Applications of Bioactive Compounds from Marine Microalgae in Health, Cosmetics, and Functional Foods
Abstract
:1. Introduction
2. Marine Microalgae Diversity and Biotechnological Relevance
3. Major Bioactive Compounds and Potential Applications
3.1. Alkaloids
3.2. Mycosporine-like Amino Acids
3.3. Peptides (Bioactive Peptides)
3.4. Phenolic Compounds
3.5. Phycobiliproteins
3.6. Pigments (Carotenoids)
3.7. Polysaccharides
3.8. Polyunsaturated Fatty Acids
3.9. Sterols (Phytosterols)
3.10. Vitamins
4. Challenges and Opportunities in Marine Biotechnology
4.1. Strain Optimisation and Genetic Engineering
4.2. Cultivation Systems and Environmental Control
4.3. AI and Real-Time Process Optimisation
4.4. Downstream Processing and Biorefinery Models
4.5. Regulatory and Economic Challenges
4.6. Omics and Synthetic Biology Integration
4.7. Co-Cultivation Strategies and Ecological Engineering
4.8. Sustainability and Alignment with Global Goals
5. Conclusions and Future Perspectives
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kadam, S.; Prabhasankar, P. Marine foods as functional ingredients in bakery and pasta products. Food Res. Int. 2010, 43, 1975–1980. [Google Scholar] [CrossRef]
- Venugopal, V. Marine Products for Healthcare: Functional and Bioactive Nutraceutical Compounds from the Ocean; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Prates, J.A.M. Microalgae in Sustainable Monogastric Systems: Bridging Nutritional Enhancement and Environmental Sustainability. In Smart Technologies for Sustainable Livestock Systems; CRC Press: Boca Raton, FL, USA, 2025; pp. 157–172. [Google Scholar]
- Prates, J.A.M. Improving Meat Quality, Safety and Sustainability in Monogastric Livestock with Algae Feed Additives. Foods 2025, 14, 1007. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Li, K.-A.; Duan, X.; Hill, D.; Barrow, C.; Dunshea, F.; Martin, G.; Suleria, H. Bioactive compounds in microalgae and their potential health benefits. Food Biosci. 2022, 49, 101932. [Google Scholar] [CrossRef]
- Baldemir, P.; Cakli, S. Sustainable Food Ingredients: Micro-Algae as Source Bioactive Compounds. Food Bull. 2024, 3, 34–40. [Google Scholar] [CrossRef]
- Costa, M.M.; Prates, J.A.M. Sustainable livestock production and poverty alleviation. In Smart Technologies for Sustainable Development Goals: No Poverty; CRC Press: Boca Raton, FL, USA, 2024; pp. 109–124. [Google Scholar]
- Remize, M.; Brunel, Y.; Silva, J.; Berthon, J.; Filaire, E. Microalgae n-3 PUFAs Production and Use in Food and Feed Industries. Mar. Drugs 2021, 19, 113. [Google Scholar] [CrossRef] [PubMed]
- Nova, P.; Pimenta-Martins, A.; Silva, J.L.; Silva, A.; Gomes, A.; Freitas, A. Health benefits and bioavailability of marine resources components that contribute to health—What’s new? Crit. Rev. Food Sci. 2020, 60, 3680–3692. [Google Scholar] [CrossRef] [PubMed]
- Strauch, S.; Coutinho, P. Bioactive molecules from microalgae. In Natural Bioactive Compounds; Academic Press: Cambridge, MA, USA, 2021. [Google Scholar] [CrossRef]
- Tufail, T.; Ul Ain, H.B.; Ashraf, J.; Mahmood, S.; Noreen, S.; Ijaz, A.; Ikram, A.; Arshad, M.T.; Abdullahi, M.A. Bioactive Compounds in Seafood: Implications for Health and Nutrition. Food Sci. Nutr. 2025, 13, e70181. [Google Scholar] [CrossRef]
- De Jesus Raposo, M.F.; De Morais, R.M.S.C.; De Morais, A.M.M.B. Health applications of bioactive compounds from marine microalgae. Life Sci. 2013, 93, 479–486. [Google Scholar] [CrossRef]
- Davani, L.; Terenzi, C.; Tumiatti, V.; De Simone, A.; Andrisano, V.; Montanari, S. Integrated analytical approaches for the characterization of Spirulina and Chlorella microalgae. J. Pharm. Biomed. Anal. 2022, 219, 114943. [Google Scholar] [CrossRef]
- Santin, A.; Balzano, S.; Russo, M.; Esposito, F.; Ferrante, M.; Blasio, M.; Cavalletti, E.; Sardo, A. Microalgae-Based PUFAs for Food and Feed: Current Applications, Future Possibilities, and Constraints. J. Mar. Sci. Eng. 2022, 10, 844. [Google Scholar] [CrossRef]
- Ashour, M.; Omran, A. Recent Advances in Marine Microalgae Production: Highlighting Human Health Products from Microalgae in View of the Coronavirus Pandemic (COVID-19). Fermentation 2022, 8, 466. [Google Scholar] [CrossRef]
- Rotter, A.; Barbier, M.; Bertoni, F.; Bones, A.; Cancela, M.; Carlsson, J.; Carvalho, M.; Cegłowska, M.; Chirivella-Martorell, J.; Dalay, M.C.; et al. The Essentials of Marine Biotechnology. Front. Mar. Sci. 2021, 8, 629629. [Google Scholar] [CrossRef]
- Schneider, X.; Stroil, B.; Tourapi, C.; Rebours, C.; Gaudêncio, S.; Novoveská, L.; Vasquez, M. Responsible Research and Innovation Framework, the Nagoya Protocol and Other European Blue Biotechnology Strategies and Regulations: Gaps Analysis and Recommendations for Increased Knowledge in the Marine Biotechnology Community. Mar. Drugs 2022, 20, 290. [Google Scholar] [CrossRef]
