A Comparative Study on the Carbonization of Chitin and Chitosan: Thermo-Kinetics, Thermodynamics and Artificial Neural Network Modeling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Physicochemical Characterization and Thermal Analysis of Chitin and Chitosan
2.2. Kinetic Analysis
2.3. Thermodynamic Analysis
2.4. Methodology of Artificial Neural Network Modeling
3. Results and Discussion
3.1. Thermogravimetric Analysis
3.2. Computational Results of ANN
3.3. Kinetics
3.4. Thermodynamics
3.5. Morpho-Structural Changes During Carbonization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cywar, R.M.; Rorrer, N.A.; Hoyt, C.B.; Beckham, G.T.; Chen, E.Y.X. Bio-Based Polymers with Performance-Advantaged Properties. Nat. Rev. Mater. 2022, 7, 83–103. [Google Scholar] [CrossRef]
- Väisänen, T.; Das, O.; Tomppo, L. A Review on New Bio-Based Constituents for Natural Fiber-Polymer Composites. J. Clean. Prod. 2017, 149, 582–596. [Google Scholar] [CrossRef]
- Soares, R.M.D.; Siqueira, N.M.; Prabhakaram, M.P.; Ramakrishna, S. Electrospinning and Electrospray of Bio-Based and Natural Polymers for Biomaterials Development. Mater. Sci. Eng. C 2018, 92, 969–982. [Google Scholar] [CrossRef]
- Kumari, S.; Kishor, R. Chitin and Chitosan: Origin, Properties, and Applications. In Handbook of Chitin and Chitosan: Volume 1: Preparation and Properties; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–33. [Google Scholar] [CrossRef]
- Duarte, M.L.; Ferreira, M.C.; Marvão, M.R.; Rocha, J. An Optimised Method to Determine the Degree of Acetylation of Chitin and Chitosan by FTIR Spectroscopy. Int. J. Biol. Macromol. 2002, 31, 1–8. [Google Scholar] [CrossRef]
- Yan, B.; Yang, H.; Zhang, N.; Cheng, J.; Huang, J.; Zhao, J.; Zhang, H.; Chen, W.; Fan, D. Microwave-Assisted Depolymerization of Chitin and Chitosan Extracted from Crayfish Shells Waste: A Sustainable Approach Based on Graphene Oxide Catalysis. Int. J. Biol. Macromol. 2023, 251, 126296. [Google Scholar] [CrossRef] [PubMed]
- Hammi, N.; Chen, S.; Dumeignil, F.; Royer, S.; El Kadib, A. Chitosan as a Sustainable Precursor for Nitrogen-Containing Carbon Nanomaterials: Synthesis and Uses. Mater. Today Sustain. 2020, 10, 100053. [Google Scholar] [CrossRef]
- Vicente, F.A.; Hren, R.; Novak, U.; Čuček, L.; Likozar, B.; Vujanović, A. Energy Demand Distribution and Environmental Impact Assessment of Chitosan Production from Shrimp Shells. Renew. Sustain. Energy Rev. 2024, 192, 114204. [Google Scholar] [CrossRef]
- Cabrera-Barjas, G.; Jimenez, R.; Romero, R.; Valdes, O.; Nesic, A.; Hernández-García, R.; Neira, A.; Alejandro-Martín, S.; de la Torre, A.F. Value-Added Long-Chain Aliphatic Compounds Obtained through Pyrolysis of Phosphorylated Chitin. Int. J. Biol. Macromol. 2023, 238, 124130. [Google Scholar] [CrossRef]
- Nisticò, R.; Guerretta, F.; Benzi, P.; Magnacca, G. Chitosan-Derived Biochars Obtained at Low Pyrolysis Temperatures for Potential Application in Electrochemical Energy Storage Devices. Int. J. Biol. Macromol. 2020, 164, 1825–1831. [Google Scholar] [CrossRef]
