Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (78,615)

Search Parameters:
Keywords = modulators

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 20063 KiB  
Article
The Genesis of a Thin-Bedded Beach-Bar System Under the Strike-Slip Extensional Tectonic Framework: A Case Study in the Bohai Bay Basin
by Jing Wang, Youbin He, Hua Li, Bin Feng, Zhongxiang Zhao, Xing Yu and Xiangyang Hou
Appl. Sci. 2025, 15(14), 7964; https://doi.org/10.3390/app15147964 (registering DOI) - 17 Jul 2025
Abstract
The lower sub-member of Member 2, Dongying Formation (Paleogene) in the HHK Depression hosts an extensively developed thin-bedded beach-bar system characterized by favorable source rock conditions and reservoir properties, indicating significant hydrocarbon exploration potential. Integrating drilling cores, wireline log interpretations, three-dimensional seismic data, [...] Read more.
The lower sub-member of Member 2, Dongying Formation (Paleogene) in the HHK Depression hosts an extensively developed thin-bedded beach-bar system characterized by favorable source rock conditions and reservoir properties, indicating significant hydrocarbon exploration potential. Integrating drilling cores, wireline log interpretations, three-dimensional seismic data, geochemical analyses, and palynological data, this study investigates the sedimentary characteristics, sandbody distribution patterns, controlling factors, and genetic model of this lacustrine beach-bar system. Results reveal the following: (1) widespread thin-bedded beach-bar sandbodies dominated by fine-grained sandstones and siltstones, exhibiting wave ripples and low-angle cross-bedding; (2) two vertical stacking patterns, Type A, thick mudstone intervals intercalated with laterally continuous thin sandstone layers, and Type B, composite sandstones comprising thick sandstone units overlain by thin sandstone beds, both demonstrating significant lateral continuity; (3) three identified microfacies: bar-core, beach-core, and beach-margin facies; (4) key controls on sandbody development: paleoenvironmental evolution establishing the depositional framework, secondary fluctuations modulating depositional processes, strike-slip extensional tectonics governing structural zonation, paleobathymetry variations and paleotopography controlling distribution loci, and provenance clastic influx regulating scale and enrichment (confirmed by detrital zircon U-Pb dating documenting a dual provenance system). Collectively, these findings establish a sedimentary model for a thin-bedded beach-bar system under the strike-slip extensional tectonic framework. Full article
(This article belongs to the Special Issue Advances in Reservoir Geology and Exploration and Exploitation)
Show Figures

Figure 1

20 pages, 2692 KiB  
Article
Orientin Reverses Premature Senescence in Equine Adipose Stromal Cells Affected by Equine Metabolic Syndrome Through Oxidative Stress Modulation
by Dominika Orzoł, Martyna Kępska and Magdalena Zyzak
Int. J. Mol. Sci. 2025, 26(14), 6867; https://doi.org/10.3390/ijms26146867 (registering DOI) - 17 Jul 2025
Abstract
Equine metabolic syndrome (EMS) is a prevalent endocrine disorder associated with insulin dysregulation, oxidative stress, and impaired regenerative capacity of adipose-derived stem cells (ASCs). The aim of this study was to evaluate the effects of orientin—a plant-derived flavonoid with known antioxidant properties—on equine [...] Read more.
Equine metabolic syndrome (EMS) is a prevalent endocrine disorder associated with insulin dysregulation, oxidative stress, and impaired regenerative capacity of adipose-derived stem cells (ASCs). The aim of this study was to evaluate the effects of orientin—a plant-derived flavonoid with known antioxidant properties—on equine ASCs (EqASCs) derived from both clinically healthy and diagnosed EMS-affected mares. EqASCs were treated with orientin to evaluate its biological effects. The analysis included key cellular functions such as proliferative capacity, viability, apoptosis, oxidative stress, senescence, clonogenicity, and migration. Orientin significantly enhanced the proliferative activity of EqASCs, as evidenced by increased Ki67 expression and favorable alterations in cell cycle distribution. In addition, the treatment improved overall cell viability, reduced apoptotic activity, and restored both the clonogenic potential and migratory capacity of the cells, with particularly pronounced effects observed in EqASCs isolated from EMS-affected horses. Importantly, orientin also led to a marked reduction in cellular senescence and oxidative stress, further suggesting its potential as a protective and regenerative agent in metabolically impaired ASCs. These findings indicate that orientin can exert comprehensive cytoprotective effects on EqASCs, with pronounced benefits in cells derived from EMS-affected animals. By improving multiple functional parameters, orientin emerges as a promising candidate for therapeutic strategies aimed at restoring the regenerative potential of ASCs compromised by metabolic dysregulation in horses. Full article
(This article belongs to the Special Issue Oxygen Variations, 2nd Edition)
Show Figures

