Evaluating the Odor Mitigation Effects of Biochar-Enhanced Bedding Materials in a Simulated Bedded Pack Dairy Barn Environment: A Laboratory-Scale Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Design
2.2. Properties of Raw Materials
2.3. Analysis of Odorous Compounds
2.4. Statistical Analysis
3. Results and Discussions
3.1. Biodegradation
3.2. Ammonia
3.3. Sulfur Compounds
3.4. Volatile Fatty Acids & Volatile Organic Compounds
3.5. Odor Unit
3.6. Role of Pore Structure and Surface Chemistry in the Adsorption Performance of Rice Husk Biochar
4. Conclusions
- Developing chemical or physical modification techniques to overcome limitations posed by high silica (SiO2) content in rice husk biochar, thereby enhancing its surface area and functional adsorption sites.
- Investigating the influence of silica content on pore structure formation and its correlation with odorant adsorption efficiency.
- Conducting microbial community analysis to elucidate the mechanisms behind odorant reduction and better understand biochar’s interaction with microbial processes.
- Evaluating long-term performance under field-scale and dynamic housing conditions.
- Assessing economic and environmental trade-offs for large-scale implementation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gay, S.W. Natural Ventilation for Free Stall Dairy Barns; Virginia State University: Petersburg, VA, USA, 2009. [Google Scholar]
- Samer, M. Abatement Techniques for Reducing Emissions from Livestock Buildings; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Yin, Y.; Yang, C.; Li, M.; Zheng, Y.; Ge, C.; Gu, J.; Li, H.; Duan, M.; Wang, X.; Chen, R. Research progress and prospects for using biochar to mitigate greenhouse gas emissions during composting: A review. Sci. Total Environ. 2021, 798, 149294. [Google Scholar] [CrossRef]
- Agyarko-Mintah, E.; Cowie, A.; Van Zwieten, L.; Singh, B.P.; Smillie, R.; Harden, S.; Fornasier, F. Biochar lowers ammonia emission and improves nitrogen retention in poultry litter composting. Waste Manag. 2017, 61, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Wen, X.; Cao, Z.; Cheng, R.; Qian, Y.; Mi, J.; Wang, Y.; Liao, X.; Ma, B.; Zou, Y. Modified cornstalk biochar can reduce ammonia emissions from compost by increasing the number of ammonia-oxidizing bacteria and decreasing urease activity. Bioresour. Technol. 2021, 319, 124120. [Google Scholar] [CrossRef]
- Chen, B.; Koziel, J.A.; Białowiec, A.; Lee, M.; Ma, H.; Li, P.; Meiirkhanuly, Z.; Brown, R.C. The impact of surficial biochar treatment on acute H2S emissions during swine manure agitation before pump-out: Proof-of-the-concept. Catalysts 2020, 10, 940. [Google Scholar] [CrossRef]
- Ro, K.S.; Woodbury, B.; Spiehs, M.; Szogi, A.A.; Silva, P.J.; Hwang, O.; Cho, S. Pilot-scale H2S and swine odor removal system using commercially available biochar. Agronomy 2021, 11, 1611. [Google Scholar] [CrossRef]
- Leso, L.; Barbari, M.; Lopes, M.; Damasceno, F.; Galama, P.; Taraba, J.; Kuipers, A. Invited review: Compost-bedded pack barns for dairy cows. J. Dairy Sci. 2020, 103, 1072–1099. [Google Scholar] [CrossRef] [PubMed]
- Karhu, K.; Mattila, T.; Bergström, I.; Regina, K. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity–Results from a short-term pilot field study. Agric. Ecosyst. Environ. 2011, 140, 309–313. [Google Scholar] [CrossRef]
- Zhang, J.; Qun, C.; Changfu, Y. Biochar effect on water evaporation and hydraulic conductivity in sandy soil. Pedosphere 2016, 26, 265–272. [Google Scholar] [CrossRef]
- Gondim, R.S.; Muniz, C.R.; Lima, C.E.P.; SANTOS, C.L.A.D. Explaining the water-holding capacity of biochar by scanning electron microscope images. Rev. Caatinga 2018, 31, 972–979. [Google Scholar] [CrossRef]
- Kaikiti, K.; Stylianou, M.; Agapiou, A. Use of biochar for the sorption of volatile organic compounds (VOCs) emitted from cattle manure. Environ. Sci. Pollut. Res. 2021, 28, 59141–59149. [Google Scholar] [CrossRef]
- Ministry of Agriculture, Food and Rural Affairs. Enforcement Decree of Livestock Industry Act; Ministry of Agriculture, Food and Rural Affairs: Sejong-si, Republic of Korea, 2023.
