Integrating Radon/Thoron and Gamma Radiation Exposure for a Realistic Estimation of Dose Arising from Building Materials
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Gamma Radiation Testing
2.3. Radon and Thoron Exhalation Rate Testing
2.4. Dose Conversion and Ventilation Models
2.4.1. Dose from Gamma Radiation
2.4.2. Dose from Radon and Thoron
2.4.3. Total Effective Dose and Suggested Dose Limit
2.4.4. Modeling the Effect of Air Ventilation
2.4.5. Elemental Composition and Mineral Mapping
3. Results and Discussion
3.1. Radon/Thoron Exhalation Rates vs. Radionuclide Activity
3.2. Implications for Radiometric Surveys and Radionuclide Scanning
Cross-Validation of Data from Handheld Gamma Detector (GT40) and Drone-Based Surveys with D230A Detector
3.3. Converted Doses
3.4. Effect of Ventilation
3.5. Effect of Mineralogy
- Uraninite (UO2): A primary uranium ore with high radioactivity (gamma radiation source) and radon potential (alpha radiation source).
- Thorianite (ThO2): A thorium-rich mineral with high radioactivity (gamma radiation source) that contributes to thoron emissions (alpha radiation source).
- Monazite (Ce,La,Nd,Th)PO4: Contains significant thorium (gamma radiation source) and can be a source of thoron and, to a lesser extent, radon (alpha radiation sources).
- Zircon (ZrSiO4): Often contains trace uranium and, to a lesser extent thorium (gamma radiation sources), contributing to radon and thoron (alpha radiation sources).
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Makumbi, T.; Breustedt, B.; Raskob, W. Parameter uncertainty analysis of the equivalent lung dose coefficient for the intake of radon in mines: A review. J. Environ. Radioact. 2024, 276, 107446. [Google Scholar] [CrossRef] [PubMed]
- Frutos-Puerto, S.; Pinilla-Gil, E.A.-O.; Andrade, E.A.-O.; Reis, M.; Madruga, M.J.; Rodríguez, C.M. Radon and thoron exhalation rate, emanation factor and radioactivity risks of building materials of the Iberian Peninsula. PeerJ 2020, 8, e10331. [Google Scholar] [CrossRef] [PubMed]
- United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Sources, Effects and Risks of Ionizing Radiation; United Nations: New York, NY, USA, 2022; Available online: https://www.unscear.org/unscear/en/publications/2020_2021_1.html (accessed on 24 May 2024).
- Tokonami, S. Characteristics of Thoron (220Rn) and its progeny in the indoor environment. Int. J. Environ. Res. Public Health 2020, 17, 8769. [Google Scholar] [CrossRef] [PubMed]
- Semwal, P.; Agarwal, T.K.; Joshi, M.; Kumar, A.; Singh, K.; Ramola, R.C. Effective dose estimation of radon, thoron and their progeny concentrations in the environs of Himalayan belt, India. Int. J. Environ. Sci. Technol. 2023, 20, 4127–4138. [Google Scholar] [CrossRef]
- Dentoni, V.; Da Pelo, S.; Aghdam, M.M.; Randaccio, P.; Loi, A.; Careddu, N.; Bernardini, A. Natural radioactivity and radon exhalation rate of Sardinian dimension stones. Constr. Build. Mater. 2020, 247, 118377. [Google Scholar] [CrossRef]
- Health Information and Quality Authority (HIQA). Ionising Radiation National Dose Report. 2024. Available online: https://www.epa.ie/publications/compliance--enforcement/radiation/ionising-radiation-national-dose-report.php (accessed on 24 May 2024).
- World Health Organization (WHO). Radon and Health; WHO: Geneva, Switzerland, 2021; Available online: https://www.who.int/news-room/fact-sheets/detail/radon-and-health (accessed on 24 May 2024).
