A Rapid Nondestructive Detection Method for Liquor Quality Analysis Using NIR Spectroscopy and Pattern Recognition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Liquor Samples
2.2. Near-Infrared Spectroscopy Measurement
2.3. Near-Infrared Spectroscopy Preprocessing Method
2.4. Near-Infrared Spectroscopy Characteristic Extraction Method
2.5. Near-Infrared Characteristic Spectrum Dimension Reduction Method
2.6. Model Construction Method
3. Results and Discussion
3.1. Near-Infrared Spectroscopy Preprocessing Results
3.2. Characteristic Wavelength Extraction
3.3. Characteristic Wavelength Dimension Reduction
3.4. Prediction of Liquor Quality
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, D.R.; Shi, D.M.; Sun, J.Y.; Sun, J.Y.; Li, A.J.; Sun, B.G.; Zhao, M.M.; Chen, F.; Sun, X.T.; Li, H.H.; et al. Characterization of key aroma compounds in Gujinggong Chinese Baijiu by gas chromatography-olfactometry, quantitative measurements, and sensory evaluation. Food Res. Int. 2018, 105, 616–627. [Google Scholar] [CrossRef]
- Han, X.L.; Wang, D.L.; Zhang, W.J.; Jia, S.R. The production of the Chinese baijiu from sorghum and other cereals. J. Inst. Brew. 2017, 123, 600–604. [Google Scholar]
- Wei, Q.; Lu, Z.M.; Chai, L.J.; Zhang, X.J.; Li, Q.; Wang, S.T.; Shen, C.H.; Shi, J.S.; Xu, Z.H. Cooperation within the microbial consortia of fermented grains and pit mud drives organic acid synthesis in strong-flavor Baijiu production. Food Res. Int. 2021, 147, 110449. [Google Scholar]
- Wang, W.; Xu, Y.; Huang, H.; Pang, Z.; Fu, Z.; Niu, J.; Zhang, C.; Li, W.; Li, X.; Sun, B. Correlation between microbial communities and flavor compounds during the fifth and sixth rounds of sauce-flavor baijiu fermentation. Food Res. Int. 2021, 150, 110741. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Liu, K.; Liu, L.; Zheng, J.; Shen, X.J. Correlation analysis between aroma components and microbial communities in Wuliangye-flavor raw liquor based on HS-SPME/LLME-GC-MS and PLFA. Food Res. Int. 2020, 140, 109995. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.X.; Zhao, D.R.; Sun, B.G. Research progress on the profile of trace components in baijiu. Food Rev. Int. 2021, 39, 1–27. [Google Scholar] [CrossRef]
- Hong, J.X.; Tian, W.; Zhao, D. Research progress of trace components in sesame-aroma type of baijiu. Food Res. Int. 2020, 137, 109695. [Google Scholar] [CrossRef]
- Fan, H.Y.; Fan, W.L.; Xu, Y. Characterization of key odorants in Chinese chixiang aroma-type liquor by gas chromatography- olfactometry, quantitative measurements, aroma recombination, and omission studies. J. Agric. Food Chem. 2015, 63, 3660–3668. [Google Scholar] [CrossRef] [PubMed]
- Jamaludeen, A.; Neelamegam, P.; Rajendran, A. Determination of Calcium in Wine Using Reconfigurable PSoC Based Spectrophotometer. J. Anal. Chem. 2014, 69, 270–275. [Google Scholar] [CrossRef]
