Trajectory Planning in Robot Joint Space Based on Improved Quantum Particle Swarm Optimization Algorithm
Abstract
1. Introduction
2. Improved Quantum Particle Swarm Optimization
2.1. Standard Particle Swarm Optimization Algorithm
2.2. Quantum Particle Swarm Optimization
2.3. Improvement for Quantum Particle Swarm Optimization
2.4. Example 1: Validation for Improved QPSO
3. Space Trajectory Planning of Robot Joint (Driving Limb)
4. Joint Space Trajectory Planning Based on Improved Quantum Particle Swarm Optimization
4.1. Example 2: Comparison between Improved QPSO and MATP
4.2. Example 3: Motion Planning for 4SPRR-SPR Parallel Robot
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yingshi, W. Study of Kinematics and Trajectory Planning of Redundant Robots. Ph.D. Thesis, Nankai University, Tianjin, China, 2014. [Google Scholar]
- Kröger, T. On-Line Trajectory Generation in Robotic Systems; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Kröger, T. Online Trajectory Generation: Straight-Line Trajectories. IEEE Trans. Robot. 2011, 27, 1010–1016. [Google Scholar] [CrossRef]
- Rubio, F.; Llopis-Aibert, C.; Valero, F. Assembly Line Productivity Assessment by Comparing Optimization-Simulation Algorithms of Trajectory Planning for Industrial Robots. Math. Probl. Eng. 2015, 2015, 10. [Google Scholar] [CrossRef]
- Llopis-Albert, C.; Rubio, F.; Valero, F. Modelling an Industrial Robot and Its Impact on Productivity. Mathematics 2021, 9, 769. [Google Scholar] [CrossRef]
- Rubio, F.; Llopis-Aibert, C.; Valero, F. Industrial robot efficient trajectory generation without collision through the evolution of the optimal trajectory. Robot. Auton. Syst. 2016, 86, 106–112. [Google Scholar] [CrossRef]
- Hongxin, Z.; Haoran, Q.; Xu, Z.; Ping, H. Recent Advances on Manipulator Trajectory Planning Methods. Recent Pat. Mech. Eng. 2020, 13, 303–327. [Google Scholar]
- Qidong, L.; Hehua, J.; Pengfei, X.; Feifei, C.; Fei, L. Optimal trajectory optimization of 7R robot for space maintenance operation. IEEE Access 2020, in press. [Google Scholar] [CrossRef]
- Davood, M.; Nabil, N. An improved volleyball premier league algorithm based on sine cosine algorithm for global optimization problem. Eng. Comput. 2021, 37, 2633–2662. [Google Scholar]
- Wichapong, K.; Pholdee, N.; Buraeerat, S. Trajectory Planning of a 6D Robot based on Meta Heuristic Algorithms. MATEC Web Conf. 2018, 220, 6004. [Google Scholar] [CrossRef]
- Liu, S. An on-line reference-trajectory generator for smooth motion of impulse-controlled industrial manipulators: International Workshop on Advanced Motion Control. In Proceedings of the 7th International Workshop on Advanced Motion Control, Maribor, Slovenia, 3–5 July 2002. [Google Scholar]
- Amruta, R.; Deepak, B.; Bibhuti, B.; Golak, B.M. Optimal trajectory planning of industrial robot for improving positional accuracy. Int. J. Robot. Res. Appl. 2021, 48, 71–83. [Google Scholar]
- Seyed, M.M.; Seyedeh, Z.M.; Shahrzad, S.; Seyedali, M. Sine Cosine Algorithm: Theory, Literature Review, and Application in Designing Bend Photonic Crystal Waveguides. Stud. Comput. Intell. 2019, 811, 201–217. [Google Scholar]
- Asma, B.G.; Yassine, M.; Seyedali, M. A comprehensive survey of sine cosine algorithm: Variants and applications. Artif. Intell. Rev. 2021, 54, 5469–5540. [Google Scholar]
- Gyorfi, J.S.; Wu, C.H. A Minimum-Jerk Speed-Planning Algorithm for Coordinated Planning and Control of Automated Assembly Manufacturing. IEEE Trans. Autom. Sci. Eng. 2006, 3, 454–462. [Google Scholar] [CrossRef]
- Gasparetto, A.; Zanotto, V. A new method for smooth trajectory planning of robot manipulators. Mech. Mach. Theory 2007, 42, 455–471. [Google Scholar] [CrossRef]
- Huang, P.; Chen, K.; Yuan, J. Motion Trajectory Planning of Space Manipulator for Joint Jerk Minimization. International Conference on Mechatronics & Automation. In Proceedings of the 2007 International Conference on Mechatronics and Automation, Harbin, China, 5–8 August 2007. [Google Scholar]
- Amruta, R.; Golak, B.M.; Deepak, B.; Bibhuti, B.B. Kinematic and Dynamic Optimal Trajectory Planning of Industrial Robot Using Improved Multi-objective Ant Lion Optimizer. J. Inst. Eng. 2020, 101, 559–569. [Google Scholar]