- European Cancer Observatory. Ireland Is the Country with the Highest Cancer Incidence in the EU; European Cancer Observatory: Lyon, France, 2020. [Google Scholar]
- Katase, A.; Shimo, M. (Eds.) Radon and thoron in the human environment. In Proceedings of the 7th Tohwa University International Symposium, Fukuoka, Japan, 23–25 October 1997. [Google Scholar] [CrossRef]
- Mohamed, T.G.; Hassan, M.; El-Midany, A.A.; Ismail, M.A.; El-Samrah, M.G. Inherent radiological hazard and γ-rays shielding properties of black sand minerals. Egypt. J. Pet. 2024, 33, 1. [Google Scholar] [CrossRef]
- Chen, B.; Wang, Q.; Zhuo, W. Assessment of gamma dose rate in dwellings due to decorative stones. Radiat. Prot. Dosim. 2015, 167, 251–254. [Google Scholar] [CrossRef]
- International Commission on Radiological Protection. The 2007 recommendations of the International Commission on Radiological Protection (ICRP Publication 103). Ann. ICRP 2007, 37, 1–332. [Google Scholar]
- Aghdam, M.M.; Dentoni, V.; Da Pelo, S.; Crowley, Q. Detailed geogenic radon potential mapping using geospatial analysis of multiple geo-variables—A case study from a high-risk area in SE Ireland. Int. J. Environ. Res. Public Health 2022, 19, 15910. [Google Scholar] [CrossRef]
- Lee, E.M.; Menezes, G.; Finch, E.C. Natural radioactivity in building materials in the Republic of Ireland. Health Phys. 2004, 86, 378–383. [Google Scholar] [CrossRef]
- DIN ISO/IEC EN 17025:2018; General Requirements for the Competence of Testing and Calibration Laboratories. Beuth Verlag GmbH: Berlin, Germany, 2018.
- Lucchetti, C.; Tzortzis, M.; Tzortzis, A. Integrating radon and thoron flux data with gamma radiation mapping in radon-prone areas: The case of volcanic outcrops in a highly-urbanized city (Roma, Italy). J. Environ. Radioact. 2019, 202, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Sas, Z.; Doherty, R.; Kovács, T.; Soutsos, M.; Sha, W.; Schroeyers, W. Radiological evaluation of by-products used in construction and alternative applications; Part I. Preparation of a natural radioactivity database. Constr. Build. Mater. 2017, 150, 227–237. [Google Scholar] [CrossRef]
- Reinhardt, N. Gamma-Ray Spectrometry as Auxiliary Information for Soil Mapping and Its Application in Research for Development. Ph.D. Dissertation, University of Bonn, Bonn, Germany, 2019. [Google Scholar]
- Marsh, J.W.; Harrison, J.D.; Laurier, D.; Blanchardon, E.; Paquet, F.; Tirmarche, M. Dose conversion factors for radon: Recent developments. Health Phys. 2010, 99, 511–516. [Google Scholar] [CrossRef] [PubMed]
- Allen, D. Dose Conversion Factors for Radon WLM. National Institute for Occupational Safety and Health, Technical Information Bulletin DC-T11-R5; 2021. Available online: https://www.cdc.gov/niosh/ocas/pdfs/tibs/dc-t11-r5-508.pdf (accessed on 24 May 2024).
