Triassic Retrograde Metamorphism and Anatexis in the Sulu Orogenic Zone, Central China: Constraints from U–Pb Ages, Trace Elements, and Hf Isotopic Compositions of Zircon
Abstract
:1. Introduction
2. Geological Setting and Sample Descriptions
2.1. Geological Setting
2.2. Sample Descriptions
3. Analytical Methods
3.1. Zircon U-Pb Dating and Trace Element Analyses
3.2. Zircon Lu-Hf Isotopic Analyses
4. Results
4.1. Zircon Morphology
4.2. Zircon U–Pb Ages and Trace Elements
4.3. Zircon Hf Isotope
5. Discussion
5.1. Tectonic Affinity of the Schist and Gneiss
5.2. Retrograde Metamorphism and Anatexis During the Late Triassic
5.3. Paleoproterozoic Tectonothermal Event
6. Conclusions
- The biotite schist records a significant anatectic event at ~215 Ma (Triassic). This thermal event corresponds to the late-stage collision in the regional orogenic cycle.
- The granitic gneiss reveals a complex polyphase history. Protolith formation during Neoproterozoic (~774 Ma) magmatism, potentially related to Rodinia breakup, as indicated by inherited zircon cores with magmatic zoning Subsequent Triassic metamorphic overprinting at ~211 Ma, documented by a) Metamorphic zircon rims with low Th/U ratios; b) Development of gneissic foliation with syn-kinematic mineral growth; c) Zircons Hf isotopic signatures suggest derivation from reworked Paleoproterozoic (~2.5–2.0 Ga) crustal sources.
- Critical unresolved questions requiring further investigation, namely (a) Detailed geochemical comparison between Neoproterozoic and Triassic granitoids; (b) Zircon trace element analysis to discriminate source characteristics; (c) High-precision dating of Triassic magmatism to constrain its tectonic setting.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, S.T.; Su, W.; Liu, Y.C.; Jiang, L.L.; Ji, S.Y.; Okay, A.I.; Sengör, A.M.C. Diamond from the Dabie Shan metamorphic rocks and its implication for tectonic setting. Science 1992, 256, 80–82. [Google Scholar]
- Liou, J.G.; Banno, S.; Ernst, W.G. Ultrahigh-pressure metamorphism and tectonics. Isl. Arc 1995, 4, 233–239. [Google Scholar] [CrossRef]
- Ames, L.; Zhou, G.Z.; Xiong, B.C. Geochronology and isotopic character of ultrahigh-pressure metamorphism with implications for collision of the Sino-Korean and Yangtze cratons, central China. Tectonics 1996, 15, 472–489. [Google Scholar] [CrossRef]
- Cong, B.L.; Wang, Q.C. A review on researches of UHPM rocks in the Dabieshan-Sulu Region. In Ultrahigh-Pressure Metamorphic Rocks in the Dabieshan-Sulu Region of China; Cong, B.L., Ed.; Science Press: Beijing, China, 1996; pp. 1–170. [Google Scholar]
- Wallis, S.; Enami, M.; Banno, S. The Sulu UHP terrane: A review of the petrology and structural Geology. Int. Geol. Rev. 1999, 41, 906–920. [Google Scholar] [CrossRef]
- Xu, Z.Q.; Qi, X.X.; Yang, J.S.; Zeng, L.S.; Liu, D.L.; Liang, F.H.; Cai, Z.H. Deep subduction Erosion Model for Continent-Continent collision of the Sulu HP-UHP Metamorphic Terrain, 2006. Earth Sci. J. China Univ. Geosci. 2006, 31, 427–436, (In Chinese with English Abstract). [Google Scholar]
- Liu, F.L.; Liou, J.G. Zircon as the best mineral for P-T-time history of UHP metamorphism: A review on mineral inclusions and U-Pb SHRIMP ages of zircons from the Dabie-Sulu UHP rocks. J. Asian Earth Sci. 2011, 40, 1–39. [Google Scholar] [CrossRef]
- Zheng, Y.F. A perspective view on ultrahigh-pressure metamorphism and continental collision in the Dabie-Sulu orogenic belt. Chin. Sci. Bull. 2008, 53, 3081–3104. [Google Scholar] [CrossRef]
- Liu, F.L.; Xu, Z.Q.; Liou, J.G.; Song, B. SHRIMP U-Pb ages of ultrahigh-pressure and retrograde metamorphism of gneisses, south-western Sulu terrane, eastern China. J. Metamorph. Geol. 2004, 22, 315–326. [Google Scholar] [CrossRef]
- Liu, F.L.; Xu, Z.Q.; Xue, H.M. Tracing the protolith, UHP metamorphism, and exhumation ages of orthogneiss from the SW Sulu terrane (eastern China): SHRIMP U-Pb dating of mineral inclusion-bearing zircons. Lithos 2004, 78, 411–429. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Zhao, Z.F.; Wu, Y.B.; Zhao, S.B.; Liu, X.; Wu, F.Y. Zircon U-Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dable orogen. Chem. Geol. 2006, 231, 135–158. [Google Scholar] [CrossRef]
- Zong, K.Q.; Liu, Y.S.; Hu, Z.C.; Kusky, T.; Wang, D.B.; Gao, C.G.; Gao, S.; Wang, J.Q. Melting-induced fluid flow during exhumation of gneisses of the Sulu ultrahigh-pressure terrane. Lithos 2010, 120, 490–510. [Google Scholar] [CrossRef]
- Hacker, B.R.; Ratschbacher, L.; Webb, L.; Ireland, T.; Walker, D.; Shu, W. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie orogen, China. Earth Planet. Sci. Lett. 1998, 161, 215–230. [Google Scholar]