- Barra, L.; Chandrasekaran, R.; Corato, F.; Brunet, C. The Challenge of Ecophysiological Biodiversity for Biotechnological Applications of Marine Microalgae. Mar. Drugs 2014, 12, 1641–1675. [Google Scholar] [CrossRef]
- Fenchel, T.; Uiblein, F. Marine Biology Research: Taxonomy of marine organisms. Mar. Biol. Res. 2009, 5, 313–314. [Google Scholar] [CrossRef]
- Park, H.; Jung, D.; Lee, J.; Kim, P.; Cho, Y.; Jung, I.; Kim, Z.; Lim, S.-M.; Lee, C.-G. Improvement of biomass and fatty acid productivity in ocean cultivation of Tetraselmis sp. using hypersaline medium. J. Appl. Phycol. 2018, 30, 2725–2735. [Google Scholar] [CrossRef]
- Su, Z.; Sharma, M.; Zhang, P.; Zhang, L.; Xing, X.; Yue, J.-Z.; Song, Z.; Nan, L.; Yujun, S.; Zheng, Y.; et al. Bimolecular transitions and lipid synthesis in marine microalgae for environmental and human health application. J. Environ. Chem. Eng. 2023, 11, 110398. [Google Scholar] [CrossRef]
- Razzak, S.A.; Bahar, K.; Islam, K.M.O.; Haniffa, A.K.; Faruque, M.O.; Hossain, S.; Hossain, M. Microalgae cultivation in photobioreactors: Sustainable solutions for a greener future. Green. Chem. Eng. 2024, 5, 418–439. [Google Scholar] [CrossRef]
- Nezafatian, E.; Farhadian, O.; Daneshvar, E.; Bhatnagar, A. Investigating the effects of salinity and light stresses on primary and secondary metabolites of Tetraselmis tetrathele: Total phenolic compounds, fatty acid profile, and biodiesel properties. Biomass Bioenergy 2024, 181, 107050. [Google Scholar] [CrossRef]
- Abu-Ghosh, S.; Dubinsky, Z.; Verdelho, V.; Iluz, D. Unconventional high-value products from microalgae: A review. Bioresour. Technol. 2021, 329, 124895. [Google Scholar] [CrossRef]
- Miao, C.; Du, M.; Du, H.; Xu, T.; Wu, S.; Huang, X.; Chen, X.; Lei, S.; Xin, Y. Enhanced Eicosapentaenoic Acid Production via Synthetic Biological Strategy in Nannochloropsis oceanica. Mar. Drugs 2024, 22, 570. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Zhu, J.; Yang, S.; Liu, J.; Sun, Z.; Sun, H. Microalgal metabolic engineering facilitates precision nutrition and dietary regulation. Sci. Total Environ. 2024, 951, 175460. [Google Scholar] [CrossRef] [PubMed]
- Stavridou, E.; Karapetsi, L.; Nteve, G.; Tsintzou, G.; Chatzikonstantinou, M.; Tsaousi, M.; Martinez, A.; Flores, P.; Merino, M.; Dobrovic, L.; et al. Landscape of microalgae omics and metabolic engineering research for strain improvement: An overview. Aquaculture 2024, 587, 740803. [Google Scholar] [CrossRef]
- St. John, P.; Bomble, Y. Approaches to Computational Strain Design in the Multiomics Era. Front. Microbiol. 2019, 10, 597. [Google Scholar] [CrossRef]
- Yeh, Y.-C.; Syed, T.; Brinitzer, G.; Frick, K.; Schmid-Staiger, U.; Haasdonk, B.; Tovar, G.; Krujatz, F.; Mädler, J.; Urbas, L. Improving Microalgae Growth Modeling of Outdoor Cultivation with Light History Data using Machine Learning Models: A Comparative Study. Bioresour. Technol. 2023, 390, 129882. [Google Scholar] [CrossRef]
- Qin, S.; Watabe, S.; Lin, H. Omics in marine biotechnology. Chin. Sci. Bull. 2012, 57, 3251–3252. [Google Scholar] [CrossRef]
- Yusoff, F.; Nagao, N.; Imaizumi, Y.; Toda, T. Bioreactor for Microalgal Cultivation Systems: Strategy and Development. In Biofuel and Biorefinery Technologies; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar] [CrossRef]
- Prasad, B.; Lein, W.; Lindenberger, C.; Buchholz, R.; Vadakedath, N. An optimized method and a dominant selectable marker for genetic engineering of an industrially promising microalga—Pavlova lutheri. J. Appl. Phycol. 2018, 31, 1163–1174. [Google Scholar] [CrossRef]
- Bachhav, B.; De Rossi, J.; Llanos, C.; Segatori, L. Cell factory engineering: Challenges and opportunities for synthetic biology applications. Biotechnol. Bioeng. 2023, 120, 2441–2459. [Google Scholar] [CrossRef]
- Chekunova, E.; Virolainen, P. Microalgae as production systems of bioactive compounds. Bioengineering approaches. Ecol. Genet. 2023, 21, 38–39. [Google Scholar] [CrossRef]
- Shaman, A.A.; Zidan, N.S.; Alzahrani, S.; AlBishi, L.A.; Sakran, M.I.; Almutairi, F.M. Anti-diabetic Activity of Spirulina and Chlorella in In vivo Experimental Rats. Biomed. Pharmacol. J. 2024, 17, 903–913. [Google Scholar] [CrossRef]
- Kumar, N.; Banerjee, C.; Chang, J.S.; Shukla, P. Valorization of wastewater through microalgae as a prospect for generation of biofuel and high-value products. J. Clean. Prod. 2022, 362, 132114. [Google Scholar] [CrossRef]
- Acedo, M.; Cena, J.G.; Kiehlbaugh, K.; Ogden, K. Coupling Carbon Capture from a Power Plant with Semi-automated Open Raceway Ponds for Microalgae Cultivation. J. Vis. Exp. JoVE 2020, 162, e61498. [Google Scholar] [CrossRef]
- Udaypal, U.; Goswami, R.; Verma, P. Strategies for improvement of bioactive compounds production using microalgal consortia: An emerging concept for current and future perspective. Algal Res. 2024, 82, 103664. [Google Scholar] [CrossRef]