- Mas, J.L.; Ramírez, J.R.C.; Bermúdez, S.H.; Fernández, C.L. Assessment of natural radioactivity levels and radiation exposure in new building materials in Spain. Radiat. Prot. Dosim. 2021, 194, 178–185. [Google Scholar] [CrossRef]
- Harrison, J.D.; Marsh, J.W. ICRP recommendations on radon. Ann. ICRP 2020, 49, 68–76. [Google Scholar] [CrossRef]
- Kumar, A.; Chauhan, R.P.; Joshi, M.; Sahoo, B.K. Modeling of Indoor Radon Concentration from Radon Exhalation Rates of Building Materials and Validation through Measurements. J. Environ. Radioact. 2014, 127, 50–55. [Google Scholar] [CrossRef]
- Skierszkan, E.K.; Dockrey, J.W.; Mayer, K.U.; Bondici, V.F.; McBeth, J.M.; Beckie, R.D. Geochemical controls on uranium release from neutral-pH rock drainage produced by weathering of granite, gneiss, and schist. Minerals 2020, 10, 1104. [Google Scholar] [CrossRef]
- Nunes, L.J.R.; Curado, A.; Lopes, S.I. The relationship between radon and geology: Sources, transport and indoor accumulation. Appl. Sci. 2023, 13, 7460. [Google Scholar] [CrossRef]
- Joel, E.S.; Omeje, M.; Olawole, O.C.; Adeyemi, G.A.; Akinpelu, A.; Embong, Z.; Saeed, M.A. In-situ assessment of natural terrestrial-radioactivity from uranium-238 (238U), thorium-232 (232Th) and potassium-40 (40K) in coastal urban-environment and its possible health implications. Sci. Rep. 2021, 11, 17555. [Google Scholar] [CrossRef]
- Manfreda, S.; Dor, E.B. Remote sensing of the environment using unmanned aerial systems. In Unmanned Aerial Systems for Monitoring Soil, Vegetation, and Riverine Environments; Sabins, P.A., Sabins, M.F., Eds.; Springer: Cham, Switzerland, 2023; pp. 3–36. [Google Scholar] [CrossRef]
- Dardac, M.; Elío, J.; Aghdam, M.M.; Banríon, M.; Crowley, Q. Application of airborne geophysical survey data in a logistic regression model to improve the predictive power of geogenic radon maps: A case study in Castleisland, County Kerry, Ireland. Sci. Total Environ. 2023, 894, 164965. [Google Scholar] [CrossRef]
- Aghdam, M.M.; O’Brien, M.K.; Crowley, Q. Utilization of radiometric data for mapping primary and secondary sources of gamma radiation and radon/thoron release potentials in Ireland. Front. Public Health Radiat. Health 2024, 12, 1443332. [Google Scholar] [CrossRef] [PubMed]
- Sas, Z.; Kovács, T.; Somlai, J. External gamma-ray dose rate and radon concentration in indoor environments covered with Brazilian granites. Radiat. Prot. Dosim. 2017, 175, 75–81. [Google Scholar] [CrossRef]
- Lucchetti, C.; Tzortzis, M.; Tzortzis, A. Measurement of natural radioactivity and radon exhalation rates in building materials used in the construction industry. Radiat. Prot. Dosim. 2019, 184, 497–503. [Google Scholar] [CrossRef]
- Nunes, L.; Silva, J.; Ferreira, A. Natural radioactivity and radiological risks of common building materials: A case study in Portugal. J. Environ. Radioact. 2023, 255, 106961. [Google Scholar] [CrossRef]
