Metal-Organic Hybrid Metamaterials for Spectral-Band Selective Active Terahertz Modulators
Abstract
1. Introduction
2. Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mittleman, D.M.; Gupta, M.; Neelamani, R.; Baraniuk, R.M.; Rudd, J.V.; Koch, M. Recent advances in terahertz imaging. Appl. Phys. B 1999, 68, 1085–1094. [Google Scholar] [CrossRef]
- Tonouchi, M. Cutting-edge terahertz technology. Nat. Photonics 2007, 1, 97–105. [Google Scholar] [CrossRef]
- Siegel, P.H. Terahertz technology. IEEE Trans. Microw. Theory Tech. 2002, 50, 910–925. [Google Scholar] [CrossRef]
- Ferguson, B.; Zhang, X.C. Materials for terahertz science and technology. Nat. Mater. 2002, 1, 26–33. [Google Scholar] [CrossRef]
- Lee, Y.S. Principles of Terahertz Science and Technology; Springer: New York, NY, USA, 2009. [Google Scholar]
- Chen, H.T.; Padilla, W.J.; Zide, J.M.O.; Gossard, A.C.; Tayler, A.J.; Averitt, R.D. Active terahertz metamaterial devices. Nature 2006, 444, 597–600. [Google Scholar] [CrossRef]
- Lee, S.H.; Choi, M.; Kim, T.T.; Lee, S.; Liu, M.; Yin, X.; Choi, H.K.; Lee, S.S.; Choi, C.G.; Choi, S.Y.; et al. Switching terahertz waves with gate-controlled active graphene metamaterials. Nat. Mater. 2012, 2, 936–941. [Google Scholar] [CrossRef]
- Hilton, D.J.; Prasankumar, R.P.; Fourmaux, S.; Cavalleri, A.; Brassard, D.; El Khakani, M.A.; Kieffer, J.C.; Taylor, A.J.; Averitt, R.D. Enhanced photosusceptibility near Tc for the light-induced insulator-to-metal phase transition in vanadium dioxide. Phys. Rev. Lett. 2007, 99, 226401. [Google Scholar] [CrossRef]
- Seo, M.; Kyoung, J.; Park, H.; Koo, S.; Kim, H.; Bernien, H.; Kim, B.J.; Choe, J.H.; Ahn, Y.H.; Kim, H.T.; et al. Active terahertz nanoantennas based on VO2 phase transition. Nano Lett. 2010, 10, 2064–2068. [Google Scholar] [CrossRef]
- Sensale-Rodriguez, B.; Yan, R.; Kelly, M.M.; Fang, T.; Tahy, K.; Hwang, W.S.; Jena, D.; Liu, L.; Xing, H.G. Broadband graphene terahertz modulators enabled by intraband transitions. Nat. Commun. 2012, 3, 780. [Google Scholar] [CrossRef]
- Wu, X.; Pan, X.; Quan, B.; Wang, L. Optical modulation of terahertz behavior in silicon with structured surfaces. Appl. Phys. Lett. 2013, 103, 121112. [Google Scholar] [CrossRef]
- Yoo, H.K.; Kang, C.; Yoon, Y.W.; Lee, H.J.; Lee, J.W.; Kee, C.S. Organic conjugated material-based broadband terahertz wave modulators. Appl. Phys. Lett. 2011, 99, 061108. [Google Scholar]
- Yoo, H.K.; Yoon, Y.W.; Lee, K.; Kang, C.; Kee, C.S.; Hwang, I.W.; Lee, J.W. Highly efficient terahertz wave modulators by photo-excitation of organics/silicon bilayers. Appl. Phys. Lett. 2014, 105, 011115. [Google Scholar] [CrossRef]
- Yoo, H.K.; Lee, H.J.; Lee, K.J.; Kang, C.; Kee, C.S.; Hwang, I.W.; Lee, J.W. Conditions for optimal efficiency of PCBM-based terahertz modulators. AIP Adv. 2017, 7, 105008. [Google Scholar] [CrossRef]
- He, T.; Zhang, B.; Shen, J.; Zang, M.; Chen, T.; Hu, Y.; Hou, Y. High-efficiency THz modulator based on phthalocyanine-compound organic films. Appl. Phys. Lett. 2015, 106, 053303. [Google Scholar] [CrossRef]
- Zhong, L.; Zhang, B.; He, T.; Lv, L.; Hou, Y.; Shen, J. Conjugated polymer based active electric-controlled terahertz device. Appl. Phys. Lett. 2016, 108, 103301. [Google Scholar] [CrossRef]
- Lee, K.S.; Kang, R.; Son, B.; Kim, D.Y.; Yu, N.E.; Ko, D.K. All-optical THz wave switching based on CH3NH3PbI3 perovskites. Sci. Rep. 2016, 6, 37912. [Google Scholar] [CrossRef]
- Matsui, T.; Mori, H.; Inose, Y.; Kuromiya, S.; Takano, K.; Nakajima, M.; Hangyo, M. Efficient optical terahertz-transmission modulation in solution-processable organic semiconductor thin films on silicon substrate. Jpn. J. Appl. Phys. 2016, 55, 03DC12. [Google Scholar] [CrossRef]