- National Institute of Animal Science, Rural Development Administration. Re-Establishment of Livestock Manure Generation Per Head and Amount of Manure on the Barn of Some Types of the Livestock House; National Institute of Animal Science, Rural Development Administration: Wanju-gun, Republic of Korea, 2020.
- Ministry of Environment. Livestock Manure Treatment Facility Standard Plan; Ministry of Environment: Sejong-si, Republic of Korea, 2009.
- Ministry of Agriculture, Food and Rural Affairs. 2023 Livestock Environment Survey; Ministry of Agriculture, Food and Rural Affairs: Sejong-si, Republic of Korea, 2024.
- Korea Meteorological Administration. Climatological Normals of the Republic of Korea (2011–2020); Korea Meteorological Administration: Seoul, Republic of Korea, 2025.
- Ahn, H.; Sauer, T.; Richard, T.; Glanville, T.D. Determination of thermal properties of composting bulking materials. Bioresour. Technol. 2009, 100, 3974–3981. [Google Scholar] [CrossRef]
- Fidel, R.B.; Laird, D.A.; Thompson, M.L.; Lawrinenko, M. Characterization and quantification of biochar alkalinity. Chemosphere 2017, 167, 367–373. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- De Boer, J. Studies on pore systems in catalysts: V. The t method. J. Catal. 1965, 4, 319–323. [Google Scholar]
- Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
- EN 13725:2003; Air Quality-Determination of Odour Concentration by Dynamic Olfactometry. European Committee for Standardization (CEN): Brussels, Belgium, 2003.
- Wang, Z.; Xu, Y.; Yang, T.; Liu, Y.; Zheng, T.; Zheng, C. Effects of biochar carried microbial agent on compost quality, greenhouse gas emission and bacterial community during sheep manure composting. Biochar 2023, 5, 3. [Google Scholar] [CrossRef]
- Graves, R.E.; Hattemer, G.M.; Stettler, D.; Krider, J.; Chapman, D. Environmental Engineering National Engineering Handbook; United States Department of Agriculture (USDA): Washington, DC, USA, 2000; Part 637.
- Mitchell, P.J.; Simpson, A.J.; Soong, R.; Simpson, M.J. Shifts in microbial community and water-extractable organic matter composition with biochar amendment in a temperate forest soil. Soil Biol. Biochem. 2015, 81, 244–254. [Google Scholar] [CrossRef]
- Kerner, P.; Struhs, E.; Mirkouei, A.; Aho, K.; Lohse, K.A.; Dungan, R.S.; You, Y. Microbial responses to biochar soil amendment and influential factors: A three-level meta-analysis. Environ. Sci. Technol. 2023, 57, 19838–19848. [Google Scholar] [CrossRef]
- Brewer, L.; Andrews, N.; Sullivan, D.M.; Gehr, W. Agricultural Composting and Water Quality; Oregon State University: Corvallis, OR, USA, 2021. [Google Scholar]
- Kuo, S.; Ortiz-Escobar, M.; Hue, N.; Hummel, R.; Pandalai, S. Composting and compost utilization for agronomic and container crops. Recent Res. Dev. Environ. Biol. 2004, 1, 451–513. [Google Scholar]
- Steiner, C.; Melear, N.; Harris, K.; Das, K. Biochar as Bulking Agent for Poultry Litter Composting. Carbon Manag. 2011, 2, 227–230. [Google Scholar] [CrossRef]
- Nguyen, M.K.; Lin, C.; Hoang, H.G.; Sanderson, P.; Dang, B.T.; Bui, X.T.; Nguyen, N.S.H.; Vo, D.-V.N.; Tran, H.T. Evaluate the role of biochar during the organic waste composting process: A critical review. Chemosphere 2022, 299, 134488. [Google Scholar] [CrossRef] [PubMed]