Figure 1

26 pages, 2989 KiB  
Article
Studying Homoclinic Chaos in a Class of Piecewise Smooth Oscillators: Melnikov’s Approach, Symmetry Results, Simulations and Applications to Generating Antenna Factors Using Approximation and Optimization Techniques
by Nikolay Kyurkchiev, Tsvetelin Zaevski, Anton Iliev, Vesselin Kyurkchiev and Asen Rahnev
Symmetry 2025, 17(7), 1144; https://doi.org/10.3390/sym17071144 (registering DOI) - 17 Jul 2025
Abstract
In this paper, we provide a novel extended mixed differential model that is appealing to users because of its numerous free parameters. The motivation of this research arises from the opportunity for a general investigation of some outstanding classical and novel dynamical models. [...] Read more.
In this paper, we provide a novel extended mixed differential model that is appealing to users because of its numerous free parameters. The motivation of this research arises from the opportunity for a general investigation of some outstanding classical and novel dynamical models. The higher energy levels known in the literature can be governed by appropriately added correction factors. Furthermore, the different applications of the considered model can be achieved only after a proper parameter calibration. All these necessitate the use of diverse optimization and approximation techniques. The proposed extended model is especially useful in the important field of decision making, namely the antenna array theory. This is due to the possibility of generating high-order Melnikov polynomials. The work is a natural continuation of the authors’ previous research on the topic of chaos generation via the term x|x|a1. Some specialized modules for investigating the dynamics of the proposed oscillators are provided. Last but not least, the so-defined dynamical model can be of interest for scientists and practitioners in the area of antenna array theory, which is an important part of the decision-making field. The stochastic control of oscillations is also the subject of our consideration. The underlying distributions we use may be symmetric, asymmetric or strongly asymmetric. The same is true for the mass in the tails, too. As a result, the stochastic control of the oscillations we purpose may exhibit a variety of possible behaviors. In the final section, we raise some important issues related to the methodology of teaching Master’s and PhD students. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

16 pages, 3728 KiB  
Review
Recent Advances in Liquid Crystal Polymer-Based Circularly Polarized Luminescent Materials: A Review
by Fa-Feng Xu, Jingzhou Qin, Yu-Wu Zhong, Dandan Gao, Yaping Dong and Haitao Feng
Polymers 2025, 17(14), 1961; https://doi.org/10.3390/polym17141961 (registering DOI) - 17 Jul 2025
Abstract
Circularly polarized luminescence (CPL) materials have shown great application potential in the fields of three-dimensional displays, bioimaging, and information encryption and decryption. The chirality enhancement of CPL by a physical chiral environment, involving the delivery of structural asymmetry from helical architectures to luminescent [...] Read more.
Circularly polarized luminescence (CPL) materials have shown great application potential in the fields of three-dimensional displays, bioimaging, and information encryption and decryption. The chirality enhancement of CPL by a physical chiral environment, involving the delivery of structural asymmetry from helical architectures to luminescent molecules through electromagnetic field resonance, represents an innovative approach for constructing high-performance CPL materials. Liquid crystal polymers (LCPs), possessing helical superstructures, show great potential in constructing CPL systems. By modulating the chirality transfer from the helical structural environment of LCPs to luminescent sources via distinct strategies, the CPL properties of LCP-based composites are readily generated and tailored. This review summarizes the newest construction strategies of LCP-based CPL materials and provides a perspective on their emerging applications and future opportunities. This review can deepen our understanding of the fundamentals of chirality transfer and shed light on the development of functional chiral luminescent materials. Full article
Show Figures