- Mirhosseyni, M.; Mohammadi Ziarani, G.; Badiei, A. Chitosan-Derived Mesoporous N-Doped Carbon Catalyst Embedded with NiO for Highly Selective Benzyl Alcohol Oxidation. Int. J. Biol. Macromol. 2024, 259, 129093. [Google Scholar] [CrossRef]
- Barrio, J.; Pedersen, A.; Favero, S.; Luo, H.; Wang, M.; Sarma, S.C.; Feng, J.; Ngoc, L.T.T.; Kellner, S.; Li, A.Y.; et al. Bioinspired and Bioderived Aqueous Electrocatalysis. Chem. Rev. 2023, 123, 2311–2348. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Aydemir, B.E.; Dumanli, A.G. Understanding the Structural Diversity of Chitins as a Versatile Biomaterial. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2021, 379, 20200331. [Google Scholar] [CrossRef] [PubMed]
- Rybarczyk, M.K.; Cysewska, K.; Yuksel, R.; Lieder, M. Microporous N-Doped Carbon Obtained from Salt Melt Pyrolysis of Chitosan toward Supercapacitor and Oxygen Reduction Catalysts. Nanomaterials 2022, 12, 1162. [Google Scholar] [CrossRef] [PubMed]
- Bonardd, S.; Ramirez, O.; Abarca, G.; Leiva, Á.; Saldías, C.; Díaz, D.D. Porous Chitosan-Based Nanocomposites Containing Gold Nanoparticles. Increasing the Catalytic Performance through Film Porosity. Int. J. Biol. Macromol. 2022, 217, 864–877. [Google Scholar] [CrossRef]
- Chernyak, S.; Podgornova, A.; Dorofeev, S.; Maksimov, S.; Maslakov, K.; Savilov, S.; Lunin, V. Synthesis and Modification of Pristine and Nitrogen-Doped Carbon Dots by Combining Template Pyrolysis and Oxidation. Appl. Surf. Sci. 2020, 507, 145027. [Google Scholar] [CrossRef]
- Ababneh, H.; Hameed, B.H. Chitosan-Derived Hydrothermally Carbonized Materials and Its Applications: A Review of Recent Literature. Int. J. Biol. Macromol. 2021, 186, 314–327. [Google Scholar] [CrossRef]
- Chen, X.; Oh, W.D.; Zhang, P.H.; Webster, R.D.; Lim, T.T. Surface Construction of Nitrogen-Doped Chitosan-Derived Carbon Nanosheets with Hierarchically Porous Structure for Enhanced Sulfacetamide Degradation via Peroxymonosulfate Activation: Maneuverable Porosity and Active Sites. Chem. Eng. J. 2020, 382, 122908. [Google Scholar] [CrossRef]
- Özsin, G.; Pütün, A.E. An Investigation on Pyrolysis of Textile Wastes: Kinetics, Thermodynamics, in-situ Monitoring of Evolved Gasses and Analysis of the Char Residue. J. Environ. Chem. Eng. 2022, 10, 107748. [Google Scholar] [CrossRef]
- Vuppaladadiyam, A.K.; Varsha Vuppaladadiyam, S.S.; Sikarwar, V.S.; Ahmad, E.; Pant, K.K.; Pandey, A.; Bhattacharya, S.; Sarmah, A.; Leu, S.Y. A Critical Review on Biomass Pyrolysis: Reaction Mechanisms, Process Modeling and Potential Challenges. J. Energy Inst. 2023, 108, 101236. [Google Scholar] [CrossRef]
- Khan, A.; Ali, I.; Naqvi, S.R.; AlMohamadi, H.; Shahbaz, M.; Ali, A.M.; Shahzad, K. Assessment of Thermokinetic Behaviour of Tannery Sludge in Slow Pyrolysis Process through Artificial Neural Network. Chemosphere 2023, 337, 139226. [Google Scholar] [CrossRef]