- Hacker, B.R.; Wallis, S.R.; Ratschbacher, L.; Grove, M.; Gehrels, G. High-temperature geochronology constraints on the tectonic history and architecture of the ultrahigh-pressure Dabie-Sulu Orogen. Tectonics 2006, 25, TC5006. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Fu, B.; Gong, B.; Li, L. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: Implications for geodynamics and fluid regime. Earth Sci. Rev. 2003, 62, 105–161. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Chen, R.X.; Zhao, Z.F. Chemical geodynamics of continental subduction-zone metamorphism: Insights from studies of the Chinese Continental Scientific Drilling (CCSD) core samples. Tectonophysics 2009, 475, 327–358. [Google Scholar] [CrossRef]
- Zhao, Z.F.; Zheng, Y.F.; Gao, T.S.; Wu, Y.B.; Chen, B.; Chen, F.K.; Wu, F.Y. Isotopic constraints on age and duration of fluid-assisted high-pressure eclogite-facies recrystallization during exhumation of deeply subducted continental crust in the Sulu orogen. J. Metamorph. Geol. 2006, 24, 687–702. [Google Scholar] [CrossRef]
- Zhou, K.; Chen, Y.X.; Zheng, Y.F.; Xu, L.J. Migmatites record multiple episodes of crustal anatexis and geochemical differentiation in the Sulu ultrahigh-pressure metamorphic zone, eastern China. J. Metamorph. Geol. 2019, 37, 1099–1127. [Google Scholar] [CrossRef]
- Deng, L.P.; Liu, Y.C.; Groppo, C.; Rolfo, F.; Yang, Y.; Gu, X.F.; Wang, A.D. New constraints on P–T–t path of high–T eclogites in the Dabie orogen, China. Lithos 2021, 384–385, 105933. [Google Scholar] [CrossRef]
- Yang, J.J. Titanian clinohumite-garnet-pyroxene rock from the Su-Lu UHP metamorphic terrane, China: Chemical evolution and tectonic implications. Lithos 2003, 70, 359–379. [Google Scholar] [CrossRef]
- Liou, J.G.; Tsujimori, T.; Chu, W.; Zhang, R.Y.; Wooden, J.L. Protolith and metamorphic ages of the Haiyangsuo Complex, eastern China: A non-UHP exotic tectonic slab in the Sulu ultrahigh-pressure terrane. Mineral. Petrol. 2006, 88, 207–226. [Google Scholar] [CrossRef]
- Tang, J.; Zheng, Y.F.; Wu, Y.B.; Gong, B.; Zha, X.; Liu, X. Zircon U-Pb age and geochemical constraints on the ectonic affinity of the Jiaodong terrane in the Sulu orogen, China. Precambrian Res. 2008, 16, 389–418. [Google Scholar] [CrossRef]
- Kong, Q.B. Zircon U-Pb dating, REE and Lu-Hf isotopic characteristics of Paleoproterozoic orthogneiss in Sulu UHP terrane, eastern China. Geol. Bull. China 2009, 28, 51–62, (In Chinese with English Abstract). [Google Scholar]
- Lei, H.C.; Xu, H.J.; Xiang, H. Basement evolution of the Sulu orogenic belt: Constraints on zircon U–Pb ages and trace elements from the Weihai gneisses. J. Geol. 2020, 55, 2646–2661. [Google Scholar] [CrossRef]
- Liou, J.G.; Zhang, R.Y.; Wang, X.; Eide, E.A.; Ernst, W.G.; Maruyama, S. Metamorphism and tectonics of high-pressure and ultra-high-pressure belts in the Dabie-Sulu region, China. In The Tectonic Evolution of Asia; Yin, A., Harrison, M.T., Eds.; Cambridge University Press: Cambridge, UK, 1996; pp. 300–344. [Google Scholar]
- Liou, J.G.; Zhang, R.Y.; Ernst, W.G.; Rumble, D.I.I.I.; Maruyama, S. High-pressure minerals from deeply subducted metamorphic rocks. Rev. Mineral. Geochem. 1998, 37, 33–96. [Google Scholar]
- Xu, Z.Q.; Zhang, Z.M.; Liu, F.L.; Yang, J.S.; Li, H.; Yang, T.; Tang, Z.M. Exhumation Structure and Mechanism of the Sulu Ultrahigh-pressure Metamorphic Belt, Central China. Acta Geol. Sin. 2003, 4, 433–450, (In Chinese with English Abstract). [Google Scholar]
- Okay, A.I.; Xu, S.T.; Sengor, A.M.C. Coesite from the Dabie Shan eclogites, central China. Eur. J. Miner. 1989, 1, 595–598. [Google Scholar] [CrossRef]
- Wang, Q.C.; Ishiwatari, A.; Zhao, Z.Y.; Hirajima, T.; Hiramatsu, N.; Enami, M.; Zhai, M.G.; Li, J.J.; Cong, B.L. Coesite-bearing granulite retrograded from eclogite in Weihai, eastern China. Eur. J. Mineral. 1993, 5, 141–152. [Google Scholar]
- Xu, S.T.; Liu, Y.C.; Chen, G.B.; Roberto, C.; Franco, R.; He, M.C.; Liu, H.F. New finding of microdiamonds in eclogites from Dabie-Sulu region in central-eastern China. Chin. Sci. Bull. 2003, 48, 988–994. [Google Scholar] [CrossRef]
- Lei, H.C. The Multiphase of Magmatic and Metamorphic Events in the Northern Sulu Orogenic Belt and Their Tectonic Implications. Master’s Thesis, China University of Geosciences, Beijing, China, 2015. [Google Scholar]
- Xiang, H.; Zhang, Z.M.; Lei, H.C.; Qi, M.; Dong, X.; Wang, W.; Lin, Y.H. Paleoproterozoic ultrahigh-temperature pelitic granulites in the northern Sulu orogen: Constraints from petrology and geochronology. Precambrian Res. 2014, 254, 273–289. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Shen, K.; Wang, J.L.; Dong, H.L. Petrological and geochemical constraints on the formation, subduction and exhumation of the continental crust in the southern Sulu orogen, eastern-central China. Tectonophysics 2009, 475, 291–307. [Google Scholar] [CrossRef]