Figure 1

20 pages, 1541 KiB  
Review
Role of Cellular Senescence in IUGR: Impact on Fetal Morbidity and Development
by Aliabbas Zia, Faezeh Sahebdel, Yosra Er-Reguyeg, Michel Desjarlais, Jean-Clement Mars, Gregory A. Lodygensky and Sylvain Chemtob
Cells 2025, 14(14), 1097; https://doi.org/10.3390/cells14141097 (registering DOI) - 17 Jul 2025
Abstract
Intrauterine growth restriction (IUGR) is a critical challenge in perinatal medicine and is associated with significant morbidity and mortality. This review explores the intricate involvement of early developmental senescence in IUGR. We highlight the dual role of cellular senescence in both normal development [...] Read more.
Intrauterine growth restriction (IUGR) is a critical challenge in perinatal medicine and is associated with significant morbidity and mortality. This review explores the intricate involvement of early developmental senescence in IUGR. We highlight the dual role of cellular senescence in both normal development and pathological conditions, emphasizing the need for further research to elucidate these mechanisms and develop targeted interventions. We discuss how oxidative stress and mitochondrial dysfunction affect senescence determinants. We present emerging therapeutic strategies aimed at targeting senescence and inflammation in the placenta. We also introduce Rytvela, an interleukin-1 (IL-1) receptor modulator developed in our laboratory, which selectively attenuates pro-inflammatory signaling while preserving essential immune responses, which in turn mitigate senescence. By addressing senescence-related dysfunctions, such interventions may improve placental performance and fetal outcomes, opening up new directions for the clinical management of IUGR. Full article
Show Figures

Figure 1

22 pages, 3502 KiB  
Article
NGD-YOLO: An Improved Real-Time Steel Surface Defect Detection Algorithm
by Bingyi Li, Andong Xiao, Xing Hu, Sisi Zhu, Gang Wan, Kunlun Qi and Pengfei Shi
Electronics 2025, 14(14), 2859; https://doi.org/10.3390/electronics14142859 (registering DOI) - 17 Jul 2025
Abstract
Steel surface defect detection is a crucial step in ensuring industrial production quality. However, due to significant variations in scale and irregular geometric morphology of steel surface defects, existing detection algorithms show notable deficiencies in multi-scale feature representation and cross-layer multi-scale feature fusion [...] Read more.
Steel surface defect detection is a crucial step in ensuring industrial production quality. However, due to significant variations in scale and irregular geometric morphology of steel surface defects, existing detection algorithms show notable deficiencies in multi-scale feature representation and cross-layer multi-scale feature fusion efficiency. To address these challenges, this paper proposes an improved real-time steel surface defect detection model, NGD-YOLO, based on YOLOv5s, which achieves fast and high-precision defect detection under relatively low hardware conditions. Firstly, a lightweight and efficient Normalization-based Attention Module (NAM) is integrated into the C3 module to construct the C3NAM, enhancing multi-scale feature representation capabilities. Secondly, an efficient Gather–Distribute (GD) mechanism is introduced into the feature fusion component to build the GD-NAM network, thereby effectively reducing information loss during cross-layer multi-scale information fusion and adding a small target detection layer to enhance the detection performance of small defects. Finally, to mitigate the parameter increase caused by the GD-NAM network, a lightweight convolution module, DCConv, that integrates Efficient Channel Attention (ECA), is proposed and combined with the C3 module to construct the lightweight C3DC module. This approach improves detection speed and accuracy while reducing model parameters. Experimental results on the public NEU-DET dataset show that the proposed NGD-YOLO model achieves a detection accuracy of 79.2%, representing a 4.6% mAP improvement over the baseline YOLOv5s network with less than a quarter increase in parameters, and reaches 108.6 FPS, meeting the real-time monitoring requirements in industrial production environments. Full article
(This article belongs to the Special Issue Fault Detection Technology Based on Deep Learning)
Show Figures