- Lee, S.Y.; Kim, H.S.; Lee, J.K. Assessment of gamma radiation dose rates and radon concentrations in indoor environments covered with granite materials. J. Environ. Radioact. 2004, 77, 293–304. [Google Scholar] [CrossRef]
Model | 1-Bedroom House (See Figure 2) | 2-Bedroom House | 3-Bedroom House |
---|---|---|---|
V effective (Veff) m3 | 121.16 | 230 | 380 |
Stone Surface Area (s) range m2 (10 to 30% of the total Surface Area of the house) | 42–80 | 72–123 | 118–180 |
Radionuclide Activity (Min, Max, and Average) | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rock Type | # | U mg/kg | Th mg/kg | K % | I Index | Exhalation Rates of 220Rn (E220Rn, Bq m−2 h−1) | Exhalation Rates of 222Rn (E222Rn, Bq m−2 h−1) | ||||||||||||
Breccia | 1 | 1.64 | 2.78 | 0.63 | 0.19 | 71 | 0.170 | ||||||||||||
Brick | 2 | 1.76 | 1.90 | 1.83 | 2.52 | 3.11 | 2.81 | 0.75 | 0.78 | 0.76 | 0.21 | 0.21 | 0.21 | 301 | 514 | 407 | 0.008 | 0.031 | 0.019 |
Concrete | 3 | 1.76 | 1.86 | 1.80 | 2.90 | 3.13 | 2.98 | 0.75 | 0.87 | 0.80 | 0.21 | 0.22 | 0.21 | 106 | 567 | 277 | 0.001 | 0.007 | 0.005 |
Granite | 25 | 1.34 | 3.87 | 1.80 | 2.09 | 7.94 | 2.99 | 0.56 | 1.21 | 0.73 | 0.17 | 0.40 | 0.21 | 10 | 45,889 | 6396 | 0.070 | 3.534 | 0.514 |
Gypsum | 6 | 1.69 | 1.93 | 1.80 | 2.25 | 2.37 | 2.31 | 0.52 | 0.66 | 0.60 | 0.17 | 0.17 | 0.17 | 21 | 21 | 21 | 0.034 | 0.034 | 0.034 |
Limestone | 14 | 1.48 | 1.87 | 1.60 | 1.68 | 2.95 | 2.36 | 0.51 | 0.68 | 0.60 | 0.16 | 0.19 | 0.17 | 15 | 15,213 | 1352 | 0.018 | 0.983 | 0.210 |
Phosphate | 1 | 1.78 | 2.20 | 0.67 | 0.18 | 9 | 0.048 | ||||||||||||
Porcelain Tile | 3 | 1.45 | 1.93 | 1.63 | 2.23 | 2.92 | 2.53 | 0.65 | 0.92 | 0.75 | 0.17 | 0.23 | 0.19 | 73 | 1394 | 631 | 0.010 | 0.098 | 0.064 |
Quartzite | 8 | 1.60 | 2.11 | 1.82 | 2.14 | 2.78 | 2.40 | 0.60 | 0.94 | 0.73 | 0.17 | 0.22 | 0.20 | 103 | 6091 | 1637 | 0.030 | 0.232 | 0.088 |
Rhyolite | 1 | 1.83 | 2.34 | 0.62 | 0.18 | 2207 | 0.065 | ||||||||||||
Sandstone | 11 | 1.41 | 1.93 | 1.65 | 2.09 | 2.92 | 2.44 | 0.55 | 0.79 | 0.64 | 0.17 | 0.21 | 0.18 | 6 | 943 | 267 | 0.030 | 0.137 | 0.071 |
Volcanic | 2 | 1.58 | 1.88 | 1.73 | 2.41 | 2.51 | 2.46 | 0.60 | 0.67 | 0.64 | 0.18 | 0.18 | 0.18 | 15 | 175 | 95 | 0.105 | 0.123 | 0.114 |
Greywacke | 1 | 1.38 | 2.57 | 0.66 | 0.17 | 115 | 0.021 |
Pearson Correlation Coefficient): | E220Rn | E222Rn | Average 222Rn Surface Emission | Average 220Rn Surface Emission | I index | U mg/kg | Th mg/kg | K % | Dose Rate nSv/hr |
---|---|---|---|---|---|---|---|---|---|
E220Rn | 1.00 | 0.60 | 0.73 | 0.96 | 0.46 | 0.35 | 0.35 | 0.49 | 0.49 |
E222Rn | 0.60 | 1.00 | 0.89 | 0.61 | 0.67 | 0.74 | 0.50 | 0.50 | 0.69 |
Average Rn-222 Surface Emission | 0.73 | 0.89 | 1.00 | 0.71 | 0.77 | 0.71 | 0.64 | 0.64 | 0.79 |
Average Rn-220 Surface Emission | 0.96 | 0.61 | 0.71 | 1.00 | 0.48 | 0.36 | 0.36 | 0.51 | 0.50 |
I index | 0.46 | 0.67 | 0.77 | 0.48 | 1.00 | 0.78 | 0.89 | 0.88 | 0.99 |
U mg/kg | 0.35 | 0.74 | 0.71 | 0.36 | 0.78 | 1.00 | 0.50 | 0.57 | 0.78 |