- Liu, F.L.; Robinson, P.T.; Gerdes, A.; Xue, H.; Liu, P.; Liou, J.G. Zircon U–Pb ages, REE concentrations and Hf isotope compositions of granitic leucosome and pegmatite from the north Sulu UHP terrane in China: Constraints on the timing and nature of partial melting. Lithos 2010, 117, 247–268. [Google Scholar] [CrossRef]
- Lei, H.C.; Xiang, H.; Zhang, Z.M.; Min, Q.I.; Dong, X.; Lin, Y.H. Paleoproterozoic UHT granulite in the Sulu orogen and its tectonic implications. Acta Petrol. Sin. 2014, 30, 2435–2445, (In Chinese with English Abstract). [Google Scholar]
- Ye, K.; Yao, Y.P.; Katayama, I.; Cong, B.L.; Wang, Q.C.; Maruyama, S. Large areal extent of ultrahigh-pressure metamorphism in the Sulu ultrahigh-pressure terrane of East China: New implications from coesite and omphacite inclusions in zircon of granitic gneiss. Lithos 2000, 52, 157–164. [Google Scholar] [CrossRef]
- Liu, Y.S.; Zong, K.Q.; Kelemen, P.B.; Gao, S. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: Subductionand ultrahigh-pressure metamorphism of lower crustal cumulates. Chem. Geol. 2008, 247, 133–153. [Google Scholar] [CrossRef]
- Hu, Z.C.; Gao, S.; Liu, Y.S.; Hu, S.H.; Chen, H.H.; Yuan, H.L. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas. J. Anal. At. Spectrom. 2008, 23, 1093–1101. [Google Scholar] [CrossRef]
- Liu, Y.S.; Hu, Z.C.; Zong, K.Q.; Gao, C.G.; Shan, G. Reappraisement and re-finement of zircon U–Pb isotope and trace element analyses by LA–ICP–MS. Sci. Bull. 2010, 55, 1535–1546. [Google Scholar] [CrossRef]
- Wiedenbeck, M.; Alle, P.; Corfu, F.; Griffin, W.L.; Meier, M.; Oberli, F.; Quadt, A.V.; Roddick, J.C.; Spiegel, W. Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostand. Geoanal. Res. 1995, 19, 1–23. [Google Scholar] [CrossRef]
- Ludwig, K.R. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel; Berkeley Geochronology Center: Berkeley, CA, USA, 2003. [Google Scholar]
- Hu, Z.C.; Liu, Y.S.; Gao, S.; Liu, W.G.; Yang, L.; Zhang, W.; Tong, X.R.; Lin, L.; Zong, K.Q.; Li, M.; et al. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS. J. Anal. At. Spectrom. 2012, 27, 1391–1399. [Google Scholar] [CrossRef]
- Hu, Z.C.; Liu, Y.S.; Gao, S.; Xiao, S.Q.; Zhao, L.S.; Günther, D.; Li, M.; Zhang, W.; Zong, K.Q. A “wire” signal smoothing device for laser ablation inductively coupled plasma mass spectrometry analysis. Spectrochim. Acta Part B 2012, 78, 50–57. [Google Scholar] [CrossRef]
- Segal, I.; Halicz, L.; Platzner, I.T. Accurate isotope ratio measurements of ytterbium by multiple collection inductively coupled plasma mass spectrometry applying erbium and hafnium in an improved double external normalization procedure. J. Anal. At. Spectrom. 2003, 18, 1217–1223. [Google Scholar] [CrossRef]
- Blichert-Toft, J.; Chauvel, C.; Albarède, F. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS. Contrib. Mineral. Petrol. 1997, 127, 248–260. [Google Scholar] [CrossRef]
- Liu, Y.S.; Gao, S.; Hu, Z.C.; Gao, C.G.; Zong, K.Q.; Wang, D.B. Continental and oceanic crust recycling-induced melt–peridotite interactions in the Trans-North China Orogen: U–Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. J. Petrol. 2010, 51, 537–571. [Google Scholar] [CrossRef]
- Schaltegger, U.; Fanning, C.M.; Günther, D.; Maurin, J.C.; Schulmann, K.; Gebauer, D. Growth, annealing and recrystallization of zircon and preservation ofmonazite in high-grade metamorphism: Conventional and in-situ U–Pb isotope, cathodoluminescence and microchemical evidence. Contrib. Mineral. Petrol. 1999, 134, 186–201. [Google Scholar] [CrossRef]
- Rubatto, D. Zircon trace element geochemistry: Partitioning with garnet andthe link between U–Pb ages and metamorphism. Chem. Geol. 2002, 184, 123–138. [Google Scholar] [CrossRef]
- Liu, F.L.; Gerdes, A.; Zeng, L.S.; Xue, H.M. SHRIMP U–Pb dating, trace elements and the Lu–Hf isotope system of coesite-bearing zircon from amphibolite in the SW Sulu UHP terrane, eastern China. Geochim. Cosmochim. Acta 2008, 72, 2973–3000. [Google Scholar] [CrossRef]
- Liu, F.L.; Gerdes, A.; Xue, H.M. Differential subduction and exhumation of crustal slices in the sulu hp-uhp metamorphic terrane: Insights from mineral inclusions, trace elements, u-pb and lu-hf isotope analyses of zircon in orthogneiss. J. Metamorph. Geol. 2009, 27, 805–825. [Google Scholar] [CrossRef]