- Santi, I.; Beluche, O.; Beraud, M.; Buttigieg, P.; Casotti, R.; Cox, C.; Cunliffe, M.; Davies, N.; De Cerio, O.D.; Exter, K.; et al. European marine omics biodiversity observation network: A strategic outline for the implementation of omics approaches in ocean observation. Front. Mar. Sci. 2023, 10, 1118120. [Google Scholar] [CrossRef]
- Xu, P.; Shao, S.; Qian, J.; Li, J.; Xu, R.; Liu, J.; Zhou, W. Scale-up of microalgal systems for decarbonization and bioproducts: Challenges and opportunities. Bioresour. Technol. 2024, 398, 130528. [Google Scholar] [CrossRef]
- Hachicha, R.; Elleuch, F.; Hlima, H.B.; Dubessay, P.; De Baynast, H.; Delattre, C.; Pierre, G.; Hachicha, R.; Abdelkafi, S.; Michaud, P.; et al. Biomolecules from Microalgae and Cyanobacteria: Applications and Market Survey. Appl. Sci. 2022, 12, 1924. [Google Scholar] [CrossRef]
- Duy, S.; Munoz, G.; Dinh, Q.; Zhang, Y.; Simon, D.; Sauvé, S. Fast screening of saxitoxin, neosaxitoxin, and decarbamoyl analogues in fresh and brackish surface waters by on-line enrichment coupled to HILIC-HRMS. Talanta 2022, 241, 123267. [Google Scholar] [CrossRef]
- Kumar, D.; Rawat, D.S. Marine natural alkaloids as anticancer agents. In Opportunity, Challenge and Scope of Natural Products in Medicinal Chemistry; Tiwari, V.K., Mishra, B.B., Eds.; Research Signpost: Trivandrum, Kerala, India, 2011; pp. 213–268. ISBN 978-81-308-0448-4. [Google Scholar]
- Ongley, S.; Pengelly, J.; Neilan, B. Elevated Na(+) and pH influence the production and transport of saxitoxin in the cyanobacteria Anabaena circinalis AWQC131C and Cylindrospermopsis raciborskii T3. Environ. Microbiol. 2016, 18, 427–438. [Google Scholar] [CrossRef]
- Gul, W.; Hamann, M. Indole alkaloid marine natural products: An established source of cancer drug leads with considerable promise for the control of parasitic, neurological and other diseases. Life Sci. 2005, 78, 442–453. [Google Scholar] [CrossRef]
- Vasudevan, S.; Seetharam, S.; Dohnalek, M.; Cartwright, E. Spirulina: A daily support to our immune system. Int. J. Noncommunicable Dis. 2021, 6, 47–54. [Google Scholar] [CrossRef]
- Akbar, M.; Yusof, N.Y.M.; Tahir, N.; Ahmad, A.; Usup, G.; Sahrani, F.K.; Bunawan, H. Biosynthesis of Saxitoxin in Marine Dinoflagellates: An Omics Perspective. Mar. Drugs 2020, 18, 103. [Google Scholar] [CrossRef] [PubMed]
- Punchakara, A.; Prajapat, G.; Bairwa, H.; Jain, S.; Agrawal, A. Applications of mycosporine-like amino acids beyond photoprotection. Appl. Environ. Microbiol. 2023, 89, e00740-23. [Google Scholar] [CrossRef] [PubMed]
- Bedoux, G.; Pliego-Cortés, H.; Dufau, C.; Hardouin, K.; Boulho, R.; Freile-Pelegrín, Y.; Robledo, D.; Bourgougnon, N. Production and properties of mycosporine-like amino acids isolated from seaweeds. In Advances in Botanical Research; Elsevier: Amsterdam, The Netherlands, 2020; Volume 95, pp. 213–245. [Google Scholar]
- In, J.-S.; Lim, J.; Jung, S.; Choi, D.; Min, S.; Jeong, W. Production of porphyra-334 in transgenic lines of Nannochloropsis salina by the expression of mycosporine-like amino acid biosynthetic genes of P. yezoensis. J. Appl. Phycol. 2021, 33, 1663–1672. [Google Scholar] [CrossRef]
- Tarasuntisuk, S.; Palaga, T.; Kageyama, H.; Waditee-Sirisattha, R. Mycosporine-2-glycine exerts anti-inflammatory and antioxidant effects in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Arch. Biochem. Biophys. 2019, 662, 33–39. [Google Scholar] [CrossRef]
- Suh, S.; Hwang, J.; Park, M.; Seo, H.; Kim, H.; Lee, J.; Moh, S.; Lee, T.-K. Anti-Inflammation Activities of Mycosporine-Like Amino Acids (MAAs) in Response to UV Radiation Suggest Potential Anti-Skin Aging Activity. Mar. Drugs 2014, 12, 5174–5187. [Google Scholar] [CrossRef] [PubMed]
- Figueroa, F. Mycosporine-Like Amino Acids from Marine Resource. Mar. Drugs 2021, 19, 18. [Google Scholar] [CrossRef]
- Cunha, S.; Coscueta, E.; Nova, P.; Silva, J.; Pintado, M. Bioactive Hydrolysates from Chlorella vulgaris: Optimal Process and Bioactive Properties. Molecules 2022, 27, 2505. [Google Scholar] [CrossRef]
- Wang, X.; Yu, H.; Xing, R.; Li, P. Characterization, Preparation, and Purification of Marine Bioactive Peptides. BioMed Res. Int. 2017, 2017, 9746720. [Google Scholar] [CrossRef]
- Cunha, S.; Pintado, M. Bioactive peptides derived from marine sources: Biological and functional properties. Trends Food Sci. Technol. 2022, 119, 348–370. [Google Scholar] [CrossRef]
- Costa, M.M.; Spínola, M.P.; Prates, J.A.M. Combination of Mechanical/Physical Pretreatments with Trypsin or Pancreatin on Arthrospira platensis Protein Degradation. Agriculture 2023, 13, 198. [Google Scholar] [CrossRef]
- Spínola, M.P.; Costa, M.M.; Prates, J.A.M. Digestive Constraints of Arthrospira platensis in Poultry and Swine Feeding. Foods 2022, 11, 2984. [Google Scholar] [CrossRef] [PubMed]