Figure 1

18 pages, 5900 KiB  
Article
Bone Marrow Mesenchymal Stem Cell-Derived Exosomes Modulate Chemoradiotherapy Response in Cervical Cancer Spheroids
by Kesara Nittayaboon, Piyatida Molika, Rassanee Bissanum, Kittinun Leetanaporn, Nipha Chumsuwan and Raphatphorn Navakanitworakul
Pharmaceuticals 2025, 18(7), 1050; https://doi.org/10.3390/ph18071050 (registering DOI) - 17 Jul 2025
Abstract
Background: Bone marrow mesenchymal stem cells (BM-MSCs) are significant in chemo- and radiotherapy resistance. Previous research has focused on BM-MSCs, demonstrating their functional involvement in cancer progression as mediators in the tumor microenvironment. They play multiple roles in tumorigenesis, angiogenesis, and metastasis. BM-MSC-derived [...] Read more.
Background: Bone marrow mesenchymal stem cells (BM-MSCs) are significant in chemo- and radiotherapy resistance. Previous research has focused on BM-MSCs, demonstrating their functional involvement in cancer progression as mediators in the tumor microenvironment. They play multiple roles in tumorigenesis, angiogenesis, and metastasis. BM-MSC-derived exosomes (BM-MSCs-exo) are small vesicles, typically 50–300 nm in diameter, isolated from BM-MSCs. Some studies have demonstrated the tumor-suppressive effects of BM-MSCs-exo. Objective: This study aimed to investigate their role in modulating the impact of chemoradiotherapy (CRT) in different types of cervical cancer spheroid cells. Methods: The spheroids after treatment were subject to size measurement, cell viability, and caspase activity. Then, the molecular mechanism was elucidated by Western blot analysis. Results: We observed a reduction in spheroid size and an increase in cell death in HeLa spheroids, while no significant changes in size or cell viability were found in SiHa spheroids. At the molecular level, CRT treatment combined with BM-MSCs-exo in HeLa spheroids induced apoptosis through the activation of the NF-κB pathway, specifically via the NF-κB1 (P50) transcription factor, leading to the upregulation of apoptosis-related molecules. In contrast, CRT combined with BM-MSCs-exo in SiHa spheroids exhibited an opposing effect: although cellular viability decreased, caspase activity also decreased, which correlated with increased HSP27 expression and the subsequent downregulation of apoptotic molecules. Conclusion: Our study provides deeper insight into the potential of BM-MSCs-exo in cervical cancer treatment, supporting the development of more effective and safer therapeutic strategies for clinical application. Full article
(This article belongs to the Special Issue 2D and 3D Culture Systems: Current Trends and Biomedical Applications)
Show Figures

Figure 1

29 pages, 922 KiB  
Review
Modulation of Oxidative Stress in Diabetic Retinopathy: Therapeutic Role of Natural Polyphenols
by Verónica Gómez-Jiménez, Raquel Burggraaf-Sánchez de las Matas and Ángel Luis Ortega
Antioxidants 2025, 14(7), 875; https://doi.org/10.3390/antiox14070875 (registering DOI) - 17 Jul 2025
Abstract
Diabetic retinopathy (DR), a leading cause of blindness in working-age adults, arises from chronic hyperglycemia-induced oxidative stress, inflammation, and vascular dysfunction. Current therapies such as laser photocoagulation, intravitreal anti-vascular endothelial growth factor (VEGF) agents, and steroids target advanced stages but fail to prevent [...] Read more.
Diabetic retinopathy (DR), a leading cause of blindness in working-age adults, arises from chronic hyperglycemia-induced oxidative stress, inflammation, and vascular dysfunction. Current therapies such as laser photocoagulation, intravitreal anti-vascular endothelial growth factor (VEGF) agents, and steroids target advanced stages but fail to prevent early neuronal and microvascular damage. Emerging evidence highlights oxidative stress as a key driver of DR pathogenesis, disrupting the blood-retinal barrier (BRB), promoting neurodegeneration and angiogenesis. Advances in imaging, particularly optical coherence tomography angiography (OCTA), enable earlier detection of neurodegeneration and microvascular changes, underscoring DR as a neurovascular disorder. Polyphenols, such as resveratrol, curcumin, and pterostilbene, exhibit multitarget antioxidant, anti-inflammatory, and anti-angiogenic effects, showing promise in preclinical and limited clinical studies. However, their low bioavailability limits therapeutic efficacy. Nanotechnology-based delivery systems enhance drug stability, tissue targeting, and sustained release, offering potential for early intervention. Future strategies should integrate antioxidant therapies and precision diagnostics to prevent early irreversible retinal damage in diabetic patients. Full article
Show Figures