- Peng, M.; Wu, Y.B.; Wang, J.; Jiao, W.F.; Liu, X.C.; Yang, S.H. Paleoproterozoic mafic dyke from Kongling terrain in the Yangtze Craton and its implication. Chin. Sci. Bull. 2009, 54, 641–647. (In Chinese) [Google Scholar] [CrossRef]
- Peng, M.; Wu, Y.B.; Gao, S.; Zhang, H.F.; Wang, J.; Liu, X.C.; Yuan, H.L. Geochemistry, zircon U-Pb age and Hf isotope compositions of Paleoproterozoic aluminous A-type granites from the Kongling terrain, Yangtze Block: Constraints on petrogenesis and geologic implications. Gondwana Res. 2012, 22, 140–151. [Google Scholar] [CrossRef]
- Gao, S.; Yang, J.; Zhou, L.; Li, M.; Hu, Z.C.; Guo, J.L.; Yuan, H.L.; Gong, H.J.; Xiao, G.Q.; Wei, J.Q. Age and growth of the Archean Kongling terrain, South China, with emphasis on 3.3 ga granitoid gneisses. Am. J. Sci. 2011, 211, 153–182. [Google Scholar] [CrossRef]
- Yang, Y.N.; Wang, X.C.; Li, Q.L.; Li, X.H. Integrated in situ U–Pb age and Hf–O analyses of zircon from Suixian Group in northern Yangtze: New insights into the Neoproterozoic low-δ18O magmas in the South China Block. Precambrian Res. 2016, 273, 151–164. [Google Scholar] [CrossRef]
- Xiong, Q.; Zheng, J.P.; Yu, C.M.; Su, Y.P.; Tang, H.Y.; Zhang, Z.H. Zircon U-Pb age and Hf isotope of Quanyishang A-type granite in Yichang: Signification for the Yangtze continental cratonization in Paleoproterozoic. Chin. Sci. Bull. 2009, 54, 436–446. [Google Scholar] [CrossRef]
- Zhao, G.C.; Cawood, P.A.; Wilde, S.A.; Sum, M. Review of global 2.1–1.8 Ga oro-gens: Implications for a pre-Rodinia supercontinent. Earth Sci. Rev. 2002, 59, 125–162. [Google Scholar] [CrossRef]
- Zhao, G.; Wilde, S.A.; Sun, M.; Guo, J.; Kroner, A.; Li, S.; Zhang, J. SHRIMP U-Pb zircon geochronology of the Huai’an complex: Constraints on Late Archean to Paleoproterozoic magmatic and metamorphic events in the trans-North China orogen. Am. J. Sci. 2008, 308, 270–303. [Google Scholar] [CrossRef]
- Zhao, G.; Zhai, M. Lithotectonic elements of Precambrian basement in the North China Craton: Review and tectonic implications. Gondwana Res. 2013, 23, 1207–1240. [Google Scholar] [CrossRef]
- Li, X.H. U-Pb Zircon Ages of Granites from the Southern Margin of the Yangtze Block: Timing of Neoproterozoic Jinning: Orogeny in SE China and Implications for Rodinia Assembly. Precambrian Res. 1999, 97, 43–57. [Google Scholar] [CrossRef]
- Zhou, M.F.; Yan, D.P.; Kennedy, A.K.; Li, Y.Q.; Ding, J. SHRIMP U-Pb Zircon Geochronological and Geochemical Evidence for Neoproterozoic Arc-Magmatism along the Western Margin of the Yangtze Block, South China. Earth Planet. Sci. Lett. 2002, 196, 51–67. [Google Scholar] [CrossRef]
- Wan, T.; Zeng, H. The distinctive characteristics of the Sino-Korean and theYangtze plates. J. Asian Earth Sci. 2002, 20, 881–888. [Google Scholar] [CrossRef]
- Wu, Y.B.; Zheng, Y.F.; Zhou, J.B. Neoproterozoic granitoid in northwest Suluand its bearing on the North China-South China Blocks boundary in east China. Geophys. Res. Lett. 2004, 31, L07616. [Google Scholar] [CrossRef]
- Zhao, Z.F.; Zheng, Y.F.; Chen, R.X.; Xia, Q.X.; Wu, Y.B. Element mobility in mafic and felsicultrahigh-pressure metamorphic rocks during continental collision. Geochim. Cosmochim. Acta 2007, 71, 5244–5266. [Google Scholar] [CrossRef]
- Li, W.C.; Chen, R.X.; Zheng, Y.F.; Tang, H.L.; Hu, Z.C. Two episodes of partial melting in ultrahigh-pressure migmatites from deeply subducted continental crust in the Sulu orogen, China. Geol. Soc. Am. Bull. 2016, 128, 1521–1542. [Google Scholar] [CrossRef]
- Chen, Y.X.; Zheng, Y.F.; Li, L.; Chen, R.X. Fluid-rock interaction and geochemical transport during protolith emplacement and continental collision: A tale from Qinglongshan ultrahigh-pressuremetamorphic rocks in the Sulu orogen. Am. J. Sci. 2014, 314, 357–399. [Google Scholar] [CrossRef]
- Wang, L.; Kusky, T.M.; Polat, A.; Wang, S.J.; Jiang, X.F.; Zong, K.Q.; Wang, J.P.; Deng, H.; Fu, J.M. Partial meiting of deeply subducted eclogite from the Sulu orogen in China. Nat. Commun. 2014, 5, 5604. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.F.; Zheng, Y.F.; Zhang, J.; Dai, L.Q.; Li, Q.L.; Liu, X.M. Syn-exhumation magmatism during continental collision: Evidence from alkaline intrusives of Triassic age in the Sulu orogen. Chem. Geol. 2012, 328, 70–88. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Chen, Y.X.; Dai, L.Q.; Zhao, Z.F. Developing plate tectonics theory from oceanic subduction zones to collisional orogens. Sci. China Earth Sci. 2015, 58, 1045–1069. (In Chinese) [Google Scholar] [CrossRef]
- Zhao, Z.F.; Zheng, Y.F.; Chen, Y.X.; Sun, G.C. Partial melting of subducted continental crust:Geochemical evidence from synexhumation granite in the Sulu orogen. Geol. Soc. Am. Bull. 2017, 129, 1692–1707. [Google Scholar]