- Barkia, I.; Al-Haj, L.; Hamid, A.A.; Zakaria, M.; Saari, N.; Zadjali, F. Indigenous marine diatoms as novel sources of bioactive peptides with antihypertensive and antioxidant properties. Int. J. Food Sci. Technol. 2018, 54, 1514–1522. [Google Scholar] [CrossRef]
- Giordano, D.; Costantini, M.; Coppola, D.; Lauritano, C.; Pons, N.; Ruocco, N.; Di Prisco, G.; Ianora, A.; Verde, C. Biotechnological Applications of Bioactive Peptides From Marine Sources. Adv. Microb. Physiol. 2018, 73, 171–220. [Google Scholar] [CrossRef]
- Kang, K.-H.; Kim, S.-K. Beneficial effect of peptides from microalgae on anticancer. Curr. Protein Pept. Sci. 2013, 14, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, I.; Sydney, E.B.; Sydney, A. Potential application of Spirulina in dermatology. J. Cosmet. Dermatol. 2022, 21, 4205–4214. [Google Scholar] [CrossRef]
- Rojas, V.; Rivas, L.; Cárdenas, C.; Gúzman, F. Cyanobacteria and Eukaryotic Microalgae as Emerging Sources of Antibacterial Peptides. Molecules 2020, 25, 5804. [Google Scholar] [CrossRef] [PubMed]
- Pekkoh, J.; Kamngoen, A.; Wichaphian, A.; Zin, M.T.; Chaipoot, S.; Yakul, K.; Pathom-Aree, W.; Maneechote, W.; Cheirsilp, B.; Khoo, K.S.; et al. Production of ACE Inhibitory Peptides via Ultrasonic-Assisted Enzymatic Hydrolysis of Microalgal Chlorella Protein: Process Improvement, Fractionation, Identification, and In Silico Structure-Activity Relationship. Future Foods 2025, 11, 100548. [Google Scholar] [CrossRef]
- Fernando, R.; Sun, X.; Rupasinghe, H. Production of Bioactive Peptides from Microalgae and Their Biological Properties Related to Cardiovascular Disease. Macromol 2024, 4, 35. [Google Scholar] [CrossRef]
- Mateos, R.; Pérez-Correa, J.; Domínguez, H. Bioactive Properties of Marine Phenolics. Mar. Drugs 2020, 18, 501. [Google Scholar] [CrossRef]
- Basha, A.N.B.; Nadia, F.; Akhir, M.; Othman, N.a.; Hara, H. Antioxidant And Anticancer Potential of Bioactive Compounds from Locally Isolated Microalgae. J. Health Qual. Life 2024, 3, 40–54. [Google Scholar] [CrossRef]
- Elbandy, M. Anti-Inflammatory Effects of Marine Bioactive Compounds and Their Potential as Functional Food Ingredients in the Prevention and Treatment of Neuroinflammatory Disorders. Molecules 2022, 28, 2. [Google Scholar] [CrossRef] [PubMed]
- Goya, L.; Mateos, R. Antioxidant and Anti-inflammatory Effects of Marine Phlorotannins and Bromophenols Supportive of Their Anticancer Potential. Nutr. Rev. 2025, 83, e1225–e1242. [Google Scholar] [CrossRef] [PubMed]
- Vieira, M.; Pastrana, L.; Fuciños, P. Microalgae Encapsulation Systems for Food, Pharmaceutical and Cosmetics Applications. Mar. Drugs 2020, 18, 644. [Google Scholar] [CrossRef]
- Ampofo, J.; Abbey, L. Microalgae: Bioactive Composition, Health Benefits, Safety and Prospects as Potential High-Value Ingredients for the Functional Food Industry. Foods 2022, 11, 1744. [Google Scholar] [CrossRef] [PubMed]
- Citi, V.; Torre, S.; Flori, L.; Usai, L.; Aktay, N.; Dunford, N.; Lutzu, G.A.; Nieri, P. Nutraceutical Features of the Phycobiliprotein C-Phycocyanin: Evidence from Arthrospira platensis (Spirulina). Nutrients 2024, 16, 1752. [Google Scholar] [CrossRef]
- Bich, D.P.T.; Hoai, H.N.T.; Thanh, C.V.; Van, H.P.; Quoc, B.T.; Ngoc, N. IN VITRO ANTIOXIDANT ACTIVITY OF C-PHYCOCYANIN PURIFIED FROM Spirulina platensis DRY BIOMASS. J. Sci. Nat. Sci. 2021, 66, 99–107. [Google Scholar] [CrossRef]
- Rojas-Franco, P.; Franco-Colín, M.; Camargo, M.M.; Estévez Carmona, M.M.; Ortíz-Butrón, M.R.E.; Blas-Valdivia, V.; Cano-Europa, E. Phycobiliproteins and phycocyanin of Arthrospira maxima (Spirulina) reduce apoptosis promoters and glomerular dysfunction in mercury-related acute kidney injury. Toxicol. Res. Appl. 2018, 2, 2397847318805070. [Google Scholar] [CrossRef]
- Kt, D. Exploring the versatile applications of Spirulina: A comprehensive research review. Int. J. Adv. Biochem. Res. 2024, SP-8, 87–93. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, Z.; Liu, Y.; Li, B.; Wen, Z.; Cao, L. Stability and bioactivities evaluation of analytical grade C-phycocyanin during the storage of Spirulina platensis powder. J. Food Sci. 2024, 89, 1442–1453. [Google Scholar] [CrossRef]
- Finamore, A.; Palmery, M.; Bensehaila, S.; Peluso, I. Antioxidant, Immunomodulating, and Microbial-Modulating Activities of the Sustainable and Ecofriendly Spirulina. Oxidative Med. Cell. Longev. 2017, 2017, 3247528. [Google Scholar] [CrossRef]
- Li, Y.; Aiello, G.; Bollati, C.; Bartolomei, M.; Arnoldi, A.; Lammi, C. Phycobiliproteins from Arthrospira Platensis (Spirulina): A New Source of Peptides with Dipeptidyl Peptidase-IV Inhibitory Activity. Nutrients 2020, 12, 794. [Google Scholar] [CrossRef] [PubMed]
- López-Limón, J.A.; Hernández-Cázares, A.S.; Hidalgo-Contreras, J.V.; De la Vega, G.R.; Mellado-Pumarino, R.A.; Ríos-Corripio, M.A. Effect of supercritical CO2 extraction as pretreatment to improve C-phycocyanin isolation from spirulina (Arthrospira maxima). J. Supercrit. Fluids 2025, 215, 106428. [Google Scholar] [CrossRef]