Figure 1

4 pages, 779 KiB  
Correction
Correction: Hung et al. Cul4A Modulates Invasion and Metastasis of Lung Cancer through Regulation of ANXA10. Cancers 2019, 11, 618
by Ming-Szu Hung, Yi-Chuan Chen, Paul-Yann Lin, Ya-Chin Li, Chia-Chen Hsu, Jr-Hau Lung, Liang You, Zhidong Xu, Jian-Hua Mao, David M. Jablons and Cheng-Ta Yang
Cancers 2025, 17(14), 2377; https://doi.org/10.3390/cancers17142377 (registering DOI) - 17 Jul 2025
Abstract
In the original publication [...] Full article
Show Figures

Figure 3

17 pages, 2216 KiB  
Article
Functional Characterization of TNFα in the Starry Flounder (Platichthys stellatus) and Its Potential as an Immunostimulant
by Min-Young Sohn, Gyoungsik Kang, Kyung-Ho Kim, Ha-Jeong Son and Chan-Il Park
Animals 2025, 15(14), 2119; https://doi.org/10.3390/ani15142119 (registering DOI) - 17 Jul 2025
Abstract
Tumor necrosis factor alpha (TNFα) is a central pro-inflammatory cytokine that mediates host immune responses during infection. In this study, we identified and characterized the TNFα gene in the starry flounder (Platichthys stellatus) through transcriptomic analysis. The deduced protein [...] Read more.
Tumor necrosis factor alpha (TNFα) is a central pro-inflammatory cytokine that mediates host immune responses during infection. In this study, we identified and characterized the TNFα gene in the starry flounder (Platichthys stellatus) through transcriptomic analysis. The deduced protein contained a conserved TNF domain and transmembrane region, and phylogenetic analysis confirmed its homology with other teleost TNFα proteins. Tissue-specific expression profiling revealed high baseline expression in immune-related peripheral organs and a distinct temporal modulation in response to Streptococcus parauberis infection. Recombinant TNFα (rTNFα), produced using a cell-free expression system, significantly enhanced phagocytic activity in peripheral and kidney-derived leukocytes in a dose-dependent manner. Peak activity was observed at 150–200 μg/mL, while a decline at higher concentrations suggested a threshold for immune stimulation. Importantly, hemolysis assays confirmed the safety of rTNFα even at the highest tested concentrations. These results demonstrate the immunomodulatory potential of TNFα as a molecular adjuvant in aquaculture vaccines and underscore its potential utility in immune-enhancing strategies for sustainable aquaculture. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

17 pages, 2115 KiB  
Article
Surface Defect Detection of Magnetic Tiles Based on YOLOv8-AHF
by Cheng Ma, Yurong Pan and Junfu Chen
Electronics 2025, 14(14), 2857; https://doi.org/10.3390/electronics14142857 (registering DOI) - 17 Jul 2025
Abstract
Magnetic tiles are an important component of permanent magnet motors, and the quality of magnetic tiles directly affects the performance and service life of a motor. It is necessary to perform defect detection on magnetic tiles in industrial production and remove those with [...] Read more.
Magnetic tiles are an important component of permanent magnet motors, and the quality of magnetic tiles directly affects the performance and service life of a motor. It is necessary to perform defect detection on magnetic tiles in industrial production and remove those with defects. The YOLOv8-AHF algorithm is proposed to improve the ability of network feature information extraction and solve the problem of missed detection or poor detection results in surface defect detection due to the small volume of permanent magnet motor tiles, which reduces the deviation between the predicted box and the true box simultaneously. Firstly, a hybrid module of a combination of atrous convolution and depthwise separable convolution (ADConv) is introduced in the backbone of the model to capture global and local features in magnet tile detection images. In the neck section, a hybrid attention module (HAM) is introduced to focus on the regions of interest in the magnetic tile surface defect images, which improves the ability of information transmission and fusion. The Focal-Enhanced Intersection over Union loss function (Focal-EIoU) is optimized to effectively achieve localization. We conducted comparative experiments, ablation experiments, and corresponding generalization experiments on the magnetic tile surface defect dataset. The experimental results show that the evaluation metrics of YOLOv8-AHF surpass mainstream single-stage object detection algorithms. Compared to the You Only Look Once version 8 (YOLOv8) algorithm, the performance of the YOLOv8-AHF algorithm was improved by 5.9%, 4.1%, 5%, 5%, and 5.8% in terms of mAP@0.5, mAP@0.5:0.95, F1-Score, precision, and recall, respectively. This algorithm achieved significant performance improvement in the task of detecting surface defects on magnetic tiles. Full article
Show Figures