- Xu, H.J.; Ye, K.; Song, Y.R.; Chen, Y.; Zhang, J.F.; Liu, Q.; Guo, S. Prograde metamorphismdecompressional partial melting and subsequent melt fractional crystallization in the Weihaimigmatitic gneisses, Sulu UHP terrane, eastern China. Chem. Geol. 2013, 341, 16–37. [Google Scholar] [CrossRef]
- Chen, Y.X.; Zheng, Y.F.; Hu, Z. Synexhumation anatexis of ultrahigh-pressure metamorphic rocks: Petrological evidence from granitic gneiss in the Sulu orogen. Lithos 2013, 156, 69–96. [Google Scholar] [CrossRef]
- Chen, Y.X.; Zheng, Y.F.; Hu, Z. Petrological and zircon evidence for anatexis of UHP quartziteduring continental collision in the Sulu orogen. J. Metamorph. Geol. 2013, 31, 389–413. [Google Scholar] [CrossRef]
- Liu, F.L.; Robinson, P.T.; Liu, P.H. Multiple partial melting events in the Sulu UHP terrane: Zircon U-Pb dating of granitic leucosomes withimn amphibolite and gneiss. J. Metamorph. Geol. 2012, 30, 887–906. [Google Scholar] [CrossRef]
- Chen, Y.X.; Zhou, K.; Gao, X.Y. Partial melting of ultrahigh-pressure metamorphic rocks duringcontinental collision: Evidence, time, mechanism, and effect. J. Asian Earth Sci. 2017, 145, 177–191. [Google Scholar] [CrossRef]
- Lei, H.C.; Xu, H.J.; Zhang, H.; Deng, L.P.; Hu, D.S.; Ye, Y.K. From Triassic metamor-phism to Early Cretaceous anatexis in the Dabie orogen, central China: Constraints from in-situ U-Pb age and Hf and O isotopes of zircon from migmatites. J. Asian Earth Sci. 2024, 265, 106–107. [Google Scholar] [CrossRef]
- Cherniak, D.J.; Watson, E.B. Diffusion in zircon. Rev. Mineral. Geochem. 2003, 53, 113–143. [Google Scholar] [CrossRef]
- Rubatto, D. Zircon: The metamorphic mineral. Rev. Mineral. Geochem. 2017, 83, 261–295. [Google Scholar] [CrossRef]
- Reddy, S.M.; Timms, N.E.; Trimby, P.; Kinny, P.D.; Buchan, C.; Blake, K. Crystal-plastic deformation of zircon: A defect in the assumption of chemical robustness. Geology 2006, 34, 257–260. [Google Scholar] [CrossRef]
- Wang, C.Y.; Campbell, I.H.; Allen, C.M.; Williams, I.S.; Eggins, S.M. Rate of growth of the preserved North American continental crust: Evidence from Hf and O isotopes in Mississippi detrital zircons. Geochim. Cosmochim. Acta 2009, 73, 712–728. [Google Scholar] [CrossRef]
- Wang, C.Y.; Campbell, I.H.; Stepanov, A.S.; Allen, C.M.; Burtsev, I.N. Growth rate of the preserved continental crust: II. Constraints from Hf and O isotopes in detrital zircons from Greater Russian Rivers. Geochim. Cosmochim. Acta 2011, 75, 1308–1345. [Google Scholar] [CrossRef]
- Iizuka, T.; Hirata, T.; Komiya, T.; Rino, S.; Maruyama, S.; Hirata, T. Detrital zircon evidence for Hf isotopic evolution of granitoid crust and continental growth. Geochim. Cosmochim. Acta 2010, 74, 2450–2472. [Google Scholar] [CrossRef]
- Iizuka, T.; Campbell, I.H.; Allen, C.M.; Gill, J.B.; Maruyama, S.; Makoka, F. Evolution of the African continental crust as recorded by U-Pb, Lu-Hf and O isotopes in detrital zircons from modern rivers. Geochim. Cosmochim. Acta 2013, 107, 96–120. [Google Scholar] [CrossRef]
- Si, Y.; Ge, R.F.; Zhou, T.; Wang, Y. Decoupling of metamorphic zircon U-Pb ages and P-T paths in the Dunhuang metamorphic complex, northwestern China. Precambrian Res. 2022, 379, 106783. [Google Scholar] [CrossRef]
- Wu, F.Y.; Li, X.H.; Zheng, Y.F.; Gao, S. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrol. Sin. 2007, 23, 185–220, (In Chinese with English Abstract). [Google Scholar]
- Chauvel, C.; Lewin, E.; Carpentier, M.; Marini, J.C. Role of recycled oceanic basalt and sediment in generating the hf-nd mantle array. Nat. Geosci. 2008, 1, 64–67. [Google Scholar] [CrossRef]
- Li, X.H.; Chen, F.K.; Li, C.F.; Zhang, H.F.; Guo, J.H.; Yang, Y.H. Zircon ages and Hf isotopic composition of gneisses from the Rongcheng ultrahigh-pressure terrain in the Sulu orogenic belt. Acta Petrol. Sin. 2007, 23, 351–368, (In Chinese with English Abstract). [Google Scholar]
- Wu, Y.B. Metamorphic Zircon. In Encyclopedia of Geology, 2nd ed.; Alderton, D., Elias, S.A., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 584–596. [Google Scholar]
- Hoskin, P.W.O.; Black, L.P. Metamorphic zircon formation by solid-state recrystallisation of protolith igneous zircon. J. Metamorph. Geol. 2000, 18, 423–439. [Google Scholar] [CrossRef]
- Liati, A.; Gebauer, D. Constraining the prograde and retrograde P-T-t paths of Eocene HP rocks by SHRIMP dating of different zircon domains: Inferred rates of heating, burial, cooling and exhumation for central Rhodope, northern Greece. Contrib. Miner. Petrol. 1999, 135, 340–354. [Google Scholar] [CrossRef]