- Borna, M.M.; Robin, C. On the guidance, navigation and control of in-orbit space robotic missions: A survey and prospective vision. Acta Astronaut. 2021, 184, 70–100. [Google Scholar]
- Macfarlane, S.; Croft, E.A. Jerk-bounded manipulator trajectory planning: Design for real-time applications. IEEE Trans. Robot. Autom. 2003, 19, 42–52. [Google Scholar] [CrossRef]
- Piazzi, A.; Visioli, A. Global minimum-jerk trajectory planning of robot manipulators. IEEE Trans. Ind. Electron. 2000, 47, 140–149. [Google Scholar] [CrossRef]
- Li, X.; Qin, Y.; Yang, S. A quantum-behaved particle swarm optimization algorithm for job shop scheduling problems. Eur. J. Oper. Res. 2008, 185, 312–326. [Google Scholar]
- Bingul, Z.; Karahan, O. Real-time trajectory tracking control of Stewart platform using fractional order fuzzy PID controller optimized by particle swarm algorithm. Ind. Robot. Int. J. Robot. Res. 2021, 49, 708–725. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Li, J. Quantum-behaved particle swarm optimization with dynamic adjustment of quantum bit number and quantum rotation angle. Inf. Sci. 2021, 567, 1–18. [Google Scholar] [CrossRef]
- Guoqiang, L.; Weiyi, C.; Huadong, C.; Jiahui, X. A Quantum Particle Swarm Optimization Algorithm with Teamwork Evolutionary Strategy. Math. Probl. Eng. 2019, 2019, 1805198. [Google Scholar]
- Jun, S.; Wei, F.; Vasile, P.; Xiaojun, W.; Wenbo, X. Quantum-behaved particle swarm optimization with Gaussian distributed local attractor point. Appl. Math. Comput. 2021, 218, 3763–3775. [Google Scholar]
- Agrawal, R.K.; Kaur, B.; Agarwal, P. Quantum inspired Particle Swarm Optimization with guided exploration for function optimization. Appl. Soft Comput. J. 2021, 102, 107122. [Google Scholar] [CrossRef]
- Li, G.; Wang, W.; Zhang, W.; You, W.; Wu, F.; Tu, H. Handling multimodal multi-objective problems through self-organizing quantum-inspired particle swarm optimization. Inf. Sci. 2021, 577, 510–540. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.; Zhang, Y. Quantum-behaved particle swarm optimization with adaptive quantum bit number and quantum rotation angle. Eng. Appl. Artif. Intell. 2021, 102, 104284. [Google Scholar]
- Liu, J.; Zhang, Y.; Li, J. Quantum-behaved particle swarm optimization with dynamic parameter adjustment for global optimization. Swarm Evol. Comput. 2021, 63, 100886. [Google Scholar]
- Xie, J.; Liu, X.; Zhou, Y. A novel quantum-behaved particle swarm optimization algorithm with adaptive parameters. Swarm Evol. Comput. 2021, 63, 100880. [Google Scholar]
- Li, X.; Zhang, X. A novel quantum-behaved particle swarm optimization algorithm with dynamic learning strategy. Swarm Evol. Comput. 2021, 62, 100864. [Google Scholar]
- Jerzy, B. Many-Objective Quantum-Inspired Particle Swarm Optimization Algorithm for Placement of Virtual Machines in Smart Computing Cloud. Entropy 2022, 24, 58. [Google Scholar]
- Arnaud, F.; Hamouche, O.; Patrick, S. QUAntum Particle Swarm Optimization: An auto-adaptive PSO for local and global optimization. Comput. Optim. Appl. 2022, 82, 525–559. [Google Scholar]
pk | vk | ak | pk+1 | vk+1 | ak+1 | vmax | amax | jmax |
---|---|---|---|---|---|---|---|---|
100 | 300 | −350 | −800 | −50 | 0 | 800 | 400 | 200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, L.; Guo, T.; Cui, K.; Zhang, Q. Trajectory Planning in Robot Joint Space Based on Improved Quantum Particle Swarm Optimization Algorithm. Appl. Sci. 2023, 13, 7031. https://doi.org/10.3390/app13127031
Luo L, Guo T, Cui K, Zhang Q. Trajectory Planning in Robot Joint Space Based on Improved Quantum Particle Swarm Optimization Algorithm. Applied Sciences. 2023; 13(12):7031. https://doi.org/10.3390/app13127031
Chicago/Turabian StyleLuo, Lan, Tongbin Guo, Kangkang Cui, and Qi Zhang. 2023. "Trajectory Planning in Robot Joint Space Based on Improved Quantum Particle Swarm Optimization Algorithm" Applied Sciences 13, no. 12: 7031. https://doi.org/10.3390/app13127031
APA StyleLuo, L., Guo, T., Cui, K., & Zhang, Q. (2023). Trajectory Planning in Robot Joint Space Based on Improved Quantum Particle Swarm Optimization Algorithm. Applied Sciences, 13(12), 7031. https://doi.org/10.3390/app13127031