Figure 1

20 pages, 4729 KiB  
Article
Cis-Palmitoleic Acid Regulates Lipid Metabolism via Diacylglycerol Metabolic Shunting
by Wenwen Huang, Bei Gao, Longxiang Liu, Qi Song, Mengru Wei, Hongzhen Li, Chunlong Sun, Wang Li, Wen Du and Jinjun Shan
Foods 2025, 14(14), 2504; https://doi.org/10.3390/foods14142504 (registering DOI) - 17 Jul 2025
Abstract
Obesity and related metabolic disorders are closely linked to dysregulated lipid metabolism, where the metabolic balance of diacylglycerol (DAG) played a pivotal role. Although cis-palmitoleic acid (cPOA) exhibits anti-obesity effects, its efficacy varies across dietary conditions, and its molecular mechanisms [...] Read more.
Obesity and related metabolic disorders are closely linked to dysregulated lipid metabolism, where the metabolic balance of diacylglycerol (DAG) played a pivotal role. Although cis-palmitoleic acid (cPOA) exhibits anti-obesity effects, its efficacy varies across dietary conditions, and its molecular mechanisms remains unclear. In this study, we investigated the dose-dependent regulatory effects of cPOA on DAG metabolic shunting in db/db mice, employing lipidomics, pathway analysis, and gene/protein expression assays. Under a basal diet, low-dose cPOA (75 mg/kg) inhibited DAG-to-triglyceride (TAG) conversion, reducing hepatic lipid accumulation, while medium-to-high doses (150–300 mg/kg) redirected DAG flux toward phospholipid metabolism pathways (e.g., phosphatidylcholine [PC] and phosphatidylethanolamine [PE]), significantly lowering body weight and adiposity index. In high-fat diet (HFD)-fed mice, cPOA failed to reduce body weight but alleviated HFD-induced hepatic pathological damage by suppressing DAG-to-TAG conversion and remodeling phospholipid metabolism (e.g., inhibiting PE-to-PC conversion). Genetic and protein analyses revealed that cPOA downregulated lipogenic genes (SREBP-1c, SCD-1, FAS) and upregulated fatty acid β-oxidation enzymes (CPT1A, ACOX1), while dose-dependently modulating DGAT1, CHPT1, and PEMT expression to drive DAG metabolic shunting. Notably, DAG(36:3, 18:1–18:2) emerged as a potential biomarker for HFD-aggravated metabolic dysregulation. This study elucidated cPOA as a bidirectional regulator of lipid synthesis and oxidation, improving lipid homeostasis through dose-dependent DAG metabolic reprogramming. These findings provide novel insights and strategies for precision intervention in obesity and related metabolic diseases. Full article
(This article belongs to the Special Issue Food Bioactive Compounds in Disease Prevention and Health Promotion)
Show Figures

Figure 1

13 pages, 1434 KiB  
Article
Intra-Seasonal Acoustic Variation in Humpback Whale Songs in the North Colombian Pacific
by Juliana López-Marulanda and Hector Fabio Rivera-Gutierrez
J. Mar. Sci. Eng. 2025, 13(7), 1360; https://doi.org/10.3390/jmse13071360 (registering DOI) - 17 Jul 2025
Abstract
Humpback whales (Megaptera novaeangliae) are well known for their complex acoustic communication, which plays a critical role in social interactions and reproduction. Understanding the variability in humpback whale songs is crucial to deciphering their communication strategies and the factors that influence [...] Read more.
Humpback whales (Megaptera novaeangliae) are well known for their complex acoustic communication, which plays a critical role in social interactions and reproduction. Understanding the variability in humpback whale songs is crucial to deciphering their communication strategies and the factors that influence these changes, which may affect reproductive success and population dynamics. While most studies of humpback whale song behavior have focused on annual variation, intra-seasonal changes remain underexplored. This study investigates intra-seasonal song variation in the Colombian Pacific humpback whale population, a unique and diverse breeding stock. We analyzed 37 h of recordings collected during two distinct periods of the 2019 breeding season (July and August–September) in the northern Colombian Pacific. Song repertoires were compared between periods, and the acoustic structure of a common song unit (Unit1) was analyzed using spectrographic cross-correlation. Results revealed a decrease in repertoire diversity over the course of the season, along with an increase in the song rate and the acoustic consistency of Unit1 during the second period. These findings highlight the dynamic nature of humpback whale song production and suggest potential influences of social learning and hormonal modulation. Such insights may be useful for the conservation and monitoring of humpback whale populations in breeding areas. Full article
(This article belongs to the Special Issue Recent Advances in Marine Bioacoustics)
Show Figures