- Bingen, B.; Austrheim, H.; Whitehouse, M. Ilmenite as a source for zirconium during highgrade metamorphism? Textural evidence from the Caledonides of W Norway and implications for zircon geochronology. J. Petrol. 2001, 42, 355–375. [Google Scholar] [CrossRef]
- Massonne, H.J.; Kennedy, A.; Nasdala, L.; Theye, Z. Dating of zircon and monazite from diamondiferous quartzofeldspathic rocks of the Saxonian Erzgebirge—Hints at burial and exhumation velocities. Mineral. Mag. 2007, 71, 371–389. [Google Scholar] [CrossRef]
- Roberts, M.P.; Finger, F. Do U-Pb zircon ages from granulites reflect peak metamorphic conditions? Geology 1997, 25, 319–322. [Google Scholar] [CrossRef]
- Kohn, M.J.; Corrie, S.L.; Markley, C. The fall and rise of metamorphic zircon. Am. Mineral. 2015, 100, 897–908. [Google Scholar] [CrossRef]
- Zeh, A.; Gerdes, A.; Will, T.M.; Frimmel, H.E. Hafnium isotope homogenization during metamorphic zircon growth in amphibolite-facies rocks: Examples from the Shackleton Range (Antarctica). Geochim. Cosmochim. Acta 2010, 74, 4740–4758. [Google Scholar] [CrossRef]
- Tichomirowa, M.; Whitehouse, M.; Gerdes, A.; Schulz, B. Zircon (hf, o isotopes) as melt indicator: Melt infiltration and abundant new zircon growth within melt rich layers of granulite-facies lenses versus solid-state recrystallization in hosting amphibolite-facies gneisses (central erzgebirge, bohemian massif). Lithos 2018, 302–303, 65–85. [Google Scholar] [CrossRef]
- O’Brien, T.M.; Miller, E.L. Continuous zircon growth during long-lived granulite facies metamorphism: A microtextural, U-Pb, Lu-Hf and trace element study of Caledonian rocks from the Arctic. Contrib. Miner. Petrol. 2014, 168, 1071. [Google Scholar] [CrossRef]
- Zhao, Y.J.; Wu, Y.B.; Liu, X.S.; Gao, S.; Wang, H.; Zheng, Y.P.; Yang, S.H. Distinct zircon U-Pb and O-Hf-Nd-Sr isotopic behavior during fluid flow in UHP metamorphic rocks: Evidence from metamorphic veins and their host eclogite in the Sulu Orogen, China. J. Metamorph. Geol. 2016, 34, 343–362. [Google Scholar] [CrossRef]
- Xu, H.J.; Zhang, J.F. Zircon Geochronological Evidence for Participation of the North China Craton in the Protolith of Migmatite of the North Dabie Terrane. J. Earth Sci. 2018, 29, 30–42. [Google Scholar] [CrossRef]
- Tu, Y.J.; Yang, X.Y.; Zheng, Y.F.; Li, H.M. U-Ph dating of zircon from gneiss at Nanhuang in east Anhui. Acta Petrol. Sin. 2001, 17, 157–160, (In Chinese with English Abstract). [Google Scholar]
- Chavagnac, V.r.; Jahn, B.m.; Villa, I.M.; Whitehouse, M.J.; Liu, D. Multichronometric evidence for an in situ origin of the ultrahigh-pressure metamorphic terrane of Dabieshan, China. J. Geol. 2001, 109, 633–646. [Google Scholar] [CrossRef]
- Chen, D.G.; Deloule, E.; Xia, Q.K.; Wu, Y.B.; Chen, H. Metamorphic zircon from Shuanghe ultra-high pressure eclogite, Dabieshan: Ion microprobe and internal micro-structure study. Acta Petrol. Sin. 2002, 18, 369–377, (In Chinese with English Abstract). [Google Scholar]
- Hu, J.; Liu, X.; Chen, L.; Qu, W.; Li, H.; Geng, J. A 2.5 Ga magmatic event at the northern margin of the Yangtze craton: Evidence from U-Pb dating and Hf isotope analysis of zircons from the Douling Complex in the South Qinling orogen. Chin. Sci. Bull. 2013, 58, 3564–3579. [Google Scholar] [CrossRef]
- Liu, X.C.; Jahn, B.M.; Dong, S.W.; Lou, Y.X.; Cui, J.J. High-pressure metamorphic rocks from Tongbaishan, central China: U-Pb and Ar-40/Ar-39 age constraints on the provenance of protoliths and timing of metamorphism. Lithos 2008, 105, 301–318. [Google Scholar] [CrossRef]
- Wu, Y.B.; Zheng, Y.F.; Gao, S.; Jiao, W.F.; Liu, Y.S. Zircon U-Pb age and trace element evidence for Paleoproterozoic granulite-facies metamorphism and Archean crustal rocks in the Dabie Orogen. Lithos 2008, 101, 308–322. [Google Scholar] [CrossRef]
- Hu, J.; Liu, X.C.; Qu, W.; Cui, J.J. Zircon U—Pb ages of paleoproterozoic metabasites from the Tongbai orogen and their geological significance. Acta Geosci. Sin. 2012, 33, 305–315, (In Chinese with English Abstract). [Google Scholar]
Spot | Element (ppm) | Th/U | 207Pb/206Pb | 207Pb/235U | 206Pb/238U | 207Pb/206Pb | 207Pb/235U | 206Pb/238U | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pb | Th | U | Ratio | ±1σ | Ratio | ±1σ | Ratio | ±1σ | Age (Ma) | ±1σ | Age (Ma) | ±1σ | Age (Ma) | ±1σ | ||
1 | 279 | 2018 | 1133 | 1.78 | 0.04847 | 0.0014 | 0.22860 | 0.0065 | 0.0341 | 0.0003 | 120.5 | 70.4 | 209.0 | 5.4 | 216 | 2.1 |
2 | 37 | 129 | 611 | 0.21 | 0.04930 | 0.0017 | 0.22108 | 0.0079 | 0.0324 | 0.0003 | 161.2 | 83.3 | 202.8 | 6.6 | 206 | 2.0 |
3 | 192 | 1408 | 921 | 1.53 | 0.04827 | 0.0014 | 0.22418 | 0.0064 | 0.0335 | 0.0004 | 122.3 | 73.1 | 205.4 | 5.3 | 213 | 2.3 |
4 | 103 | 668 | 665 | 1.00 | 0.04902 | 0.0016 | 0.23339 | 0.0078 | 0.0344 | 0.0004 | 150.1 | 77.8 | 213.0 | 6.5 | 218 | 2.3 |