- Godlewska, P.; Schmidt, H.P.; Ok, Y.S.; Oleszczuk, P. Biochar for composting improvement and contaminants reduction. A review. Bioresour. Technol. 2017, 246, 193–202. [Google Scholar] [CrossRef]
- Awasthi, M.K.; Duan, Y.; Awasthi, S.K.; Liu, T.; Zhang, Z. Influence of bamboo biochar on mitigating greenhouse gas emissions and nitrogen loss during poultry manure composting. Bioresour. Technol. 2020, 303, 122952. [Google Scholar] [CrossRef]
- Bello, A.; Deng, L.; Sheng, S.; Jiang, X.; Yang, W.; Meng, Q.; Wu, X.; Han, Y.; Zhu, H.; Xu, X. Biochar reduces nutrient loss and improves microbial biomass of composted cattle manure and maize straw. Biotechnol. Appl. Biochem. 2020, 67, 799–811. [Google Scholar] [CrossRef]
- Pereira, J.L.; Martins, F.; Bonifácio, G.; Garcia, C.; Teixeira, J.; Trindade, H. Biochar as an alternative litter additive to mitigate gaseous emissions from broiler housing and subsequent storage. Agronomy 2024, 14, 1595. [Google Scholar] [CrossRef]
- Baral, K.R.; McIlroy, J.; Lyons, G.; Johnston, C. The effect of biochar and acid activated biochar on ammonia emissions during manure storage. Environ. Pollut. 2023, 317, 120815. [Google Scholar] [CrossRef]
- Dougherty, B.; Gray, M.; Johnson, M.G.; Kleber, M. Can biochar covers reduce emissions from manure lagoons while capturing nutrients? J. Environ. Qual. 2017, 46, 659–666. [Google Scholar] [CrossRef]
- Chen, B.; Koziel, J.A.; Banik, C.; Ma, H.; Lee, M.; O’Brien, S.C.; Li, P.; Andersen, D.S.; Białowiec, A.; Brown, R.C. Mitigation of gaseous emissions from stored swine manure with biochar: Effect of dose and reapplication on a pilot-scale. Atmosphere 2021, 12, 96. [Google Scholar] [CrossRef]
- Maurer, D.L.; Koziel, J.A.; Kalus, K.; Andersen, D.S.; Opalinski, S. Pilot-scale testing of non-activated biochar for swine manure treatment and mitigation of ammonia, hydrogen sulfide, odorous volatile organic compounds (VOCs), and greenhouse gas emissions. Sustainability 2017, 9, 929. [Google Scholar] [CrossRef]
- Pires, A.J.; Esteves, C.; Bexiga, R.; Oliveira, M.; Fangueiro, D. Biochar Supplementation of Recycled Manure Solids: Impact on Their Characteristics and Greenhouse Gas Emissions During Storage. Agronomy 2025, 15, 973. [Google Scholar] [CrossRef]
- Dasgupta, S.; Divekar, S.; Spjelkavik, A.I.; Didriksen, T.; Nanoti, A.; Blom, R. Adsorption properties and performance of CPO-27-Ni/alginate spheres during multicycle pressure-vacuum-swing adsorption (PVSA) CO2 capture in the presence of moisture. Chem. Eng. Sci. 2015, 137, 525–531. [Google Scholar] [CrossRef]
- Manyà, J.J.; García-Morcate, D.; González, B. Adsorption performance of physically activated biochars for postcombustion CO2 capture from dry and humid flue gas. Appl. Sci. 2020, 10, 376. [Google Scholar] [CrossRef]
- Nguyen, M.-V.; Lee, B.-K. Removal of dimethyl sulfide from aqueous solution using cost-effective modified chicken manure biochar produced from slow pyrolysis. Sustainability 2015, 7, 15057–15072. [Google Scholar] [CrossRef]
- Tamura, T.; Katayama, T.; Haga, K. Emission patterns of malodorous compounds and greenhouse gases from the pile-type composting of cattle manure. Nihon Chikusan Gakkaiho 1999, 70, 235–239. [Google Scholar] [CrossRef]
