silicon Nanowire FET Transistor: Hot Electrons and Local Power Dissipation. Materials 2020, 13, 3326. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Hang, H.; Bao, E. A comprehensive review of the de Bruijn graph and its interdisciplinary applications in computing. Eng. Sci. 2023, 28, 1061. [Google Scholar] [CrossRef]
- Blevins, R.D. Applied Fluid Dynamics Handbook; Van Nostrand Reinhold Co.: New York, NY, USA, 1984. [Google Scholar]
- Crawford, B.; Cisternas-Caneo, F.; Soto, R.; Mac-lean, C.P.T.; Lara Arce, J.; Solís-Piñones, F.; Astorga, G.; Giachetti, G. Binary Secretary Bird Optimization Algorithm for the Set Covering Problem. Mathematics 2025, 13, 2482. [Google Scholar] [CrossRef]
- Grobler, J.; Engelbrecht, A.P. Arithmetic and parent–centric headless chicken crossover operators for dynamic particle swarm optimization algorithms. Soft Comput. 2018, 22, 5965–5976. [Google Scholar] [CrossRef]
- Jiang, J.J.; Wei, W.-X.; Shao, W.-L.; Liang, Y.-F.; Qu, Y.-Y. Research on Large–Scale Bi–Level Particle Swarm Optimization Algorithm. IEEE Access 2021, 9, 56364–56375. [Google Scholar] [CrossRef]
- Liu, Y.; Dai, J.; Zhao, S.; Zhang, J.; Shang, W.; Li, T.; Zheng, Y.; Lan, T.; Wang, Z. Optimization of five–parameter BRDF model based on hybrid GA–PSO algorithm. Optik 2020, 219, 164978. [Google Scholar] [CrossRef]
- van Zyl, J.-P.; Engelbrecht, A.P. Set–Based Particle Swarm Optimisation: A Review. Mathematics 2023, 11, 2980. [Google Scholar] [CrossRef]
- Wang, X.; Wang, T.; Xiang, H. A multi–threaded particle swarm optimization–kmeans algorithm based on MapReduce. Clust. Comput.–J. Netw. Softw. Tools Appl. 2024, 27, 8031–8044. [Google Scholar] [CrossRef]
- Wu, T.; Xie, L.; Chen, X.; He, J. Dual sub–swarm interaction QPSO algorithm based on different correlation coefficients. Automatika 2017, 58, 375–383. [Google Scholar] [CrossRef]
- Zhou, N.-R.; Xia, S.-H.; Ma, Y.; Zhang, Y. Quantum particle swarm optimization algorithm with the truncated mean stabilization strategy. Quantum Inf. Process. 2022, 21, 445–458. [Google Scholar] [CrossRef]
Components | Dissipated Heat Rate (W) | Number (pcs) |
---|---|---|
Transistor cores | 25 | 5 |
Large transformer coil | 5 | 1 |
Small transformer coils | 3 | 3 |
Inductors | 2 | 3 |
Large capacitors | 3 | 2 |
Medium capacitors | 2 | 7 |
Small capacitors | 1 | 4 |
Flux (m3/s) | Static Pressure (Pa) |
---|---|
0 | 12.3 |
8.33333 × 10−4 | 11.4 |
1.666667 × 10−3 | 9 |
2.5 × 10−3 | 6.3 |
2.916667 × 10−3 | 6 |
3.333333 × 10−3 | 5.8 |
3.75 × 10−3 | 4.3 |
4.166667 × 10−3 | 2.2 |
4.583333 × 10−3 | 0.7 |
4.833333 × 10−3 | 0 |
Name | Numerical Value |
---|---|
Thermal conductivity of acrylic plastic for encapsulation | 0.2 W/(m·K) |
Thermal conductivity of steel components | 45 W/(m·K) |
Thermal conductivity of aluminum capacitor | 240 W/(m·K) |
Thermal conductivity of copper transformer coils | 400 W/(m·K) |
Thermal conductivity of transistorized silicon chip | 130 W/(m·K) |
Thermal conductivity of heat sink | 200 W/(m·K) |
Thermal conductivity of copper skin | 400 W/(m·K) |
Thermal conductivity of the circuit board in the x (y) direction | 10 |
Thermal conductivity in the z direction of the circuit board | 0.3 |
Name | Max (W) | Min (W) |
---|---|---|
Heat consumption rate of small transformers | 3.75 | 2.25 |
Inductor heat dissipation rate | 2.5 | 1.5 |
Large capacitor heat consumption rate | 3.75 | 2.25 |
Medium capacitor heat consumption rate | 2.5 | 1.5 |
Heat dissipation rate of small capacitors | 1.25 | 0.75 |
Name | Max(W/(m·K)) | Min(W/(m·K)) |
---|---|---|
Thermal conductivity of acrylic plastic for encapsulation | 0.25 | 0.15 |
Thermal conductivity of steel components | 33.75 | 56.25 |
Aluminum capacitor thermal conductivity | 180 | 300 |
Thermal conductivity of copper transformer coils | 300 | 500 |
Transistorized silicon chip thermal conductivity | 97.5 | 162.5 |
Copper skin thermal conductivity | 300 | 500 |
Thermal conductivity of the circuit board in the x (y) direction | 7.5 | 12.5 |
Thermal conductivity of the circuit board in the z direction | 0.225 | 0.375 |
Components | Initial Position | Optimized Position |
---|---|---|
Large transformers | (11.05, 8.5, 1.75) | (4.05, 8.5, 1.75) |
Small transformers | (5.775, 8.75, 0.875) | (11.775, 10.25, 0.875) |
Heat sinks and transistor cores | (8.75, 6.2, 30) | (8.9, 7.8, 34) |
Inductors | (8, 7.3, 1) | (8, 6, 1) |
Background Temperature | Optimized Working Temperature Before Optimization (Max) | Optimized Working Temperature (Max) |
---|---|---|
30 °C | 80.3918 °C | 70.2208 °C |
40 °C | 91.3424 °C | 80.8977 °C |
50 °C | 102.313 °C | 91.5669 °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, T.; Jiang, C.; Shen, X.; Yin, Q.; Yang, X.; Peng, W.; Zhou, C.; Zhang, X.; Xue, J.; Wang, E. Thermal Performance Analysis and Structural Optimization of Main Functional Components of Computers. Appl. Sci. 2025, 15, 9473. https://doi.org/10.3390/app15179473
Pan T, Jiang C, Shen X, Yin Q, Yang X, Peng W, Zhou C, Zhang X, Xue J, Wang E. Thermal Performance Analysis and Structural Optimization of Main Functional Components of Computers. Applied Sciences. 2025; 15(17):9473. https://doi.org/10.3390/app15179473
Chicago/Turabian StylePan, Tengyue, Chengming Jiang, Xinmin Shen, Qin Yin, Xiaocui Yang, Wenqiang Peng, Chunhua Zhou, Xiangpo Zhang, Jinhong Xue, and Enshuai Wang. 2025. "Thermal Performance Analysis and Structural Optimization of Main Functional Components of Computers" Applied Sciences 15, no. 17: 9473. https://doi.org/10.3390/app15179473
APA StylePan, T., Jiang, C., Shen, X., Yin, Q., Yang, X., Peng, W., Zhou, C., Zhang, X., Xue, J., & Wang, E. (2025). Thermal Performance Analysis and Structural Optimization of Main Functional Components of Computers. Applied Sciences, 15(17), 9473. https://doi.org/10.3390/app15179473