Ultra-Compact Digital Metasurface Polarization Beam Splitter via Physics-Constrained Inverse Design
Abstract
1. Introduction
2. Structure and Method
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheben, P.; Halir, R.; Schmid, J.H.; Atwater, H.A.; Smith, D.R. Subwavelength integrated photonics. Nature 2018, 560, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Siew, S.Y.; Li, B.; Gao, F.; Zheng, H.Y.; Zhang, W.; Guo, P.; Xie, S.W.; Song, A.; Dong, B.; Luo, L.W.; et al. Review of Silicon Photonics Technology and Platform Development. J. Light. Technol. 2021, 39, 4374–4389. [Google Scholar] [CrossRef]
- Thylén, L.; Wosinski, L. Integrated photonics in the 21st century. Photonics Res. 2014, 2, 75–81. [Google Scholar] [CrossRef]
- Lim, A.E.; Song, J.; Fang, Q.; Li, C.; Tu, X.; Duan, N.; Chen, K.K.; Tern, R.P.; Liow, T. Review of Silicon Photonics Foundry Efforts. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 405–416. [Google Scholar] [CrossRef]
- Aydin, K. Nanostructured silicon success. Nat. Photonics 2015, 9, 353–355. [Google Scholar] [CrossRef]
- Cheng, Z.; Wang, J.; Yang, Z.; Zhu, L.; Yang, Y.; Huang, Y.; Ren, X. Sub-wavelength grating assisted mode order converter on the SOI substrate. Opt. Express 2019, 27, 34434–34441. [Google Scholar] [CrossRef]
- Zhang, F.; Ruan, X.; Zhu, Y.; Chen, Z.; Qiu, X.; Yang, F.; Li, K.; Li, Y. Compact polarization diversity Kramers-Kronig coherent receiver on silicon chip. Opt. Express 2019, 27, 23654–23660. [Google Scholar] [CrossRef]
- Bogaerts, W.; Chrostowski, L. Silicon Photonics Circuit Design: Methods, Tools and Challenges. Laser Photonics Rev. 2018, 12, 1700237. [Google Scholar] [CrossRef]
- Won, R.; Paniccia, M. Integrating silicon photonics. Nat. Photonics 2010, 4, 498–499. [Google Scholar] [CrossRef]
- Shen, B.; Wang, P.; Polson, R.; Menon, R. An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint. Nat. Photonics 2015, 9, 378–382. [Google Scholar] [CrossRef]
- Tosi, M.; Fasciszewki, A.; Bulus Rossini, L.; Costanzo Caso, P. Silicon Nitride Polarization Beam Splitters: A Review. IET Optoelectron. 2020, 14, 120–124. [Google Scholar] [CrossRef]
- Yuan, W.Q.; Kojima, K.; Wang, B.N.; Koike-Akino, T.; Parsons, K.; Nishikawa, S.; Yagyu, E. Mode-evolution-based polarization rotator-splitter design via simple fabrication process. Opt. Express 2012, 20, 10163–10169. [Google Scholar] [CrossRef] [PubMed]
- Dai, D.; Li, C.; Wang, S.; Wu, H.; Shi, Y.; Wu, Z.; Gao, S.; Dai, T.; Yu, H.; Tsang, H.-K. 10-Channel Mode (de)multiplexer with Dual Polarizations. Laser Photonics Rev. 2018, 12, 1700109. [Google Scholar] [CrossRef]
- Zhang, Y.; He, Y.; Zhu, Q.; Jiang, X.; Guo, X.; Qiu, C.; Su, Y. On-chip silicon polarization and mode handling devices. Front. Optoelectron. 2018, 11, 77–91. [Google Scholar] [CrossRef]
- Chang, L.M.; Liu, L.; Gong, Y.H.; Tan, M.Q.; Yu, Y.D.; Li, Z.Y. Polarization-independent directional coupler and polarization beam splitter based on asymmetric cross-slot waveguides. Appl. Opt. 2018, 57, 678–683. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Boynton, N.; Lentine, A.; Pomerene, A.; Trotter, D.; Starbuck, A.; Davids, P.; DeRose, C. An adiabatic/diabatic polarization beam splitter. In Proceedings of the 2016 IEEE Optical Interconnects Conference (OI), San Diego, CA, USA, 9–11 May 2016; pp. 102–103. [Google Scholar]