- Aizawa, A.; Miyazaki, A.; Tanaka, N. Emissions of Volatile Organic Compounds from Dairy Cattle Manure in a Cattle Shed in Japan. Asian J. Atmos. Environ. 2022, 16, 2022024. [Google Scholar] [CrossRef]
- Rynk, R.; Van de Kamp, M.; Willson, G.B.; Singley, M.E.; Richard, T.L.; Kolega, J.J.; Gouin, F.R.; Laliberty, L.; Kay, D.; Murphy, D. On-Farm Composting Handbook (NRAES 54); Northeast Regional Agricultural Engineering Service (NRAES): Ithaca, NY, USA, 1992. [Google Scholar]
- Zhu, P.; Shen, Y.; Pan, X.; Dong, B.; Zhou, J.; Zhang, W.; Li, X. Reducing odor emissions from feces aerobic composting: Additives. RSC Adv. 2021, 11, 15977–15988. [Google Scholar] [CrossRef]
- Gao, X.; Yang, F.; Cheng, J.; Xu, Z.; Zang, B.; Li, G.; Xie, X.; Luo, W. Emission of volatile sulphur compounds during swine manure composting: Source identification, odour mitigation and assessment. Waste Manag. 2022, 153, 129–137. [Google Scholar] [CrossRef]
- Hwang, O.; Lee, S.-R.; Cho, S.; Ro, K.S.; Spiehs, M.; Woodbury, B.; Silva, P.J.; Han, D.-W.; Choi, H.; Kim, K.-Y. Efficacy of different biochars in removing odorous volatile organic compounds (VOCs) emitted from swine manure. ACS Sustain. Chem. Eng. 2018, 6, 14239–14247. [Google Scholar] [CrossRef]
- Meiirkhanuly, Z.; Koziel, J.A.; Chen, B.; Białowiec, A.; Lee, M.; Wi, J.; Banik, C.; Brown, R.C.; Bakshi, S. Mitigation of gaseous emissions from swine manure with the surficial application of biochars. Atmosphere 2020, 11, 1179. [Google Scholar] [CrossRef]
- Li, Y.; Wang, B.; Shang, H.; Cao, Y.; Yang, C.; Hu, W.; Feng, Y.; Yu, Y. Influence of adsorption sites of biochar on its adsorption performance for sulfamethoxazole. Chemosphere 2023, 326, 138408. [Google Scholar] [CrossRef]
- Martin, S.M.; Kookana, R.S.; Van Zwieten, L.; Krull, E. Marked changes in herbicide sorption–desorption upon ageing of biochars in soil. J. Hazard. Mater. 2012, 231, 70–78. [Google Scholar] [CrossRef]
- Wang, Z.; Hao, C.; Wang, X.; Wang, G.; Ni, G.; Cheng, Y. Effects of micro-mesopore structure characteristics on methane adsorption capacity of medium rank coal. Fuel 2023, 351, 128910. [Google Scholar] [CrossRef]
- Kasozi, G.N.; Zimmerman, A.R.; Nkedi-Kizza, P.; Gao, B. Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars). Environ. Sci. Technol. 2010, 44, 6189–6195. [Google Scholar] [CrossRef]
- Qi, L.; Tang, X.; Wang, Z.; Peng, X. Pore characterization of different types of coal from coal and gas outburst disaster sites using low temperature nitrogen adsorption approach. Int. J. Min. Sci. Technol. 2017, 27, 371–377. [Google Scholar] [CrossRef]
- Hsieh, C.-T.; Teng, H. Influence of mesopore volume and adsorbate size on adsorption capacities of activated carbons in aqueous solutions. Carbon 2000, 38, 863–869. [Google Scholar] [CrossRef]
- Yin, J.; Zhang, W.; Alhebshi, N.A.; Salah, N.; Alshareef, H.N. Synthesis strategies of porous carbon for supercapacitor applications. Small Methods 2020, 4, 1900853. [Google Scholar] [CrossRef]