5 | 74 | 497 | 524 | 0.95 | 0.04978 | 0.0020 | 0.23294 | 0.0092 | 0.0339 | 0.0004 | 183.4 | 86.1 | 212.6 | 7.6 | 215 | 2.8 |
6 | 92 | 695 | 529 | 1.31 | 0.04788 | 0.0019 | 0.22730 | 0.0089 | 0.0345 | 0.0005 | 100.1 | 83.3 | 208.0 | 7.3 | 219 | 3.1 |
7 | 76 | 534 | 587 | 0.91 | 0.04986 | 0.0018 | 0.23167 | 0.0081 | 0.0335 | 0.0004 | 187.1 | 113.9 | 211.6 | 6.7 | 213 | 2.4 |
8 | 86 | 616 | 547 | 1.12 | 0.04764 | 0.0017 | 0.21605 | 0.0075 | 0.0328 | 0.0004 | 79.7 | 85.2 | 198.6 | 6.3 | 208 | 2.3 |
9 | 51 | 340 | 391 | 0.87 | 0.05329 | 0.0033 | 0.25894 | 0.0159 | 0.0349 | 0.0004 | 342.7 | 140.7 | 233.8 | 12.8 | 221 | 2.6 |
10 | 73 | 439 | 417 | 1.05 | 0.04816 | 0.0020 | 0.23248 | 0.0097 | 0.0349 | 0.0005 | 105.6 | −94.4 | 212.2 | 8.0 | 221 | 2.9 |
11 | 79 | 540 | 466 | 1.16 | 0.04772 | 0.0021 | 0.22199 | 0.0096 | 0.0338 | 0.0004 | 87.1 | 100.0 | 203.6 | 7.9 | 214 | 2.6 |
12 | 240 | 1681 | 984 | 1.71 | 0.04811 | 0.0016 | 0.23644 | 0.0081 | 0.0356 | 0.0005 | 105.6 | 77.8 | 215.5 | 6.6 | 225 | 3.3 |
Spot | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 4.95 | 236.64 | 12.51 | 122.31 | 88.83 | 39.38 | 152.70 | 27.62 | 207.56 | 40.73 | 131.71 | 22.04 | 218.45 | 24.23 |
2 | 7.32 | 0.04 | 1.12 | 1.43 | 0.99 | 6.21 | 1.36 | 13.63 | 3.61 | 17.80 | 3.91 | 48.74 | 7.28 | |
3 | 5.33 | 155.54 | 9.89 | 94.69 | 64.72 | 31.28 | 129.52 | 29.12 | 263.18 | 64.76 | 261.05 | 50.61 | 543.83 | 64.26 |
4 | 1.24 | 96.84 | 3.75 | 40.55 | 38.24 | 20.36 | 100.77 | 25.41 | 255.18 | 67.79 | 283.70 | 56.08 | 615.67 | 77.01 |
5 | 0.34 | 30.84 | 0.81 | 9.68 | 10.19 | 5.31 | 27.72 | 6.70 | 71.30 | 19.23 | 78.86 | 14.94 | 169.05 | 21.49 |
6 | 0.13 | 32.87 | 0.73 | 9.69 | 8.83 | 4.93 | 24.23 | 4.40 | 34.09 | 7.19 | 24.79 | 4.30 | 48.12 | 6.26 |
7 | 0.83 | 34.36 | 1.86 | 19.07 | 13.68 | 5.39 | 24.16 | 4.33 | 34.92 | 7.47 | 31.16 | 6.17 | 73.93 | 11.17 |
8 | 1.67 | 78.25 | 3.96 | 41.91 | 37.66 | 19.15 | 89.41 | 23.02 | 224.30 | 59.54 | 253.94 | 50.44 | 553.63 | 69.30 |
9 | 1.19 | 48.06 | 2.70 | 28.05 | 23.81 | 11.44 | 52.38 | 12.57 | 121.96 | 31.61 | 131.90 | 26.04 | 282.28 | 36.22 |
10 | 0.07 | 12.10 | 0.22 | 2.32 | 2.87 | 1.67 | 9.41 | 2.29 | 26.04 | 7.80 | 36.98 | 7.62 | 90.26 | 13.18 |
11 | 1.15 | 65.39 | 3.77 | 37.95 | 32.82 | 15.26 | 61.85 | 12.71 | 99.09 | 20.80 | 76.80 | 14.03 | 149.85 | 18.72 |
12 | 5.66 | 141.07 | 9.57 | 86.20 | 56.68 | 26.03 | 98.34 | 19.56 | 160.69 | 35.22 | 129.37 | 22.91 | 232.40 | 26.60 |
Spot | Element (ppm) | Th/U | 207Pb/206Pb | 207Pb/235U | 206Pb/238U | 207Pb/206Pb | 207Pb/235U | 206Pb/238U | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pb | Th | U | Ratio | ±1σ | Ratio | ±1σ | Ratio | ±1σ | Age (Ma) | ±1σ | Age (Ma) | ±1σ | Age (Ma) | ±1σ | ||
Magmatic zircon | ||||||||||||||||
1 | 110 | 188 | 129 | 1.45 | 0.0722 | 0.0025 | 1.2228 | 0.0441 | 0.1228 | 0.0016 | 990.7 | 71.5 | 811.1 | 20.1 | 746.5 | 9.2 |
2 | 46 | 64 | 115 | 0.56 | 0.0676 | 0.0026 | 1.1870 | 0.0452 | 0.1270 | 0.0016 | 857.4 | 113.1 | 794.6 | 21.0 | 770.9 | 9.1 |
3 | 130 | 203 | 208 | 0.98 | 0.0626 | 0.0020 | 1.1403 | 0.0360 | 0.1314 | 0.0013 | 694.5 | 64.7 | 772.6 | 17.1 | 795.6 | 7.7 |
4 | 97 | 158 | 162 | 0.97 | 0.0637 | 0.0021 | 1.1308 | 0.0376 | 0.1278 | 0.0013 | 731.5 | 69.3 | 768.1 | 17.9 | 775.2 | 7.7 |
Metamorphic zircon | ||||||||||||||||
1 | 71 | 79 | 2274 | 0.03 | 0.0496 | 0.0011 | 0.2299 | 0.0053 | 0.0333 | 0.0003 | 176.0 | 51.8 | 210.1 | 4.4 | 211.4 | 2.0 |
2 | 49 | 66 | 1633 | 0.04 | 0.0500 | 0.0013 | 0.2297 | 0.0061 | 0.0331 | 0.0003 | 194.5 | 28.7 | 209.9 | 5.0 | 209.8 | 1.8 |
3 | 101 | 107 | 3381 | 0.03 | 0.0503 | 0.0012 | 0.2336 | 0.0058 | 0.0333 | 0.0003 | 209.3 | 89.8 | 213.2 | 4.8 | 211.5 | 2.1 |
4 | 102 | 123 | 3463 | 0.04 | 0.0494 | 0.0012 | 0.2347 | 0.0061 | 0.0340 | 0.0004 | 168.6 | 62.0 | 214.1 | 5.0 | 215.8 | 2.2 |
5 | 72 | 85 | 2319 | 0.04 | 0.0509 | 0.0013 | 0.2364 | 0.0064 | 0.0332 | 0.0003 | 239.0 | 52.8 | 215.5 | 5.2 | 210.8 | 2.0 |
6 | 55 | 81 | 1768 | 0.05 | 0.0493 | 0.0012 | 0.2257 | 0.0053 | 0.0330 | 0.0003 | 161.2 | 53.7 | 206.7 | 4.4 | 209.1 | 1.8 |
Spot | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Magmatic zircon | ||||||||||||||
1 | 0.01 | 128.84 | 0.10 | 3.47 | 6.57 | 2.86 | 38.35 | 13.55 | 175.98 | 66.37 | 330.82 | 67.66 | 748.39 | 111.77 |
2 | 0.01 | 24.89 | 0.03 | 0.60 | 1.56 | 0.42 | 10.53 | 3.98 | 61.71 | 24.68 | 140.11 | 33.19 | 412.00 | 65.20 |
3 | 0.54 | 89.18 | 0.25 | 3.06 | 5.12 | 1.37 | 26.98 | 9.69 | 139.55 | 55.66 | 295.96 | 66.02 | 793.78 | 124.87 |
4 | 0.16 | 47.22 | 0.15 | 2.27 | 4.57 | 1.36 | 21.78 | 7.34 | 104.73 | 39.40 | 211.17 | 48.25 | 588.21 | 90.93 |
Metamorphic zircon | ||||||||||||||