- Pereira, A.; Otero, P.; Echave, J.; Carreira-Casais, A.; Chamorro, F.; Collazo, N.; Jaboui, A.; Lourenço-Lopes, C.; Simal-Gándara, J.; Prieto, M. Xanthophylls from the Sea: Algae as Source of Bioactive Carotenoids. Mar. Drugs 2021, 19, 188. [Google Scholar] [CrossRef] [PubMed]
- Razz, S.A. Comprehensive overview of microalgae-derived carotenoids and their applications in diverse industries. Algal Res. 2024, 78, 103422. [Google Scholar] [CrossRef]
- Shi, H.; Deng, X.; Ji, X.; Liu, N.; Cai, H. Sources, dynamics in vivo, and application of astaxanthin and lutein in laying hens: A review. Anim. Nutr. 2023, 13, 324–333. [Google Scholar] [CrossRef]
- Genç, Y.; Bardakci, H.; Yücel, Ç.; Karatoprak, G.Ş.; Küpeli Akkol, E.; Hakan Barak, T.; Sobarzo-Sánchez, E. Oxidative stress and marine carotenoids: Application by nanoencapsulation. Mar. Drugs 2020, 18, 423. [Google Scholar] [CrossRef]
- Ren, Y.; Sun, H.; Deng, J.; Huang, J.; Chen, F. Carotenoid Production from Microalgae: Biosynthesis, Salinity Responses and Novel Biotechnologies. Mar. Drugs 2021, 19, 713. [Google Scholar] [CrossRef] [PubMed]
- Fu, W.; Nelson, D.; Yi, Z.; Xu, M.; Khraiwesh, B.; Jijakli, K.; Chaiboonchoe, A.; Alzahmi, A.; Al-Khairy, D.; Brynjólfsson, S.; et al. Bioactive Compounds From Microalgae: Current Development and Prospects. Stud. Nat. Prod. Chem. 2017, 54, 199–225. [Google Scholar] [CrossRef]
- Spinola, V.; Díaz-Santos, E. Microalgae Nutraceuticals: The Role of Lutein in Human Health and Eye Care. Mar. Drugs 2020, 18, 16. [Google Scholar] [CrossRef]
- El-Baky, H.A.; El-Baroty, G. The Potential Use of Microalgal Carotenoids as Dietary Supplements and Natural Preservative Ingredients. J. Aquat. Food Prod. Technol. 2013, 22, 392–406. [Google Scholar] [CrossRef]
- Chekanov, K.; Litvinov, D.; Fedorenko, T.; Chivkunova, O.; Lobakova, E. Combined Production of Astaxanthin and β-Carotene in a New Strain of the Microalga Bracteacoccus aggregatus BM5/15 (IPPAS C-2045) Cultivated in Photobioreactor. Biology 2021, 10, 643. [Google Scholar] [CrossRef]
- Pangestuti, R.; Suryaningtyas, I.; Siahaan, E.; Kim, S.-K. Cosmetics and Cosmeceutical Applications of Microalgae Pigments. In Pigments from Microalgae Handbook; Springer: Berlin/Heidelberg, Germany, 2020; pp. 611–633. [Google Scholar] [CrossRef]
- Ganeson, Y.; Paramasivam, P.; Palanisamy, K.; Govindan, N.; Maniam, G. LCMS and FTIR profiling of microalga Chlorella sp. for cosmetics and skin care applications. Clean. Water 2024, 2, 100028. [Google Scholar] [CrossRef]
- Aswini, V.; Gothandam, K. Genetic manipulation for carotenoid production in microalgae an overview. Curr. Res. Biotechnol. 2022, 4, 221–228. [Google Scholar] [CrossRef]
- Raposo, M.; Morais, A.; Morais, R. Bioactivity and Applications of Polysaccharides from Marine Microalgae. Polysacch. Bioactivity Biotechnol. 2014, 1, 1683–1727. [Google Scholar] [CrossRef]
- Ahmad, M.F.; Ahmad, F.A.; Khan, M.I.; Alsayegh, A.A.; Wahab, S.; Alam, M.I.; Ahmed, F. Ganoderma lucidum: A potential source to surmount viral infections through β-glucans immunomodulatory and triterpenoids antiviral properties. Int. J. Biol. Macromol. 2021, 187, 769–779. [Google Scholar] [CrossRef]
- Sinangil, Z.; Taştan, Ö.; Baysal, T. Beta-Glucan as a Novel Functional Fiber: Functional Properties, Health Benefits and Food Applications. Turk. J. Agric.—Food Sci. Technol. 2022, 10, 1957–1965. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Navid, M.; Ghosh, T.; Schnitzler, P.; Ray, B. Structural features and in vitro antiviral activities of sulfated polysaccharides from Sphacelaria indica. Phytochemistry 2011, 72, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Du, B.; Bian, Z.; Xu, B. Skin Health Promotion Effects of Natural Beta-Glucan Derived from Cereals and Microorganisms: A Review. Phytother. Res. 2014, 28, 159–166. [Google Scholar] [CrossRef]
- Guo, W.; Zhu, S.; Li, S.; Feng, Y.; Wu, H.; Zeng, M. Microalgae polysaccharides ameliorates obesity in association with modulation of lipid metabolism and gut microbiota in high-fat-diet fed C57BL/6 mice. Int. J. Biol. Macromol. 2021, 182, 1371–1383. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, J.; Liu, Y.; Tang, C. Recent Advances in the Preparation, Structure, and Biological Activities of β-Glucan from Ganoderma Species: A Review. Foods 2023, 12, 2975. [Google Scholar] [CrossRef]
- Guo, Q.; Huang, X.; Kang, J.; Ding, H.; Liu, Y.; Wang, N.; Cui, S. Immunomodulatory and antivirus activities of bioactive polysaccharides and structure-function relationship. Bioact. Carbohydr. Diet. Fibre 2022, 27, 100301. [Google Scholar] [CrossRef]
- Calder, P.C. The role of marine omega-3 (n-3) fatty acids in inflammatory processes, atherosclerosis and plaque stability. Mol. Nutr. Food Res. 2012, 56, 1073–1080. [Google Scholar] [CrossRef] [PubMed]