Th mg/kg | 0.35 | 0.50 | 0.64 | 0.36 | 0.89 | 0.50 | 1.00 | 0.68 | 0.86 |
K % | 0.49 | 0.50 | 0.64 | 0.51 | 0.88 | 0.57 | 0.68 | 1.00 | 0.88 |
Dose rate nSv/h | 0.49 | 0.69 | 0.79 | 0.50 | 0.99 | 0.78 | 0.86 | 0.88 | 1.00 |
D230A | GT-40 | |||
---|---|---|---|---|
Dose Rate (DR) nSv/h | U [mg/kg] | Th [mg/kg] | K [%] | |
DR | 0.73 | |||
U | 0.53 | |||
Th | 0.79 | |||
K | 0.50 |
Dose mSv. (Worst Case Scenario with No Ventilation) | Surface Activity Bq m−2 | Air Ventilation Rate | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Low | Medium | High | |||||||||
Sample | I index | Radon | Thoron | Thoron | Radon | 0.5 m3/h | 2 m3/h | 10 m3/h | |||
37 | 0.291 | 1.627 | 3.612 | 782 | 95.28 | 1.327 | 2.528 | 0.332 | 0.632 | 0.066 | 0.126 |
12 | 0.188 | 0.916 | 2.034 | 440 | 45.09 | 0.685 | 1.305 | 0.171 | 0.326 | 0.034 | 0.065 |
29 | 0.189 | 0.701 | 1.556 | 337 | 23.81 | 0.446 | 0.850 | 0.112 | 0.212 | 0.022 | 0.042 |
QG1 | 0.404 | 0.562 | 1.248 | 270 | 129.42 | 1.162 | 2.213 | 0.290 | 0.553 | 0.058 | 0.111 |
GSIG | 0.178 | 0.511 | 1.134 | 97 | 46.59 | 0.418 | 0.797 | 0.105 | 0.199 | 0.021 | 0.040 |
Q3A | 0.201 | 0.234 | 0.519 | 112 | 6.42 | 0.138 | 0.262 | 0.034 | 0.066 | 0.007 | 0.013 |
5 | 0.199 | 0.205 | 0.455 | 99 | 11.67 | 0.165 | 0.314 | 0.041 | 0.078 | 0.008 | 0.016 |
23 | 0.188 | 0.205 | 0.205 | 98 | 12.79 | 0.173 | 0.329 | 0.043 | 0.082 | 0.009 | 0.016 |
QG2 | 0.351 | 0.203 | 0.450 | 96 | 3.50 | 0.104 | 0.197 | 0.026 | 0.049 | 0.005 | 0.010 |
DW8 | 0.192 | 0.200 | 0.445 | 92 | 10.74 | 0.153 | 0.291 | 0.038 | 0.073 | 0.008 | 0.015 |
34 | 0.177 | 0.192 | 0.426 | 84 | 13.39 | 0.165 | 0.315 | 0.041 | 0.079 | 0.008 | 0.016 |
36 | 0.205 | 0.174 | 0.387 | 81 | 10.89 | 0.145 | 0.276 | 0.036 | 0.069 | 0.007 | 0.014 |
35 | 0.177 | 0.168 | 0.374 | 61 | 18.45 | 0.184 | 0.350 | 0.046 | 0.088 | 0.009 | 0.018 |
Q4A | 0.199 | 0.132 | 0.294 | 64 | 13.43 | 0.149 | 0.284 | 0.037 | 0.071 | 0.007 | 0.014 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aghdam, M.M.; Crowley, Q. Integrating Radon/Thoron and Gamma Radiation Exposure for a Realistic Estimation of Dose Arising from Building Materials. Appl. Sci. 2025, 15, 6470. https://doi.org/10.3390/app15126470
Aghdam MM, Crowley Q. Integrating Radon/Thoron and Gamma Radiation Exposure for a Realistic Estimation of Dose Arising from Building Materials. Applied Sciences. 2025; 15(12):6470. https://doi.org/10.3390/app15126470
Chicago/Turabian StyleAghdam, Mirsina M., and Quentin Crowley. 2025. "Integrating Radon/Thoron and Gamma Radiation Exposure for a Realistic Estimation of Dose Arising from Building Materials" Applied Sciences 15, no. 12: 6470. https://doi.org/10.3390/app15126470
APA StyleAghdam, M. M., & Crowley, Q. (2025). Integrating Radon/Thoron and Gamma Radiation Exposure for a Realistic Estimation of Dose Arising from Building Materials. Applied Sciences, 15(12), 6470. https://doi.org/10.3390/app15126470