- Wu, Z.; Xu, E.; Li, J.; Long, J.; Jiao, A.; Jin, Z.; Xu, X. Determination of Antioxidant Capacity of Chinese Rice Wine and Zhuyeqing Liquor Using Nanoparticle-Based Colorimetric Methods. Food Anal. Methods 2017, 10, 788–798. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Y.; Zhu, T.T.; Wang, J.; Huang, M.Q.; Wei, J.W.; Ye, H.; Wu, J.H.; Zhang, J.L.; Meng, N. Characterization of the key odorants and their content variation in Niulanshan Baijiu with different storage years using flavor sensory omics analysis. Food Chem. 2022, 376, 131851. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Chen, S.; Nie, Y.; Xu, Y. Optimization of an intra-oral solid-phase microextraction (SPME) combined with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC-TOFMS) method for oral aroma compounds monitoring of Baijiu. Food Chem. 2022, 385, 132502. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Duan, J.W.; Zhao, J.W.; Li, H.H.; Sun, J.Y.; Huang, M.Q.; Sun, B.G. Different distillation stages Baijiu classification by temperature-programmed headspace-gas chromatography-ion mobility spectrometry and gas chromatography-olfactometry-mass spectrometry combined with chemometric strategies. Food Chem. 2021, 365, 130430. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Qin, D.; Duan, J.W.; Li, H.H.; Sun, B.G. Characterization of benzenemethanethiol in sesame-flavour baijiu by high-performance liquid chromatography-mass spectrometry and sensory science. Food Chem. 2021, 1, 130345. [Google Scholar] [CrossRef]
- Wang, J.S.; Chen, H.; Wu, Y.S.; Zhao, D.R. Uncover the flavor code of strong-aroma baijiu: Research progress on the revelation of aroma compounds in strong-aroma baijiu by means of modern separation technology and molecular sensory evaluation. J. Food Compos. Anal. 2022, 109, 104499. [Google Scholar] [CrossRef]
- Xu, Y.Q.; Zhao, J.R.; Liu, X.; Zhang, C.S.; Sun, B.G. Flavor mystery of Chinese traditional fermented baijiu: The great contribution of ester compounds. Food Chem. 2022, 369, 130920. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.S.; Hou, Y.X.; Chen, H.; Wang, J.S.; Zhang, C.S.; Zhao, Z.G.; Ao, R.; Huang, H.; Hong, J.X.; Zhao, D.R.; et al. “Key factor” for baijiu quality: Research progress on acid substances in baijiu. Foods 2022, 11, 2959. [Google Scholar] [CrossRef]
- Dong, W.; Dai, X.R.; Jia, Y.T.; Ye, S.T.; Shen, C.H.; Liu, M.; Lin, F.; Sun, X.T.; Xiong, Y.F.; Deng, B. Association between Baijiu chemistry and taste change: Constituents, sensory properties, and analytical approaches. Food Chem. 2023, 437, 137826. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Zou, W.; Shen, C.H. Basic flavor types and component characteristics of Chinese traditional liquors: A review. J. Food Sci. 2020, 85, 4096–4107. [Google Scholar] [CrossRef]
- Liu, Y.B.; Qiao, Z.N.; Zhao, Z.J.; Wang, X.; Sun, X.Y.; Han, S.N.; Pan, C.M. Comprehensive evaluation of Luzhou-flavor liquor quality based on fuzzy mathematics and principal component analysis. Food Sci. Nutr. 2022, 10, 1780–1788. [Google Scholar] [CrossRef]
- Wang, G.N.; Jing, S.; Wang, X.L.; Zheng, F.P.; Li, H.H.; Sun, B.; Li, Z.X. Evaluation of the perceptual interaction among ester odorants and nonvolatile organic acids in Baijiu by GC-MS, GC-O, odor threshold, and sensory analysis. J. Agric. Food Chem. 2022, 70, 13987–13995. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Fan, Z.; Du, A.; Li, Y.L.; Zhang, R.; Shi, Q.Y.; Shi, L.; Chu, X.G. Recent advances in Baijiu analysis by chromatography based technology—A review. Food Chem. 2020, 324, 126899. [Google Scholar] [CrossRef] [PubMed]