1 | 0.06 | 9.12 | 0.12 | 1.07 | 0.89 | 0.31 | 5.04 | 1.85 | 28.76 | 13.74 | 95.94 | 28.31 | 462.52 | 104.48 |
2 | 7.11 | 0.02 | 0.57 | 0.20 | 3.36 | 1.50 | 23.37 | 11.64 | 81.12 | 24.46 | 399.98 | 92.20 | ||
3 | 0.16 | 11.13 | 0.43 | 3.87 | 2.91 | 0.80 | 6.76 | 1.94 | 28.89 | 12.70 | 91.26 | 26.46 | 440.01 | 103.26 |
4 | 0.10 | 9.58 | 0.19 | 1.30 | 1.09 | 0.40 | 4.86 | 2.09 | 32.85 | 15.59 | 110.73 | 33.00 | 560.32 | 128.99 |
5 | 0.36 | 10.88 | 0.48 | 2.67 | 1.51 | 0.49 | 4.19 | 1.42 | 22.27 | 10.77 | 70.69 | 21.28 | 352.99 | 81.18 |
6 | 0.05 | 8.54 | 0.08 | 1.08 | 0.94 | 0.34 | 3.86 | 1.76 | 27.51 | 13.09 | 94.87 | 29.27 | 490.61 | 111.76 |
Spot | Age (Ma) | 176Hf/177Hf | ±(2σ) | 176Lu/177Hf | ±(2σ) | 176Yb/177Hf | 176Hf/177Hf (t) | εHf(0) | εHf(t) | ±(2σ) | TDM | TDM(Hf2) | 2σ | TDM(Hf)C |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 216 | 0.282094 | 0.000016 | 0.000553 | 0.000002 | 0.026018 | 0.282092 | −24.0 | −19.3 | 0.6 | 1612 | 3420 | 22 | 2473 |
2 | 206 | 0.282042 | 0.000016 | 0.000127 | 0.000001 | 0.005597 | 0.282041 | −25.8 | −21.3 | 0.6 | 1665 | 3593 | 21 | 2592 |
3 | 213 | 0.282078 | 0.000021 | 0.001187 | 0.000043 | 0.055077 | 0.282073 | −24.6 | −20.1 | 0.7 | 1661 | 3482 | 29 | 2516 |
4 | 218 | 0.282129 | 0.000021 | 0.002027 | 0.000099 | 0.079955 | 0.282121 | −22.7 | −18.3 | 0.7 | 1626 | 3324 | 29 | 2407 |
5 | 215 | 0.282080 | 0.000016 | 0.000358 | 0.000008 | 0.014805 | 0.282078 | −24.5 | −19.8 | 0.6 | 1623 | 3464 | 21 | 2504 |
6 | 219 | 0.282056 | 0.000015 | 0.000135 | 0.000002 | 0.005020 | 0.282055 | −25.3 | −20.6 | 0.5 | 1646 | 3532 | 21 | 2553 |
7 | 213 | 0.282032 | 0.000016 | 0.000228 | 0.000005 | 0.009181 | 0.282031 | −26.2 | −21.6 | 0.6 | 1683 | 3616 | 22 | 2611 |
8 | 221 | 0.282002 | 0.000018 | 0.000366 | 0.000011 | 0.013602 | 0.282001 | −27.2 | −22.4 | 0.6 | 1729 | 3699 | 25 | 2672 |
9 | 214 | 0.282003 | 0.000016 | 0.000321 | 0.000007 | 0.013077 | 0.282001 | −27.2 | −22.6 | 0.6 | 1726 | 3706 | 21 | 2675 |
10 | 225 | 0.282064 | 0.000019 | 0.000670 | 0.000011 | 0.028462 | 0.282061 | −25.0 | −20.2 | 0.7 | 1657 | 3502 | 27 | 2534 |
Spot | Age (Ma) | 176Hf/177Hf | ±(2σ) | 176Lu/177Hf | ±(2σ) | 176Yb/177Hf | 176Hf/177Hf (t) | εHf(0) | εHf(t) | ±(2σ) | TDM | TDM (Hf2) | 2σ | TDM (Hf)C |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Magmatic zircon | ||||||||||||||
1 | 746 | 0.28197 | 0.00002 | 0.00245 | 0.00005 | 0.09219 | 0.28193 | −28.5 | −13.3 | 0.8 | 1879 | 3216 | 31 | 2487 |
2 | 771 | 0.28213 | 0.00001 | 0.00113 | 0.00000 | 0.03869 | 0.28211 | −22.8 | −6.4 | 0.5 | 1590 | 2622 | 20 | 2075 |
3 | 796 | 0.28213 | 0.00002 | 0.00209 | 0.00001 | 0.07121 | 0.28210 | −22.8 | −6.3 | 0.6 | 1631 | 2635 | 24 | 2091 |
Metamorphic zircon | ||||||||||||||
1 | 211 | 0.28225 | 0.00001 | 0.00157 | 0.00001 | 0.03929 | 0.28224 | −18.6 | −14.2 | 0.4 | 1439 | 2954 | 18 | 2144 |
2 | 210 | 0.28224 | 0.00001 | 0.00121 | 0.00001 | 0.02983 | 0.28224 | −18.8 | −14.3 | 0.4 | 1433 | 2968 | 17 | 2153 |
3 | 211 | 0.28225 | 0.00001 | 0.00148 | 0.00001 | 0.03553 | 0.28225 | −18.4 | −14.0 | 0.4 | 1429 | 2937 | 16 | 2132 |
4 | 216 | 0.28227 | 0.00001 | 0.00177 | 0.00001 | 0.04218 | 0.28226 | −17.8 | −13.3 | 0.4 | 1414 | 2878 | 17 | 2092 |
5 | 211 | 0.28223 | 0.00001 | 0.00097 | 0.00000 | 0.02509 | 0.28223 | −19.2 | −14.7 | 0.5 | 1440 | 3000 | 19 | 2176 |
6 | 209 | 0.28227 | 0.00002 | 0.00141 | 0.00001 | 0.03613 | 0.28226 | −17.9 | −13.5 | 0.6 | 1405 | 2893 | 22 | 2100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, Y.; Lei, H.; Xia, F.; Zhang, H.; Yu, C. Triassic Retrograde Metamorphism and Anatexis in the Sulu Orogenic Zone, Central China: Constraints from U–Pb Ages, Trace Elements, and Hf Isotopic Compositions of Zircon. Appl. Sci. 2025, 15, 6145. https://doi.org/10.3390/app15116145
Ye Y, Lei H, Xia F, Zhang H, Yu C. Triassic Retrograde Metamorphism and Anatexis in the Sulu Orogenic Zone, Central China: Constraints from U–Pb Ages, Trace Elements, and Hf Isotopic Compositions of Zircon. Applied Sciences. 2025; 15(11):6145. https://doi.org/10.3390/app15116145
Chicago/Turabian StyleYe, Yongkang, Hengcong Lei, Fei Xia, Hui Zhang, and Congjun Yu. 2025. "Triassic Retrograde Metamorphism and Anatexis in the Sulu Orogenic Zone, Central China: Constraints from U–Pb Ages, Trace Elements, and Hf Isotopic Compositions of Zircon" Applied Sciences 15, no. 11: 6145. https://doi.org/10.3390/app15116145
APA StyleYe, Y., Lei, H., Xia, F., Zhang, H., & Yu, C. (2025). Triassic Retrograde Metamorphism and Anatexis in the Sulu Orogenic Zone, Central China: Constraints from U–Pb Ages, Trace Elements, and Hf Isotopic Compositions of Zircon. Applied Sciences, 15(11), 6145. https://doi.org/10.3390/app15116145