- Mohan, D.; Sharma, R.; Singh, V.K.; Steele, P.; Pittman Jr, C.U. Fluoride removal from water using bio-char, a green waste, low-cost adsorbent: Equilibrium uptake and sorption dynamics modeling. Ind. Eng. Chem. Res. 2012, 51, 900–914. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Han, M.-L.; Wei, X.-L.; Zhang, J.-C.; Liu, Y.; Tang, X.; Li, P.; Liu, Z.-Y. Influence of structural damage on evaluation of microscopic pore structure in marine continental transitional shale of the Southern North China Basin: A method based on the low-temperature N2 adsorption experiment. Pet. Sci. 2022, 19, 100–115. [Google Scholar] [CrossRef]
- Baldovino-Medrano, V.c.G.; Niño-Celis, V.; Isaacs Giraldo, R. Systematic analysis of the nitrogen adsorption–desorption isotherms recorded for a series of materials based on microporous–mesoporous amorphous aluminosilicates using classical methods. J. Chem. Eng. Data 2023, 68, 2512–2528. [Google Scholar] [CrossRef]
- Silvestre-Albero, A.M.; Juárez-Galán, J.M.; Silvestre-Albero, J.; Rodríguez-Reinoso, F. Low-pressure hysteresis in adsorption: An artifact? J. Phys. Chem. C 2012, 116, 16652–16655. [Google Scholar] [CrossRef]
- Maziarka, P.; Wurzer, C.; Arauzo, P.J.; Dieguez-Alonso, A.; Mašek, O.; Ronsse, F. Do you BET on routine? The reliability of N2 physisorption for the quantitative assessment of biochar’s surface area. Chem. Eng. J. 2021, 418, 129234. [Google Scholar] [CrossRef]
- Lowell, S.; Shields, J.E.; Thomas, M.A.; Thommes, M. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density; Springer Science & Business Media: Berlin, Germany, 2012; Volume 16. [Google Scholar]
- Ren, Z.; Wang, D.; Qin, Z.; Liu, Z. Effects of pore size, water content, and oxygen-containing functional groups on oxygen adsorption in bituminous coal. Sci. Rep. 2023, 13, 10373. [Google Scholar] [CrossRef]
- Liu, C.; Wang, W.; Wu, R.; Liu, Y.; Lin, X.; Kan, H.; Zheng, Y. Preparation of acid-and alkali-modified biochar for removal of methylene blue pigment. ACS Omega 2020, 5, 30906–30922. [Google Scholar] [CrossRef]
- Armynah, B.; Djafar, Z.; Piarah, W.H.; Tahir, D. Analysis of chemical and physical properties of biochar from rice husk biomass. J. Phys. Conf. Ser. 2018, 979, 012038. [Google Scholar] [CrossRef]
- Wei, L.; Huang, Y.; Li, Y.; Huang, L.; Mar, N.N.; Huang, Q.; Liu, Z. Biochar characteristics produced from rice husks and their sorption properties for the acetanilide herbicide metolachlor. Environ. Sci. Pollut. Res. 2017, 24, 4552–4561. [Google Scholar] [CrossRef]
- Palniandy, L.K.; Yoon, L.W.; Wong, W.Y.; Yong, S.-T.; Pang, M.M. Application of biochar derived from different types of biomass and treatment methods as a fuel source for direct carbon fuel cells. Energies 2019, 12, 2477. [Google Scholar] [CrossRef]
- Chen, M.; Wang, F.; Zhang, D.-l.; Yi, W.-m.; Liu, Y. Effects of acid modification on the structure and adsorption NH4+-N properties of biochar. Renew. Energy 2021, 169, 1343–1350. [Google Scholar] [CrossRef]
- Yang, Y.; Piao, Y.; Wang, R.; Su, Y.; Liu, N.; Lei, Y. Nonmetal function groups of biochar for pollutants removal: A review. J. Hazard. Mater. Adv. 2022, 8, 100171. [Google Scholar] [CrossRef]