- Ma, C.; Zhang, F.; Hu, J.; Wang, H.; Yang, S.; Liu, H. Co-Pyrolysis of Sewage Sludge and Waste Tobacco Stem: Gas Products Analysis, Pyrolysis Kinetics, Artificial Neural Network Modeling, and Synergistic Effects. Bioresour. Technol. 2023, 389, 129816. [Google Scholar] [CrossRef]
- Sunphorka, S.; Chalermsinsuwan, B.; Piumsomboon, P. Artificial Neural Network Model for the Prediction of Kinetic Parameters of Biomass Pyrolysis from Its Constituents. Fuel 2017, 193, 142–158. [Google Scholar] [CrossRef]
- Aniza, R.; Chen, W.H.; Yang, F.C.; Pugazhendh, A.; Singh, Y. Integrating Taguchi Method and Artificial Neural Network for Predicting and Maximizing Biofuel Production via Torrefaction and Pyrolysis. Bioresour. Technol. 2022, 343, 126140. [Google Scholar] [CrossRef] [PubMed]
- Özsin, G.; Alpaslan Takan, M.; Takan, A.; Pütün, A.E. A Combined Phenomenological Artificial Neural Network Approach for Determination of Pyrolysis and Combustion Kinetics of Polyvinyl Chloride. Int. J. Energy Res. 2022, 46, 16959–16978. [Google Scholar] [CrossRef]
- Wu, Y.C.; Feng, J.W. Development and Application of Artificial Neural Network. Wireless Pers. Commun. 2018, 102, 1645–1656. [Google Scholar] [CrossRef]
- Monticeli, F.M.; Neves, R.M.; Ornaghi Júnior, H.L. Using an Artificial Neural Network (ANN) for Prediction of Thermal Degradation from Kinetics Parameters of Vegetable Fibers. Cellulose 2021, 28, 1961–1971. [Google Scholar] [CrossRef]
- Tufaner, F.; Demirci, Y. Prediction of Biogas Production Rate from Anaerobic Hybrid Reactor by Artificial Neural Network and Nonlinear Regressions Models. Clean Technol. Environ. Policy 2020, 22, 713–724. [Google Scholar] [CrossRef]
- Karampinis, I.; Bantilas, K.E.; Kavvadias, I.E.; Iliadis, L.; Elenas, A. Machine Learning Algorithms for the Prediction of the Seismic Response of Rigid Rocking Blocks. Appl. Sci. 2024, 14, 341. [Google Scholar] [CrossRef]
- Shagali, A.A.; Hu, S.; Li, H.; Chi, H.; Qing, H.; Xu, J.; Jiang, L.; Wang, Y.; Su, S.; Xiang, J. Thermal Behavior, Synergistic Effect and Thermodynamic Parameter Evaluations of Biomass/Plastics Co–Pyrolysis in a Concentrating Photothermal TGA. Fuel 2023, 331, 125724. [Google Scholar] [CrossRef]
- Gopi, R.; Muniyappan, D.; Ramanathan, A. Biodiesel Production Using Microreactor with Integrated Microheater through Multi-Objective Optimization Approach. Chem. Eng. Process. Process Intensif. 2024, 195, 109646. [Google Scholar] [CrossRef]
- White, J.E.; Catallo, W.J.; Legendre, B.L. Biomass Pyrolysis Kinetics: A Comparative Critical Review with Relevant Agricultural Residue Case Studies. J. Anal. Appl. Pyrolysis 2011, 91, 1–33. [Google Scholar] [CrossRef]
- Wanjun, T.; Cunxin, W.; Donghua, C. Kinetic Studies on the Pyrolysis of Chitin and Chitosan. Polym. Degrad. Stab. 2005, 87, 389–394. [Google Scholar] [CrossRef]