- Huang, J.; Yang, J.; Chen, D.; He, X.; Han, Y.; Zhang, J.; Zhang, Z. Ultra-compact broadband polarization beam splitter with strong expansibility. Photonics Res. 2018, 6, 574. [Google Scholar] [CrossRef]
- Bhandari, B.; Im, C.-S.; Sapkota, O.; Lee, S.-S. Highly efficient broadband silicon nitride polarization beam splitter incorporating serially cascaded asymmetric directional couplers. Opt. Lett. 2020, 45, 5974–5977. [Google Scholar] [CrossRef]
- Shi, X.; Zhang, J.; Fan, W.; Lu, Y.; Peng, N.; Rottwitt, K.; Ou, H. Compact low-birefringence polarization beam splitter using vertical-dual-slot waveguides in silicon carbide integrated platforms. Photonics Res. 2021, 10, A8–A13. [Google Scholar] [CrossRef]
- Zhang, J.; Shi, X.; Zhang, Z.; Guo, K.; Yang, J. Ultra-compact, efficient and high-polarization-extinction-ratio polarization beam splitters based on photonic anisotropic metamaterials. Opt. Express 2021, 30, 538–549. [Google Scholar] [CrossRef]
- Guan, X.; Yin, S.; Qiu, H.; Wang, Z.; Dai, D. On-Chip Silicon Switchable polarization beam splitter. Opt. Lett. 2022, 47, 961–964. [Google Scholar]
- Huang, Y.Y.; Xu, G.Y.; Ho, S.T. An ultracompact optical mode order converter. IEEE Photonics Technol. Lett. 2006, 18, 2281–2283. [Google Scholar] [CrossRef]
- Lu, Z.; Yun, H.; Wang, Y.; Chen, Z.; Zhang, F.; Jaeger, N.A.F.; Chrostowski, L. Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control. Opt. Express 2015, 23, 3795–3808. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.F.; Liao, S.M.; Huang, Y.T. Ultracompact photonic crystal polarization beam splitter based on multimode interference. Appl. Opt. 2010, 49, 724–731. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Soref, R.; Mu, J. Compact polarization splitter based on a silicon angled multimode interferometer structure. Appl. Opt. 2019, 58, 4070–4074. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.-X.; Densmore, A.; Waldron, P.; Lapointe, J.; Post, E.; Delâge, A.; Janz, S.; Cheben, P.; Schmid, J.H.; Lamontagne, B. High bandwidth SOI photonic wire ring resonators using MMI couplers. Opt. Express 2007, 15, 3149–3155. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Huang, J.; Zhang, K.; Yang, J. Ultra-compact and efficient 1 × 2 mode converters based on rotatable direct-binary-search algorithm. Opt. Express 2020, 28, 17010–17019. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.H.; Chen, Y.; Chen, H.Y.; Chen, J.H. Ultra-compact reconfigurable device for mode conversion and dual-mode DPSK demodulation via inverse design. Opt. Express 2021, 29, 17718–17725. [Google Scholar] [CrossRef]
- Dong, Z.; Qiu, J.; Chen, Y.; Liu, C.; Guo, H.; Zhang, W.; He, Z.; Wu, J. Ultra-compact X-shaped waveguide crossings with flexible angles based on inverse design. Opt. Express 2021, 29, 19715–19726. [Google Scholar] [CrossRef]
- Chang, W.; Xu, S.; Cheng, M.; Liu, D.; Zhang, M. Inverse design of a single-step-etched ultracompact silicon polarization rotator. Opt. Express 2020, 28, 28343–28351. [Google Scholar] [CrossRef]