- Liu, M.; Hwang, H.Y.; Tao, H.; Strikwerda, A.C.; Fan, K.; Keiser, G.R.; Sternbach, A.J.; West, K.G.; Kittiwatanakul, S.; Lu, J.; et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 2012, 487, 345–348. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.C.; Hong, M.H.; Lim, C.S.; Han, N.R.; Shi, L.P.; Chong, T.C. Parallel laser microfabrication of large-area asymmetric split ring resonator metamaterials and its structural tuning for terahertz resonance. Appl. Phys. Lett. 2010, 96, 181101. [Google Scholar] [CrossRef]
- Song, M.S.; Hwang, I.W.; Lee, C.L.; Kang, C.; Kee, C.S.; Park, S.J.; Ahn, Y.H.; Park, D.J.; Lee, J.W. Effects of organic thin films on local resonance of metamaterials under photoexcitation. Curr. Opt. Photon. 2017, 1, 372–377. [Google Scholar]
- Lee, J.W. Terahertz wave modulation in PCBM-deposited metallic slit arrays. Appl. Sci. Converg. Technol. 2019, 28, 5–8. [Google Scholar] [CrossRef]
- Ji, H.; Zhang, B.; Wang, W.; Lv, L.; Shen, J. Ultraviolet light-induced terahertz modulation of an indium oxide film. Opt. Express 2018, 26, 7204–7210. [Google Scholar] [CrossRef] [PubMed]
- Matsui, T.; Takagi, R.; Takano, K.; Hangyo, M. Mechanism of optical terahertz-transmission modulation in an organic/inorganic semiconductor interface and its application to active metamaterials. Opt. Lett. 2013, 38, 4632–4635. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Ghosh, S.; Xu, Q.; Ouyang, C.; Li, Y.; Zhang, X.; Tian, Z.; Gu, J.; Liu, L.; Azad, A.K.; et al. Active control of polarization-dependent near-field coupling in hybrid metasurfaces. Appl. Phys. Lett. 2018, 113, 061111. [Google Scholar] [CrossRef]
- Park, S.J.; Yoon, A.N.; Ahn, Y.H. Dielectric constant measurements of thin films and liquids using terahertz metamaterials. RSC Adv. 2016, 6, 69381–69386. [Google Scholar] [CrossRef]
- Van Exter, M.; Grischkowsky, D. Optical and electronic properties of doped silicon from 0.1 to 2 THz. Appl. Phys. Lett. 1990, 56, 1694. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, M.; Zhang, X.C. Dielectric constant measurement of thin films by differential time-domain spectroscopy. Appl. Phys. Lett. 2000, 76, 3221. [Google Scholar] [CrossRef]
- Lee, J.W.; Yang, J.K.; Sohn, I.B.; Choi, H.K.; Kang, C.; Kee, C.S. Relationship between the order of rotation symmetry in perforated apertures and terahertz transmission characteristics. Opt. Eng. 2012, 51, 119002. [Google Scholar] [CrossRef]
- Wu, W.R.; Jeng, U.S.; Su, C.J.; Wei, K.W.; Su, M.S.; Chiu, M.Y.; Chen, C.Y.; Su, W.B.; Su, C.H.; Su, A.C. Competition between fullerene aggregation and poly(3-hexylthiophene) crystallization upon annealing of bulk heterojunction solar cells. ACS Nano 2011, 5, 6233–6243. [Google Scholar] [CrossRef]
laser power (mW) | 0 | 20 | 40 | 60 | 80 | 100 | 120 | 140 | 160 | 180 | 200 | 220 |
PCBM [S/m] (×10−3) | <1.16 | 17.4 | 27.8 | 36.0 | 40.6 | 46.4 | 48.7 | 55.1 | 58.0 | 61.5 | 63.8 | 69.6 |
Si [S/m] | <1.16 | 17.4 | 27.8 | 36.0 | 40.6 | 46.4 | 48.7 | 55.1 | 58.0 | 61.5 | 63.8 | 69.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoo, H.K.; Cho, S.B.; Park, S.J.; Ahn, Y.H.; Kang, C.; Hwang, I.-W.; Lee, J.W. Metal-Organic Hybrid Metamaterials for Spectral-Band Selective Active Terahertz Modulators. Appl. Sci. 2021, 11, 2765. https://doi.org/10.3390/app11062765
Yoo HK, Cho SB, Park SJ, Ahn YH, Kang C, Hwang I-W, Lee JW. Metal-Organic Hybrid Metamaterials for Spectral-Band Selective Active Terahertz Modulators. Applied Sciences. 2021; 11(6):2765. https://doi.org/10.3390/app11062765
Chicago/Turabian StyleYoo, Hyung Keun, Soo Bin Cho, Sae June Park, Yeong Hwan Ahn, Chul Kang, In-Wook Hwang, and Joong Wook Lee. 2021. "Metal-Organic Hybrid Metamaterials for Spectral-Band Selective Active Terahertz Modulators" Applied Sciences 11, no. 6: 2765. https://doi.org/10.3390/app11062765
APA StyleYoo, H. K., Cho, S. B., Park, S. J., Ahn, Y. H., Kang, C., Hwang, I.-W., & Lee, J. W. (2021). Metal-Organic Hybrid Metamaterials for Spectral-Band Selective Active Terahertz Modulators. Applied Sciences, 11(6), 2765. https://doi.org/10.3390/app11062765