Figure 1

12 pages, 2486 KiB  
Communication
PDX1 Functions as a Tumor Suppressor in MCF7 Breast Cancer Cells: Implications for Chemotherapeutic Sensitivity
by Tayo Alex Adekiya
BioChem 2025, 5(3), 20; https://doi.org/10.3390/biochem5030020 (registering DOI) - 17 Jul 2025
Abstract
Background: Transcription factor pancreatic and duodenal homeobox 1 (PDX1) plays a central role in pancreatic development and insulin regulation. However, its role in breast cancer remains largely unexplored. Objective: This study investigated the effects of PDX1 knockdown and overexpression on MCF7 [...] Read more.
Background: Transcription factor pancreatic and duodenal homeobox 1 (PDX1) plays a central role in pancreatic development and insulin regulation. However, its role in breast cancer remains largely unexplored. Objective: This study investigated the effects of PDX1 knockdown and overexpression on MCF7 breast cancer cell proliferation and responsiveness to paclitaxel and doxorubicin. Methods: PDX1 knockdown and overexpression models were established in MCF7 cells. Cell viability was assessed using the XTT assay following exposure to paclitaxel (5–100 nM) or doxorubicin (125–10 µM). Gene and protein expression levels were analyzed by qRT-PCR and western blotting. Results: PDX1 knockdown in MCF7 cells led to a significant increase in proliferation compared to the scrambled control, with approximately 3.22-fold at 72 h, whereas PDX1 overexpression markedly reduced proliferation by about 2.4-fold at 72 h when compared with the control. Upon treatment with paclitaxel or doxorubicin, knockdown cells showed higher viability, indicating reduced drug sensitivity. In contrast, PDX1-overexpressing cells exhibited a significant decrease in viability after treatment with both drugs, demonstrating enhanced sensitivity. Conclusions: PDX1 exhibits tumor-suppressive properties in MCF7 cells and modulates drug response, suggesting that it may serve as a biomarker or therapeutic target in hormone receptor-positive breast cancer. Full article
Show Figures

Figure 1

20 pages, 3813 KiB  
Article
OpenOil-Based Analysis of Oil Dispersion Dynamics: The Agia Zoni II Shipwreck Case
by Vassilios Papaioannou, Christos G. E. Anagnostopoulos, Konstantinos Vlachos, Anastasia Moumtzidou, Ilias Gialampoukidis, Stefanos Vrochidis and Ioannis Kompatsiaris
Water 2025, 17(14), 2126; https://doi.org/10.3390/w17142126 (registering DOI) - 17 Jul 2025
Abstract
This study investigates the spatiotemporal evolution of oil released during the Agia Zoni II shipwreck in the Saronic Gulf in 2017, employing the OpenOil module of the OpenDrift framework. The simulation integrates oceanographic and meteorological data to model the transport, weathering, and fate [...] Read more.
This study investigates the spatiotemporal evolution of oil released during the Agia Zoni II shipwreck in the Saronic Gulf in 2017, employing the OpenOil module of the OpenDrift framework. The simulation integrates oceanographic and meteorological data to model the transport, weathering, and fate of spilled oil over a six-day period. Oil behavior is examined across key transformation processes, including dispersion, emulsification, evaporation, and biodegradation, using particle-based modeling and a comprehensive set of environmental inputs. The modeled results are validated against in situ observations and visual inspection data, focusing on four critical dates. The study demonstrates OpenOil’s potential for accurately simulating oil dispersion dynamics in semi-enclosed marine environments and highlights the significance of environmental forcing, vertical mixing, and shoreline interactions in determining oil fate. It concludes with recommendations for improving real-time response strategies in similar spill scenarios. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Graphical abstract

Back to TopTop