- Fan, T.; Xie, Z.M.; Wei, J.P.; Zheng, J.; Huang, J.; Zhang, Q. Health risk exposure assessment of eight heavy metals in world distilled spirits. China Brew. 2023, 42, 228–233. [Google Scholar]
- Song, D.D.; He, P.H.; Chen, J.; Yang, L. Difference of volatile substances in top six distilled spirits based on GC-MS. China Brew. 2020, 39, 190–195. [Google Scholar]
- Sohn, S.; Pandian, S.; Oh, Y.J.; Zaukuu, J.L.Z.; Kang, H.J.; Ryu, T.H.; Cho, W.S.; Cho, Y.S.; Shin, E.K.; Cho, B.K. An Overview of Near Infrared Spectroscopy and Its Applications in the Detection of Genetically Modified Organisms. Int. J. Mol. Sci. 2021, 22, 9940. [Google Scholar] [CrossRef]
- Luo, W.; Tian, P.; Fan, G.Z.; Dong, W.T.; Zhang, H.L.; Liu, X.M. Non-destructive determination of four tea polyphenols in fresh tea using visible and near-infrared spectroscopy. Infrared Phys. Technol. 2022, 123, 104037. [Google Scholar] [CrossRef]
- Fernández-Novales, J.; Garde-Cerdán, T.; Tardáguila, J.; Gutierrez, G.G.; Pilar, P.A.E.; Paz, D.M. Assessment of amino acids and total soluble solids in intact grape berries using contactless Vis and NIR spectroscopy during ripening. Talanta 2019, 199, 244–253. [Google Scholar] [CrossRef]
- Páscoa, R.N.M.J.; Porto, P.A.L.S.; Cerdeira, A.L.; João, A.L. The application of near infrared spectroscopy to wine analysis: An innovative approach using lyophilization to remove water bands interference. Talanta 2020, 214, 120852. [Google Scholar] [CrossRef]
- Bai, X.B.; Xu, Y.Q.; Chen, X.L.; Dai, B.X.; Tao, Y.S.; Xiong, X.L. Analysis of Near-Infrared Spectral Properties and Quantitative Detection of Rose Oxide in Wine. Agronomy 2023, 13, 1123. [Google Scholar] [CrossRef]
- Anjos, O.; Caldeira, I.; Pedro, S.I. Screening of Different ageing technologies of wine spirit by application of near-infrared (NIR) spectroscopy and volatile quantification. Processes 2020, 8, 736. [Google Scholar] [CrossRef]
- Rouxinol, M.I.; Martins, M.R.; Murta, G.C.; Barroso, J.M.; Rato, A.E. Quality assessment of red wine grapes through NIR spectroscopy. Agronomy 2022, 12, 637. [Google Scholar] [CrossRef]
- Tzanova, M.; Atanassova, S.; Atanasov, V.; Grozeva, N. Content of polyphenolic compounds and antioxidant potential of some Bulgarian red grape varieties and red wines, determined by HPLC, UV, and NIR spectroscopy. Agriculture 2020, 10, 193. [Google Scholar] [CrossRef]
- Anjos, O.; Caldeira, I.; Fernandes, T.A.; Pedro, S.I.; Vitória, C.; Alves, S.O.; Catarino, S.; Canas, S. PLS-R calibration models for wine spirit volatile phenols prediction by near-infrared spectroscopy. Sensors 2021, 22, 286. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.Z.; Liu, S.Q.; Li, X.H.; Wang, C.X.; Ni, X.L.; Liu, X.; Wang, Y.; Liu, Y.; Xu, C.H. Geographical origin traceability of Cabernet Sauvignon wines based on Infrared fingerprint technology combined with chemometrics. Sci. Rep. 2019, 9, 8256. [Google Scholar] [CrossRef] [PubMed]
- Nardi, T.; Petrozziello, M.; Girotto, R.; Fugaro, M.; Mazzei, R.A.; Scuppa, S. Wine aging authentication through Near Infrared Spectroscopy: A feasibility study on chips and barrel aged wines. OENO One 2020, 54, 165–173. [Google Scholar] [CrossRef]