- Özsin, G.; Dermenci, K.B.; Turan, S. Thermokinetic and Thermodynamics of Pechini Derived Li7−3xAlxLa3Zr2O12 (X = 0.0–0.2) Xerogel Decomposition under Oxidative Conditions. J. Therm. Anal. Calorim. 2021, 146, 1405–1420. [Google Scholar] [CrossRef]
Sample | Heating Rate (°C/min) | Ti * (°C) | dTGmax ** | Tf *** (°C) |
---|---|---|---|---|
Chitosan | 5 | 218.7 | 287.8 | 366.2 |
10 | 226.5 | 299.4 | 401.5 | |
20 | 238.1 | 310.5 | 504.3 | |
40 | 243.8 | 320.5 | 543.6 | |
Chitin | 5 | 233.7 | 392.4 | 434.8 |
10 | 237.9 | 406.5 | 443.1 | |
20 | 241.2 | 423.9 | 529.1 | |
40 | 249.8 | 443.5 | 559.7 |
Chitin Data | Chitosan Data | |||||||
---|---|---|---|---|---|---|---|---|
Models | Network Structure | Heating Rate for Training | Heating Rate for Test | Transfer Function | Test R2 Score | Validation R2 Score | Test R2 Score | Validation R2 Score |
NN1 | 5-10-5 | 5 °C/min 10 °C/min 20 °C/min | 40 °C/min | Tansig | 0.9789 | 0.9899 | 0.9997 | 0.9999 |
NN2 | 5-10-10 | 5 °C/min 10 °C/min 40 °C/min | 20 °C/min | Sigmoid | 0.97569 | 0.9995 | 0.97569 | 0.9995 |
NN3 | 5-20-5 | 5 °C/min 20 °C/min 40 °C/min | 10 °C/min | Tansig | 0.9648 | 0.9799 | 0.9854 | 0.9899 |
NN4 | 10-20-10 | 10 °C/min 20 °C/min 40 °C/min | 5 °C/min | Sigmoid | 0.9995 | 0.9999 | 0.9648 | 0.9799 |
NN5 | 5-10-20-10 | 5 °C/min 20 °C/min 40 °C/min | 10 °C/min | Tansig | 0.756 | 0.7579 | 0.9125 | 0.9156 |
NN6 | 5-15-30-15 | 10 °C/min 20 °C/min 40 °C/min | 5 °C/min | Tansig | 0.8328 | 0.855 | 0.9365 | 0.9499 |
NN7 | 5-20-5-10 | 5 °C/min 10 °C/min 40 °C/min | 20 °C/min | Sigmoid | 0.8966 | 0.9122 | 0.9256 | 0.9269 |
NN8 | 1-5-1 | 5 °C/min 20 °C/min 40 °C/min | 10 °C/min | Tansig | 0.6242 | 0.6658 | 0.7458 | 0.7556 |
NN9 | 2-3-2 | 5 °C/min 10 °C/min 20 °C/min | 40 °C/min | Sigmoid | 0.6899 | 0.7156 | 0.7025 | 0.6987 |
NN10 | 5–20-10-20-5 | 5 °C/min 20 °C/min 40 °C/min | 10 °C/min | Tansig | 0.9723 | 0.9756 | 0.9568 | 0.96667 |
NN11 | 1-5-1 | 5 °C/min 10 °C/min 20 °C/min | 40 °C/min | Sigmoid | 0.8896 | 0.8936 | 0.7895 | 0.8026 |
NN12 | 5–20-30-20-5 | 5 °C/min 10 °C/min 40 °C/min | 20 °C/min | Sigmoid | 0.9883 | 0.9901 | 0.9366 | 0.93999 |
NN13 | 3-10-2 | 10 °C/min 20 °C/min 40 °C/min | 5 °C/min | Sigmoid | 0.899 | 0.9199 | 0.9124 | 0.9205 |
NN14 | 1-3-1 | 10 °C/min 20 °C/min 40 °C/min | 5 °C/min | Tansig | 0.7455 | 0.7041 | 0.7887 | 0.7999 |
NN15 | 1-3-1 | 5 °C/min 10 °C/min 20 °C/min | 40 °C/min | Tansig | 0.7856 | 0.7745 | 0.6698 | 0.6784 |
Model Structure | Number of Layers | Total Number of Neurons | Complexity Level | Chitosan | Chitin | ||||
---|---|---|---|---|---|---|---|---|---|
MSE | RMSE | MAE | RMSE | MAE | MSE | ||||
1-3-1 | 3 | 5 | 1 | 0.0012 | 0.0326 | 0.0311 | 0.0233 | 0.0211 | 0.0018 |
2-4-2 | 3 | 8 | 2 | 0.009 | 0.0254 | 0.0255 | 0.0189 | 0.0375 | 0.007 |
5-5-5 | 3 | 15 | 3 | 0.0010 | 0.0266 | 0.0199 | 0.0298 | 0.0149 | 0.008 |
5-10-5 | 3 | 20 | 4 | 0.0016 | 0.0189 | 0.0143 | 0.0156 | 0.0259 | 0.0010 |
5-20-5 | 3 | 30 | 5 | 0.0015 | 0.0195 | 0.0281 | 0.0181 | 0.0247 | 0.0012 |