- Yin, Q.; Si, L.; Wang, R.; Zhao, Z.; Li, H.; Wen, Z. DFT study on the effect of functional groups of carbonaceous surface on ammonium adsorption from water. Chemosphere 2022, 287, 132294. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, W.; Lin, H.; Li, Y.; Lu, H.; Wang, Y. Hierarchical porous carbon based on the self-templating structure of rice husk for high-performance supercapacitors. RSC Adv. 2015, 5, 19294–19300. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, N. Facile synthesis of porous carbons from silica-rich rice husk char for volatile organic compounds (VOCs) sorption. Bioresour. Technol. 2019, 282, 294–300. [Google Scholar] [CrossRef]
- Ahiduzzaman, M.; Sadrul Islam, A. Preparation of porous bio-char and activated carbon from rice husk by leaching ash and chemical activation. SpringerPlus 2016, 5, 1248. [Google Scholar] [CrossRef]
- Shackley, S.; Carter, S.; Knowles, T.; Middelink, E.; Haefele, S.; Sohi, S.; Cross, A.; Haszeldine, S. Sustainable gasification–biochar systems? A case-study of rice-husk gasification in Cambodia, Part I: Context, chemical properties, environmental and health and safety issues. Energy Policy 2012, 42, 49–58. [Google Scholar] [CrossRef]
- Chandrasekhar, S.; Pramada, P.; Majeed, J. Effect of calcination temperature and heating rate on the optical properties and reactivity of rice husk ash. J. Mater. Sci. 2006, 41, 7926–7933. [Google Scholar] [CrossRef]
- Nzereogu, P.; Omah, A.; Ezema, F.; Iwuoha, E.; Nwanya, A. Silica extraction from rice husk: Comprehensive review and applications. Hybrid Adv. 2023, 4, 100111. [Google Scholar] [CrossRef]
- Jenkins, B.; Baxter, L.L.; Miles Jr, T.R.; Miles, T.R. Combustion properties of biomass. Fuel Process. Technol. 1998, 54, 17–46. [Google Scholar] [CrossRef]
- Tsai, W.-T.; Lin, Y.-Q.; Huang, H.-J. Valorization of rice husk for the production of porous biochar materials. Fermentation 2021, 7, 70. [Google Scholar] [CrossRef]
- Gibbs, G.V.; Wallace, A.F.; Cox, D.F.; Downs, R.; Ross, N.L.; Rosso, K.M. Bonded interactions in silica polymorphs, silicates, and siloxane molecules. Am. Mineral. 2009, 94, 1085–1102. [Google Scholar] [CrossRef]
- Zulumyan, N.; Isaakyan, A.; Pirumyan, P.; Beglaryan, A. The structural characteristics of amorphous silicas. Russ. J. Phys. Chem. A 2010, 84, 700–702. [Google Scholar] [CrossRef]
- Görlich, E. The structure of SiO2—Current views. Ceram. Int. 1982, 8, 3–16. [Google Scholar] [CrossRef]
- Shin, J.; Lee, Y.; Kim, D.; Lee, S.; Ahn, H. Effect of rice husk biochar added bedding on the reduction of ammonia and hydrogen sulfide emissions from dairy manure. J. Odor Indoor Environ. 2022, 21, 270–277. [Google Scholar] [CrossRef]
- Song, X.; Zhang, Y.; Chang, C. Novel method for preparing activated carbons with high specific surface area from rice husk. Ind. Eng. Chem. Res. 2012, 51, 15075–15081. [Google Scholar] [CrossRef]
- Bai, W.; Qian, M.; Li, Q.; Atkinson, S.; Tang, B.; Zhu, Y.; Wang, J. Rice husk-based adsorbents for removing ammonia: Kinetics, thermodynamics and adsorption mechanism. J. Environ. Chem. Eng. 2021, 9, 105793. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, N.; Fu, Y. Synthesis of high-performance hierarchically porous carbons from rice husk for sorption of phenol in the gas phase. J. Environ. Manag. 2019, 241, 53–58. [Google Scholar] [CrossRef]