- Pan, T.; Li, J.Q.; Fu, C.L.; Chang, N.L.; Chen, J.M. Visible and near-infrared spectroscopy combined with bayes classifier based on wavelength model optimization applied to wine multibrand identification. Front. Nutr. 2022, 9, 796463. [Google Scholar] [CrossRef] [PubMed]
- Ta, N.; Wei, H.C.; Hu, Z.L.; Cao, X.H.; Xiao, M.X. Wine component tracing method based on near infrared spectrum fusion machine learning. Front. Sustain. Food Syst. 2023, 7, 1197508. [Google Scholar] [CrossRef]
- Li, Z.; Wang, P.P.; Huang, C.C.; Shang, H.; Pan, S.Y.; Li, X.J. Application of Vis/NIR spectroscopy for Chinese liquor discrimination. Food Anal. Methods 2014, 7, 1337–1344. [Google Scholar] [CrossRef]
- Shen, F.; Niu, X.Y.; Yang, D.T.; Ying, Y.B.; Li, B.B.; Zhu, G.Q.; Wu, J. Determination of amino acids in Chinese rice wine by fourier transform near-infrared spectroscopy. J. Agric. Food Chem. 2010, 58, 9809–9816. [Google Scholar] [CrossRef]
- Ouyang, Q.; Zhao, J.; Chen, Q. Measurement of non-sugar solids content in Chinese rice wine using near infrared spectroscopy combined with an efficient characteristic variables selection algorithm. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 151, 280–285. [Google Scholar] [CrossRef]
- Han, S.H.; Zhang, W.W.; Li, X.; Li, P.Y.; Liu, J.X.; Luo, D.L.; Xu, B.C. Rapid determination of ethyl pentanoate in liquor using Fourier transform near-infrared spectroscopy coupled with chemometrics. Spectrosc. Lett. 2016, 49, 464–468. [Google Scholar] [CrossRef]
- Yang, B.; Yao, L.; Tao, P. Near-Infrared Spectroscopy Combined with Partial Least Squares Discriminant Analysis Applied to Identification of Liquor Brands. Engineering 2018, 9, 181–189. [Google Scholar] [CrossRef]
- Ning, Y.; Zhang, H.M.; Zhang, Q.; Zhang, X.R. Rapid identification and quantitative pit mud by near infrared Spectroscopy with chemometric. Vib. Spectrosc. 2020, 110, 103116. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Wang, Z.L.; Tian, X.; Yang, X.H.; Cai, Z.L.; Li, J.B. Online analysis of watercore apples by considering different speeds and orientations based on Vis/NIR full-transmittance spectroscopy. Infrared Phys. Technol. 2022, 122, 104090. [Google Scholar] [CrossRef]
- Zhao, X.; Li, C.H.; Zhao, Z.L.; Wu, G.C.; Xia, L.Y.; Jiang, H.Z.; Wang, T.X.; Chu, X.; Liu, J. Generic models for rapid detection of vanillin and melamine adulterated in infant formulas from diverse brands based on near-infrared hyperspectral imaging. Infrared Phys. Technol. 2021, 116, 103745. [Google Scholar] [CrossRef]
- Meléndez, J.; Guarnizo, G. Fast Quantification of Air Pollutants by Mid-Infrared Hyperspectral Imaging and Principal Component Analysis. Sensors 2021, 21, 2092. [Google Scholar] [CrossRef] [PubMed]
- Pang, L.; Chen, H.; Yin, L.; Cheng, J.; Jin, J.; Zhao, H.; Liu, Z.; Dong, L.; Yu, H.; Lu, X. Rapid fatty acids detection of vegetable oils by Raman spectroscopy based on competitive adaptive reweighted sampling coupled with support vector regression. Food Qual. Saf. 2022, 4, 545–554. [Google Scholar] [CrossRef]
- Xia, Z.Z.; Yang, J.; Wang, J.; Wang, S.P.; Liu, Y. Optimizing Rice Near-Infrared Models Using Fractional Order Savitzky–Golay Derivation (FOSGD) Combined with Competitive Adaptive Reweighted Sampling (CARS). Appl. Spectrosc. 2020, 74, 417–426. [Google Scholar] [CrossRef]