10-20-10 | 3 | 40 | 6 | 0.009 | 0.0233 | 0.0131 | 0.0259 | 0.0254 | 0.0015 |
5-10-20-5 | 4 | 40 | 7 | 0.0012 | 0.0278 | 0.0125 | 0.0222 | 0.0355 | 0.0010 |
5-20-20-5 | 4 | 50 | 8 | 0.0017 | 0.0398 | 0.0081 | 0.0269 | 0.0092 | 0.0014 |
10-20-20-10 | 4 | 60 | 9 | 0.0012 | 0.0415 | 0.0237 | 0.0369 | 0.0287 | 0.0011 |
15-20-20-15 | 4 | 70 | 10 | 0.009 | 0.0429 | 0.0393 | 0.0355 | 0.0375 | 0.007 |
10-20-20-10-10 | 5 | 70 | 11 | 0.0018 | 0.0548 | 0.0449 | 0.0487 | 0.0426 | 0.0015 |
15-20-20-20-15 | 5 | 90 | 12 | 0.0020 | 0.0619 | 0.0505 | 0.0512 | 0.0445 | 0.0019 |
Experimental | Prediction | ||||
---|---|---|---|---|---|
α | A (s−1) | Compensation Plot Equation | A (s−1) | Compensation Plot Equation | |
Chitosan | 0.1 | 1.53 × 1012 | lnA = 0.2173Ea − 8.6225 | 6.81 × 1012 | lnA = 2172Ea − 8.6148 |
0.2 | 4.55 × 1013 | 2.90 × 1015 | |||
0.3 | 8.66 × 1012 | 3.54 × 1012 | |||
0.4 | 5.79 × 1013 | 4.87 × 1013 | |||
0.5 | 1.37 × 1014 | 3.67 × 1012 | |||
0.6 | 1.79 × 109 | 3.32 × 1012 | |||
0.7 | 7.47 × 108 | 5.17 × 108 | |||
0.8 | 2.96 × 105 | 3.30 × 105 | |||
0.9 | 1.83 × 105 | 2.50 × 105 | |||
2.78 × 1013 | 3.29 × 1014 | ||||
Chitin | 0.1 | 5.41 × 109 | lnA = 0.1836Ea − 8.7791 | 4.82 × 109 | lnA = 0.1836Ea − 8.7711 |
0.2 | 3.39 × 108 | 2.56 × 108 | |||
0.3 | 8.81 × 1010 | 1.12 × 1010 | |||
0.4 | 1.39 × 107 | 9.81 × 106 | |||
0.5 | 1.98 × 107 | 1.17 × 107 | |||
0.6 | 3.56 × 107 | 2.31 × 107 | |||
0.7 | 7.83 × 107 | 1.13 × 108 | |||
0.8 | 2.48 × 1010 | 7.19 × 109 | |||
0.9 | 1.09 × 1011 | 9.89 × 1011 | |||
2.54 × 1010 | 1.13 × 1011 |
∆H (kJ/mol) | ∆G (kJ/mol) | ∆S (J/mol) | ||
---|---|---|---|---|
Chitosan | Experimental | 155.2 | 168.2 | −22.7 |
Prediction | 151.7 | 166.3 | −25.5 | |
% Deviation | 2.2 | 1.1 | 12.3 | |
Chitin | Experimental | 154.6 | 183.7 | −42.9 |
Prediction | 153.1 | 182.9 | −43.9 | |
% Deviation | 0.9 | 0.4 | 2.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alpaslan Takan, M.; Özsin, G. A Comparative Study on the Carbonization of Chitin and Chitosan: Thermo-Kinetics, Thermodynamics and Artificial Neural Network Modeling. Appl. Sci. 2025, 15, 6141. https://doi.org/10.3390/app15116141
Alpaslan Takan M, Özsin G. A Comparative Study on the Carbonization of Chitin and Chitosan: Thermo-Kinetics, Thermodynamics and Artificial Neural Network Modeling. Applied Sciences. 2025; 15(11):6141. https://doi.org/10.3390/app15116141
Chicago/Turabian StyleAlpaslan Takan, Melis, and Gamzenur Özsin. 2025. "A Comparative Study on the Carbonization of Chitin and Chitosan: Thermo-Kinetics, Thermodynamics and Artificial Neural Network Modeling" Applied Sciences 15, no. 11: 6141. https://doi.org/10.3390/app15116141
APA StyleAlpaslan Takan, M., & Özsin, G. (2025). A Comparative Study on the Carbonization of Chitin and Chitosan: Thermo-Kinetics, Thermodynamics and Artificial Neural Network Modeling. Applied Sciences, 15(11), 6141. https://doi.org/10.3390/app15116141