- Santoro, I.; Nardi, M.; Benincasa, C.; Costanzo, P.; Giordano, G.; Procopio, A.; Sindona, G. Sustainable and Selective Extraction of Lipids and Bioactive Compounds from Microalgae. Molecules 2019, 24, 4347. [Google Scholar] [CrossRef]
- Thurn, A.-L.; Schobel, J.; Weuster-Botz, D. Photoautotrophic Production of Docosahexaenoic Acid- and Eicosapentaenoic Acid-Enriched Biomass by Co-Culturing Golden-Brown and Green Microalgae. Fermentation 2024, 10, 220. [Google Scholar] [CrossRef]
- Mugo Moses, H. The Role of Omega-3 Fatty Acids in Inflammation and Immune Function. IDOSR J. Biol. Chem. Pharm. 2024, 9, 1–4. [Google Scholar] [CrossRef]
- Łacheta, D.; Olejarz, W.; Włodarczyk, M.; Nowicka, G. Effect of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on the regulation of vascular endothelial cell function. Adv. Hyg. Exp. Med. 2019, 73, 467–475. [Google Scholar] [CrossRef]
- Poggioli, R.; Hirani, K.; Jogani, V.G.; Ricordi, C. Modulation of inflammation and immunity by omega-3 fatty acids: A possible role for prevention and to halt disease progression in autoimmune, viral, and age-related disorders. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 7380–7400. [Google Scholar] [CrossRef]
- Engler, M.M.; Engler, M.B. Omega-3 Fatty Acids: Role in Cardiovascular Health and Disease. J. Cardiovasc. Nurs. 2006, 21, 17–24. [Google Scholar] [CrossRef]
- Elagizi, A.; Lavie, C.J.; O’Keefe, E.L.; Marshall, K.; O’Keefe, J.H.; Milani, R.V. An Update on Omega-3 Polyunsaturated Fatty Acids and Cardiovascular Health. Nutrients 2021, 13, 204. [Google Scholar] [CrossRef]
- Ichinose, T.; Masaharu, K.; Matsuzaki, K.; Tanabe, Y.; Tachibana, N.; Morikawa, M.; Kato, S.; Ohata, S.; Ohno, M.; Wakatsuki, H.; et al. Beneficial effects of docosahexaenoic acid-enriched milk beverage intake on cognitive function in healthy elderly Japanese: A 12-month randomized, double-blind, placebo-controlled trial. J. Funct. Foods 2020, 74, 104195. [Google Scholar] [CrossRef]
- Peltomaa, E.; Johnson, M.; Taipale, S. Marine Cryptophytes Are Great Sources of EPA and DHA. Mar. Drugs 2017, 16, 3. [Google Scholar] [CrossRef] [PubMed]
- Tsai, H.-P.; Chuang, L.; Chen, C.-N.N. Production of long chain omega-3 fatty acids and carotenoids in tropical areas by a new heat-tolerant microalga Tetraselmis sp. DS3. Food Chem. 2016, 192, 682–690. [Google Scholar] [CrossRef] [PubMed]
- Boelen, P.; Van Dijk, R.; Damsté, J.S.; Rijpstra, I.; Buma, A.G. On the potential application of polar and temperate marine microalgae for EPA and DHA production. AMB Express 2013, 3, 26. [Google Scholar] [CrossRef] [PubMed]
- Kumari, A.; Pabbi, S.; Tyagi, A. Recent advances in enhancing the production of long chain omega-3 fatty acids in microalgae. Crit. Rev. Food Sci. Nutr. 2024, 64, 10564–10582. [Google Scholar] [CrossRef]
- Pulz, O.; Gross, W. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol. 2004, 65, 635–648. [Google Scholar] [CrossRef]
- Kaźmierska, A.; Bolesławska, I.; Przysławski, J. The influence of polyunsaturated fatty acids on the skin, featuring the effect of gamma-linolenic acid. Nauka Przyr. Technol. 2017, 11, 242–252. [Google Scholar] [CrossRef]
- Ahmed, F.; Zhou, W.; Schenk, P. Pavlova lutheri is a high-level producer of phytosterols. Algal Res. 2015, 10, 210–217. [Google Scholar] [CrossRef]
- Miszczuk, E.; Bajguz, A.; Kiraga, Ł.; Crowley, K.; Chłopecka, M. Phytosterols and the Digestive System: A Review Study from Insights into Their Potential Health Benefits and Safety. Pharmaceuticals 2024, 17, 557. [Google Scholar] [CrossRef]
- Hannan, M.A.; Sohag, A.A.M.; Dash, R.; Haque, M.N.; Mohibbullah, M.; Oktaviani, D.F.; Hossain, M.T.; Choi, H.J.; Moon, I.S. Phytosterols of marine algae: Insights into the potential health benefits and molecular pharmacology. Phytomedicine 2020, 69, 153201. [Google Scholar] [CrossRef]
- Baroty, G.; Baky, H.; Saleh, M. Egyptian Arthrospira phytosterols: Production, identification, antioxidant and antiproliferative activities. Not. Bot. Horti Agrobot. Cluj-Napoca 2020, 48, 666–680. [Google Scholar] [CrossRef]
- Fernandes, T.; Cordeiro, N. Microalgae as Sustainable Biofactories to Produce High-Value Lipids: Biodiversity, Exploitation, and Biotechnological Applications. Mar. Drugs 2021, 19, 573. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.; Kamberović, F.; Uota, S.T.; Kovan, I.-M.; Viegas, C.; Simes, D.; Gangadhar, K.N.; Varela, J.; Barreira, L. Microalgae as Potential Sources of Bioactive Compounds for Functional Foods and Pharmaceuticals. Appl. Sci. 2022, 12, 5877. [Google Scholar] [CrossRef]