- Glaser, B.; Wiedner, K.; Seelig, S.; Schmidt, H.-P.; Gerber, H. Biochar organic fertilizers from natural resources as substitute for mineral fertilizers. Agron. Sustain. Dev. 2015, 35, 667–678. [Google Scholar] [CrossRef]
- Stacey, N.E.; Tea, T.; Seefeldt, S.S.; Bary, A.; Collins, D.P. Biochar-Poultry Manure Compost Alters Temperature and Nitrogen Dynamics during Composting and Improves Potato Growth Following Field Application. Compos. Sci. Util. 2024, 31, 86–102. [Google Scholar] [CrossRef]
- Gao, S.; Harrison, B.P.; Thao, T.; Gonzales, M.L.; An, D.; Ghezzehei, T.A.; Diaz, G.; Ryals, R.A. Biochar co-compost improves nitrogen retention and reduces carbon emissions in a winter wheat cropping system. GCB Bioenergy 2023, 15, 462–477. [Google Scholar] [CrossRef]
Property | Dairy Manure | Sawdust | Mixture |
---|---|---|---|
Moisture content (% w.b.) † | 79.1 ± 0.2 | 12.9 ± 0.3 | 75.0 ± 0.5 |
Volatile solid (% d.b.) ‡ | 83.0 ± 0.5 | 98.3 ± 0.1 | 90.9 ± 0.2 |
Total nitrogen (%, w.b.) | 0.5 ± 0.0 | 0.2 ± 0.0 | 0.5 ± 0.0 |
Total carbon (%, w.b.) | 7.0 ± 0.3 | 47.8 ± 0.0 | 10.0 ± 0.0 |
C/N ratio | 14.2 ± 0.8 | 207.5 ± 0.0 | 21.1 ± 0.0 |
Bulk density (g L−1) | 956.8 | 108.0 | 613.0 ± 5.3 |
Free air space (%) | 12.6 | 92.8 | 45.1 ± 0.5 |
Property | Rice Husk Biochar |
---|---|
Moisture content (% w.b.) † | 2.0 ± 0.1 |
Volatile solid (% d.b.) ‡ | 6.3 ± 0.0 |
Total nitrogen (%, w.b.) | 0.8 ± 0.2 |
Total carbon (%, w.b.) | 55.6 ± 3.2 |
pH | 10.4 |
Specific surface area (m2 g−1) | 31.9 |
Micropore surface area (m2 g−1) | 26.0 |
Total pore volume (cm3 g−1) | 0.02 |
Micropore volume (cm3 g−1) | 0.01 |
Adsorption average pore diameter (nm) | 15.5 |
Control | Treatment | ||
---|---|---|---|
5% Biochar | 10% Biochar | ||
Initial VS (Day 0, g) | 617.7 ± 0.0 | 630.3 ± 3.1 | 659.5 ± 1.2 |
Added VS (g) | 128.3 ± 0.4 | 144.7 ± 0.3 | 136.2 ± 0.2 |
Sampling loss (g) | 151.6 ± 0.3 | 152.2 ± 0.3 | 153.9 ± 0.5 |
Remaining VS (Day 20, g) | 408.5 ± 3.6 | 411.1 ± 3.6 | 423.5 ± 1.3 |
Decomposed VS (g) † | 185.9 ± 4.0 a | 211.8 ± 5.5 b | 218.4 ± 2.9 b |
Control | Treatment | SEM | p-Value | |||
---|---|---|---|---|---|---|
5% Biochar | 10% Biochar | 5% Biochar | 10% Biochar | |||
Day 0 (%) | 45.1 | 47.2 | 49.5 | 0.7 | 0.054 | 0.002 |
Day 21 (%) | 32.2 | 32.6 | 33.2 | 0.6 | 0.714 | 0.233 |
Reduction rate of free air space (%) | 28.7 | 30.9 | 32.9 | 1.6 | 0.432 | 0.094 |
Period | NH3 Emission, mg m−2 Day−1 | SEM | p-Value | |||
---|---|---|---|---|---|---|
Control | Treatment | |||||
5% Biochar | 10% Biochar | 5% Biochar | 10% Biochar | |||
1st week (n = 18) | 279.5 | 193.3 | 152.0 | 18.3 | 0.008 | 0.001 |
2nd week (n = 15) | 111.1 | 92.2 | 68.0 | 8.6 | 0.151 | 0.006 |
3rd week (n = 6) | 42.5 | 40.0 | 35.3 | 2.7 | 0.649 | 0.079 |
Overall (n = 39) | 178.3 | 130.8 | 101.7 | 12.1 | 0.018 | 0.002 |
Compound | Period | Control | Treatment | SEM | p-Value | ||
---|---|---|---|---|---|---|---|
5% Biochar | 10% Biochar | 5% Biochar | 10% Biochar | ||||
H2S (μg m−2 day−1) | 1st week | 0.0 | 11.4 | 3.4 | 0.51 | 0.415 | 0.913 |
2nd week | 0.7 | 2.7 | 3.3 | 0.07 | 0.214 | 0.112 | |
3rd week | 43.0 | 35.1 | 27.2 | 1.12 | 0.903 | 0.678 | |
Overall | 8.0 | 13.3 | 7.7 | 5.08 | 0.575 | 0.998 | |
MM (μg m−2 day−1) | 1st week | 287.2 | 805.8 | 660.7 | 191.76 | 0.079 | 0.206 |
2nd week | ND † | ND | ND | - | - | - | |