- Xu, X.; Li, Y.; Huang, W. Inverse design of the MMI power splitter by asynchronous double deep Q-learning. Opt. Express 2021, 29, 35951–35964. [Google Scholar] [CrossRef]
- Wei, H.M.; Callewaert, F.; Hadibrata, W.; Velev, V.; Liu, Z.Z.; Kumar, P.; Aydin, K.; Krishnaswamy, S. Two-Photon Direct Laser Writing of Inverse-Designed Free-Form Near-Infrared Polarization Beamsplitter. Adv. Opt. Mater. 2019, 7, 1900513. [Google Scholar] [CrossRef]
- Frellsen, L.; Ding, Y.; Sigmund, O.; Frandsen, L. Topology optimized mode multiplexing in silicon-on-insulator photonic wire waveguides. Opt. Express 2016, 24, 16866–16873. [Google Scholar] [CrossRef] [PubMed]
- Phan, T.; Sell, D.; Wang, E.W.; Doshay, S.; Edee, K.; Yang, J.; Fan, J.A. High-efficiency, large-area, topology-optimized metasurfaces. Light Sci. Appl. 2019, 8, 48. [Google Scholar] [CrossRef] [PubMed]
- Augenstein, Y.; Rockstuhl, C. Inverse Design of Nanophotonic Devices with Structural Integrity. ACS Photonics 2020, 7, 2190–2196. [Google Scholar] [CrossRef]
- Meng, Y.; Chen, Y.; Lu, L.; Ding, Y.; Cusano, A.; Fan, J.A.; Hu, Q.; Wang, K.; Xie, Z.; Liu, Z.; et al. Optical meta-waveguides for integrated photonics and beyond. Light Sci. Appl. 2021, 10, 235. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Zhang, Y.; He, Y.; Wang, H.; Su, Y. Subwavelength structured silicon waveguides and photonic devices. Nanophotonics 2020, 9, 1321–1340. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, L.; Xia, H.; Cao, S.; Wang, L.; Yang, S.; Wu, Y.; Tai, R. Integrated silicon metasurface polarization beam splitter on a standard SOI substrate. Optik 2021, 227, 166096. [Google Scholar]
- Lipson, M. Guiding, modulating, and emitting light on Silicon - Challenges and opportunities. J. Light. Technol. 2005, 23, 4222–4238. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Z.; Wang, J.; He, X. Design of conformal lens by drilling holes materials using quasi-conformal transformation optics. Opt. Express 2014, 22, 25455–25465. [Google Scholar] [CrossRef]
- Seldowitz, M.A.; Allebach, J.P.; Sweeney, D.W. Synthesis of digital holograms by direct binary search. Appl. Opt. 1987, 26, 2788–2798. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, H.; Wang, L.; Zhang, L.; Wu, Y.; Li, Z.; Wang, L.; Tai, R. Ultra-Compact Digital Metasurface Polarization Beam Splitter via Physics-Constrained Inverse Design. Appl. Sci. 2022, 12, 10064. https://doi.org/10.3390/app121910064
Shi H, Wang L, Zhang L, Wu Y, Li Z, Wang L, Tai R. Ultra-Compact Digital Metasurface Polarization Beam Splitter via Physics-Constrained Inverse Design. Applied Sciences. 2022; 12(19):10064. https://doi.org/10.3390/app121910064
Chicago/Turabian StyleShi, Hao, Lin Wang, Lei Zhang, Yanqing Wu, Zhenjiang Li, Lu Wang, and Renzhong Tai. 2022. "Ultra-Compact Digital Metasurface Polarization Beam Splitter via Physics-Constrained Inverse Design" Applied Sciences 12, no. 19: 10064. https://doi.org/10.3390/app121910064
APA StyleShi, H., Wang, L., Zhang, L., Wu, Y., Li, Z., Wang, L., & Tai, R. (2022). Ultra-Compact Digital Metasurface Polarization Beam Splitter via Physics-Constrained Inverse Design. Applied Sciences, 12(19), 10064. https://doi.org/10.3390/app121910064