- Del Mondo, A.; Smerilli, A.; Sañé, E.; Sansone, C.; Brunet, C. Challenging microalgal vitamins for human health. Microb. Cell Factories 2020, 19, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Christaki, E.; Bonos, E.; Florou-Paneri, P. Innovative Microalgae Pigments as Functional Ingredients in Nutrition. In Handbook of Marine Microalgae; Academic Press: Cambridge, MA, USA, 2015; pp. 233–243. [Google Scholar] [CrossRef]
- Lucáková, S.; Brányiková, I.; Hayes, M. Microalgal Proteins and Bioactives for Food, Feed, and Other Applications. Appl. Sci. 2022, 12, 4402. [Google Scholar] [CrossRef]
- Camacho, F.; Macedo, A.; Malcata, F. Potential Industrial Applications and Commercialization of Microalgae in the Functional Food and Feed Industries: A Short Review. Mar. Drugs 2019, 17, 312. [Google Scholar] [CrossRef]
- Sarıtaş, S.; Kalkan, A.E.; Yılmaz, K.; Gurdal, S.; Göksan, T.; Witkowska, A.M.; Lombardo, M.; Karav, S. Biological and Nutritional Applications of Microalgae: A Review of Recent Advances. Nutrients 2024, 17, 93. [Google Scholar] [CrossRef] [PubMed]
- Grand View Research. Microalgae Market Size, Share & Trends Analysis Report by Product (Spirulina, Chlorella), by Application (Food & Beverages, Personal Care), by Region, and Segment Forecasts, 2023–2030; Grand View Research: San Diego, CA, 2023. [Google Scholar]
- Spínola, M.P.; Mendes, A.R.; Prates, J.A.M. Chemical Composition, Bioactivities, and Applications of Spirulina (Limnospira platensis) in Food, Feed, and Medicine. Foods 2024, 13, 3656. [Google Scholar] [CrossRef]
- Mendes, A.R.; Spínola, M.P.; Lordelo, M.; Prates, J.A.M. Chemical Compounds, Bioactivities, and Applications of Chlorella vulgaris in Food, Feed and Medicine. Appl. Sci. 2024, 14, 10810. [Google Scholar] [CrossRef]
- Mehboob, R. From Depths to Discoveries: Unraveling the Potential of Marine Biotechnology. Futur. Biotechnol. 2023, 3, 1. [Google Scholar] [CrossRef]
- Costantini, M. Genome Mining and Synthetic Biology in Marine Natural Product Discovery. Mar. Drugs 2020, 18, 615. [Google Scholar] [CrossRef]
- Bourgade, B.; Stensjö, K. Synthetic biology in marine cyanobacteria: Advances and challenges. Front. Microbiol. 2022, 13, 994365. [Google Scholar] [CrossRef] [PubMed]
- Prasad, R.; Doria, E.; Sarma, H.; Golinska, P.; Batista-García, R.A. Application of microalgae in the production of omega-3 fatty acids. Algal Res. 2018, 33, 426–436. [Google Scholar] [CrossRef]
- Hoffman, J.; Pate, R.; Drennen, T.; Quinn, J. Techno-economic assessment of open microalgae production systems. Algal Res. 2017, 23, 51–57. [Google Scholar] [CrossRef]
- Kroumov, A.; Scheufele, F.; Trigueros, D.; Módenes, A.; Zaharieva, M.; Najdenski, H. Modeling and Technoeconomic Analysis of Algae for Bioenergy and Coproducts. In Algal Green Chemistry; Elsevier: Amsterdam, The Netherlands, 2017; pp. 201–241. [Google Scholar] [CrossRef]
- Cheirsilp, B.; Maneechote, W.; Srinuanpan, S.; Angelidaki, I. Microalgae as Tools for Bio-Circular-Green Economy: Zero-waste Approaches for Sustainable Production and Biorefineries of Microalgal Biomass. Bioresour. Technol. 2023, 387, 129620. [Google Scholar] [CrossRef]
- Karade, N.; Lohar, S.; Patil, R.; Desai, S. Integrating Smart Bio-Panels and Machine Learning for Enhanced Microalgae Cultivation and Carbon Reduction. Asian J. Eng. Appl. Technol. 2024, 13, 36–43. [Google Scholar] [CrossRef]
- Concepcion, R.; Jon, M.; Saavedra, A.; Alejandrino, J.; Palconit, M.G. Chlorella Vulgaris Surface-Mount Photobioreactor with Vision-Based Growth Signature Prediction Optimized by Electromagnetism-Like Mechanism. Regular 2020, 9, 378–387. [Google Scholar] [CrossRef]
Compound Class | Major Compounds | Microalga Sources | Biological Activities and Potential Applications | References |
---|---|---|---|---|
Alkaloids | Saxitoxin, Neosaxitoxin, Dolastatin-10, Curacin A, Lyngbyatoxin A | Dinoflagellates (Alexandrium, Gymnodinium, Pyrodinium), cyanobacteria (Lyngbya, Spirulina, Trichodesmium) | Neuroprotection via Nav channel blockade (analgesia); anticancer through tubulin disruption and apoptosis; antioxidant and antimicrobial activity relevant to cosmetics; possible immune modulation in functional foods | [42,43,44,45,46] |
Mycosporine-like Amino Acids | Shinorine, Porphyra-334, Mycosporine-glycine, Mycosporine-2-glycine, Palythine | Cyanobacteria, Nannochloropsis salina, Porphyridium sp. | Photoprotective via UV absorption; strong antioxidant and anti-inflammatory effects; supports skin repair and collagen maintenance; inhibits NF-κB and COX-2; promising for anti-ageing cosmetics, oral photoprotection, and inflammation-related food supplements | [48,49,50,51,52,53] |
Peptides (Bioactive Peptides) | Antimicrobial peptides, ACE-inhibitory peptides, Dolastatin-10, Apratoxin A, Cyanovirin-N | Chlorella vulgaris, Spirulina, Bellerochea malleus, marine cyanobacteria | Antihypertensive (ACE inhibition), antioxidant, anticancer (cell cycle arrest, apoptosis), anti-inflammatory, antimicrobial; skin regeneration and collagen support in cosmetics; immune modulation and natural preservation in functional foods and personal care products | [54,59,60,61,62,63,64] |