3rd week | ND | ND | ND | - | - | - | |
Overall | 156.6 | 439.6 | 360.4 | 104.59 | 0.079 | 0.206 | |
DMS (mg m−2 day−1) | 1st week | 12.2 | 5.6 | 3.0 | 0.78 | 0.004 | <0.001 |
2nd week | 1.4 | 0.9 | 0.4 | 0.11 | 0.007 | <0.001 | |
3rd week | 0.2 | 0.1 | 0.1 | 0.02 | 0.876 | 0.606 | |
Overall | 7.1 | 3.3 | 1.8 | 0.42 | <0.001 | <0.001 | |
DMDS (μg m−2 day−1) | 1st week | 117.7 | 115.9 | 63.8 | 55.50 | 0.999 | 0.619 |
2nd week | ND | ND | ND | - | - | - | |
3rd week | ND | ND | ND | - | - | - | |
Overall | 64.2 | 63.2 | 34.8 | 30.27 | 0.999 | 0.619 |
Compound | Period | Emission, μg m−2 Day−1 | SEM | p-Value | |||
---|---|---|---|---|---|---|---|
Control | Treatment | ||||||
5% Biochar | 10% Biochar | 5% Biochar | 10% Biochar | ||||
TVFA | 1st week | 104.7 | 112.4 | 108.0 | 6.68 | 0.525 | 0.879 |
2nd week | 166.6 | 81.5 | 89.2 | 56.56 | 0.353 | 0.413 | |
3rd week | 62.9 | 65.5 | 63.4 | 5.25 | 0.878 | 0.996 | |
Overall | 114.0 | 95.4 | 94.7 | 15.60 | 0.500 | 0.478 | |
Phenol | 1st week | 2628.6 | 2753.2 | 2993.2 | 117.72 | 0.571 | 0.048 |
2nd week | 1397.4 | 1381.0 | 1408.4 | 51.64 | 0.947 | 0.975 | |
3rd week | 1290.6 | 1400.6 | 1513.1 | 39.85 | 0.073 | 0.003 | |
Overall | 2049.6 | 2133.0 | 2291.9 | 76.26 | 0.551 | 0.044 | |
p-Cresol | 1st week | 2.0 | 1.9 | 2.2 | 0.11 | 0.703 | 0.239 |
2nd week | 2.0 | 3.6 | 2.4 | 0.40 | 0.021 | 0.601 | |
3rd week | 2.4 | 1.9 | 2.2 | 0.12 | 0.018 | 0.328 | |
Overall | 2.1 | 2.3 | 2.2 | 0.09 | 0.040 | 0.162 | |
Indole | 1st week | 1.6 | 1.6 | 1.3 | 0.28 | 0.991 | 0.620 |
2nd week | ND † | ND | ND | - | - | - | |
3rd week | ND | ND | ND | - | - | - | |
Overall | 0.9 | 0.9 | 0.7 | 0.15 | 0.991 | 0.620 |
Elapsed Time (Days) | Logarithmically Transformed Odor Unit | ||
---|---|---|---|
Control | 5% Biochar | 10% Biochar | |
0 | 2.3 ± 0.1 a1 | 2.5 ± 0.3 a1 | 2.1 ± 0.3 a1 |
7 | 2.0 ± 0.2 a2 | 2.0 ± 0.1 a2 | 1.8 ± 0.0 b2 |
14 | 1.5 ± 0.1 a3 | 1.5 ± 0.2 a3 | 1.4 ± 0.2 a3 |
21 | 1.5 ± 0.2 a3 | 1.3 ± 0.2 a3 | 1.4 ± 0.1 a3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, J.; Kim, D.; Lee, Y.; Lee, S.; Wardhani, R.; Ahn, H. Evaluating the Odor Mitigation Effects of Biochar-Enhanced Bedding Materials in a Simulated Bedded Pack Dairy Barn Environment: A Laboratory-Scale Study. Appl. Sci. 2025, 15, 6361. https://doi.org/10.3390/app15116361
Shin J, Kim D, Lee Y, Lee S, Wardhani R, Ahn H. Evaluating the Odor Mitigation Effects of Biochar-Enhanced Bedding Materials in a Simulated Bedded Pack Dairy Barn Environment: A Laboratory-Scale Study. Applied Sciences. 2025; 15(11):6361. https://doi.org/10.3390/app15116361
Chicago/Turabian StyleShin, Jinho, Daehun Kim, Yangjoon Lee, Seunghun Lee, Riuh Wardhani, and Heekwon Ahn. 2025. "Evaluating the Odor Mitigation Effects of Biochar-Enhanced Bedding Materials in a Simulated Bedded Pack Dairy Barn Environment: A Laboratory-Scale Study" Applied Sciences 15, no. 11: 6361. https://doi.org/10.3390/app15116361
APA StyleShin, J., Kim, D., Lee, Y., Lee, S., Wardhani, R., & Ahn, H. (2025). Evaluating the Odor Mitigation Effects of Biochar-Enhanced Bedding Materials in a Simulated Bedded Pack Dairy Barn Environment: A Laboratory-Scale Study. Applied Sciences, 15(11), 6361. https://doi.org/10.3390/app15116361