- Tang, R.N.; Luo, X.C.; Li, C.; Zhong, S.X. A study on nitrogen concentration detection model of rubber leaf based on spatial-spectral information with NIR hyperspectral data. Infrared Phys. Technol. 2022, 122, 104094. [Google Scholar] [CrossRef]
- Zheng, Y.S.; Chen, W.M.; Zhang, Y.N.; Bai, D.Y. Prediction of the Remaining Useful Life of a Switch Machine, Based on Multi-Source Data. Sustainability 2022, 14, 14517. [Google Scholar] [CrossRef]
- Zhang, W.L.; Tian, F.C.; Song, A.; Hu, Y.W. Research on an Optical E-nose Denoising Method Based on LSSVM. Optik 2018, 168, 118–126. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, L.; Li, Y.; Zhang, D.; Song, Z.; Zhang, C.; Pan, X.; Li, J.; Wang, Z. Quality evaluation of fried soybean oil base on near infrared spectroscopy. J. Food Process Eng. 2018, 41, e12887. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, Z.; Yang, Y.; Pan, S.; Yin, J.; Yu, X. Rapid identification of the storage age of dried tangerine peel using a hand-held near infrared spectrometer and machine learning. J. Near Infrared Spectrosc. 2022, 30, 31–39. [Google Scholar] [CrossRef]
Preprocessing Method | Baseline Correction Penalty Factor, λ | Smoothing Window | Degree of Polynomial | Prediction Accuracy (%) |
---|---|---|---|---|
1 | 10 × 106 | 9 | 2 | 86.81 |
2 | 10 × 106 | 13 | 3 | 88.19 |
3 | 10 × 106 | 13 | 5 | 87.15 |
4 | 10 × 107 | 11 | 2 | 86.11 |
5 | 10 × 107 | 11 | 3 | 87.85 |
6 | 10 × 107 | 13 | 5 | 86.11 |
Preprocessing Method | Characteristic Wavelengths of Improved CARS | Dimension Reduction of KPCA | Prediction Model Based on H-MSVM | |||
---|---|---|---|---|---|---|
Number of Characteristic Wavelengths | Prediction Accuracy (%) | Number of Principal Components | Principal Component Contribution Rate (%) | Prediction Accuracy (%) | Improved Prediction Accuracy (%) | |
1 | 52 | 89.34 | 9 | 95.21 | 92.51 | 3.17 |
2 | 70 | 92.72 | 5 | 95.33 | 96.87 | 8.68 |
3 | 69 | 90.59 | 7 | 95.39 | 93.66 | 3.07 |
4 | 50 | 89.80 | 8 | 95.15 | 93.05 | 3.25 |
5 | 52 | 90.24 | 8 | 95.09 | 92.26 | 2.02 |
6 | 49 | 90.18 | 12 | 95.02 | 91.58 | 1.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, G.; Tuo, X.; Peng, Y.; Li, X.; Pang, T. A Rapid Nondestructive Detection Method for Liquor Quality Analysis Using NIR Spectroscopy and Pattern Recognition. Appl. Sci. 2024, 14, 4392. https://doi.org/10.3390/app14114392
Zhang G, Tuo X, Peng Y, Li X, Pang T. A Rapid Nondestructive Detection Method for Liquor Quality Analysis Using NIR Spectroscopy and Pattern Recognition. Applied Sciences. 2024; 14(11):4392. https://doi.org/10.3390/app14114392
Chicago/Turabian StyleZhang, Guiyu, Xianguo Tuo, Yingjie Peng, Xiaoping Li, and Tingting Pang. 2024. "A Rapid Nondestructive Detection Method for Liquor Quality Analysis Using NIR Spectroscopy and Pattern Recognition" Applied Sciences 14, no. 11: 4392. https://doi.org/10.3390/app14114392
APA StyleZhang, G., Tuo, X., Peng, Y., Li, X., & Pang, T. (2024). A Rapid Nondestructive Detection Method for Liquor Quality Analysis Using NIR Spectroscopy and Pattern Recognition. Applied Sciences, 14(11), 4392. https://doi.org/10.3390/app14114392