Phenolic Compounds | Gallic acid, Quercetin, Caffeic acid, Chlorogenic acid, Phlorotannins | Nannochloropsis sp., Tetraselmis sp., Phaeodactylum tricornutum, Desmodesmus sp. | Strong antioxidant, anti-inflammatory, anticancer, and antimicrobial properties; therapeutic uses include oxidative stress reduction, inflammation control, and cancer cell inhibition; cosmetic applications in anti-ageing and photoprotective skincare; functional food relevance as natural antioxidants for cardiovascular and metabolic health | [5,66,67,68,69,70,71] |
Phycobiliproteins | C-Phycocyanin, Allophycocyanin, Phycoerythrin | Spirulina, cyanobacteria | Antioxidant (ROS scavenging), anti-inflammatory (COX-2, iNOS inhibition), immunostimulatory (NK cell activity, cytokine regulation), anti-apoptotic (Bcl-2/Bax modulation), neuroprotection, skin regeneration, UV protection; applications in cosmetics (anti-ageing, photoprotection), functional foods, and metabolic health (e.g., DPP-IV inhibition) | [72,74,76,77,79] |
Pigments (Carotenoids) | Astaxanthin, Fucoxanthin, β-Carotene, Lutein, Zeaxanthin | Haematococcus pluvialis, Phaeodactylum tricornutum, Dunaliella salina, Chlorella zofingiensis, Scenedesmus spp., Bracteacoccus aggregatus | Potent antioxidant, anti-inflammatory, anticancer, and neuroprotective properties; applications in medicine for cardiovascular and cognitive support; in cosmetics for UV protection, anti-wrinkle, collagen boosting, and skin-brightening effects; in functional foods for visual, immune, and heart health | [80,82,86,88,89,90,91] |
Polysaccharides | Sulphated polysaccharides, β-glucans, Calcium Spirulan, Naviculan | Spirulina sp., Chlorella vulgaris, Navicula, Cochlodinium | Immunomodulatory and antiviral activities (e.g., inhibition of HSV, HIV, influenza); antioxidant and anti-inflammatory properties; β-glucans activate innate immunity via dectin-1 pathway; improvement of metabolic markers (lipids, glucose); modulation of gut microbiota; cosmetic effects via skin moisturization, anti-ageing, and anti-inflammatory action; used in functional foods for metabolic health and immune support | [92,93,94,95,96,97,99] |
Polyunsaturated Fatty Acids | Eicosapentaenoic acid (EPA), Docosahexaenoic acid (DHA), γ-Linolenic Acid (GLA) | Pavlova lutheri, Nannochloropsis sp., Isochrysis galbana, Phaeodactylum tricornutum, Schizochytrium | Clinically significant anti-inflammatory and cardioprotective effects; reduction in plasma triglycerides by 25–30%; enhancement of cognitive function, visual acuity, and neuronal health in ageing populations; incorporation into neuronal membranes enhances synaptic plasticity; used in cardiovascular, neurological, and dermatological health; formulated into fortified foods, nutraceuticals, and dermocosmetics | [8,9,14,100,105,114] |
Sterols (Phytosterols) | β-Sitosterol, Stigmasterol, Campesterol, Fucosterol | Pavlova lutheri, Tetraselmis sp., Nannochloropsis sp., Limnospira maxima | Cholesterol-lowering by inhibiting intestinal absorption; cardiovascular protection through LDL reduction (~8–10% at 2 g/day); anti-inflammatory and antioxidant activity; anticancer effects via apoptosis and cell cycle arrest; neuroprotective and hepatoprotective roles; cosmetic use for skin hydration, elasticity, collagen stimulation, and UV protection; present in fortified foods, skincare, and supplements | [5,11,21,120] |
Vitamins | β-Carotene (Provitamin A), Vitamin B12, Vitamin E, Vitamin K1, B-complex | Dunaliella salina, Chlorella sp., Nannochloropsis sp., Anabaena cylindrica, Scenedesmus obliquus, Tetraselmis sp. | Antioxidant, anti-inflammatory, and immunomodulatory effects; prevention of vitamin deficiencies; support of vision, skin health, neurological and hematologic function; cosmetic applications include anti-ageing, UV protection, and skin brightening; functional food use as clean-label vitamin fortifiers and immune boosters | [71,121,122,123,125] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prates, J.A.M. Applications of Bioactive Compounds from Marine Microalgae in Health, Cosmetics, and Functional Foods. Appl. Sci. 2025, 15, 6144. https://doi.org/10.3390/app15116144
Prates JAM. Applications of Bioactive Compounds from Marine Microalgae in Health, Cosmetics, and Functional Foods. Applied Sciences. 2025; 15(11):6144. https://doi.org/10.3390/app15116144
Chicago/Turabian StylePrates, José A. M. 2025. "Applications of Bioactive Compounds from Marine Microalgae in Health, Cosmetics, and Functional Foods" Applied Sciences 15, no. 11: 6144. https://doi.org/10.3390/app15116144
APA StylePrates, J. A. M. (2025). Applications of Bioactive Compounds from Marine Microalgae in Health, Cosmetics, and Functional Foods. Applied Sciences, 15(11), 6144. https://doi.org/10.3390/app15116144