Monitoring the Capillary Jet Breakage by Vibration Using a Fast-Video Camera
Abstract
:1. Introduction
2. Materials and Methods
2.1. Alginate Solution
2.2. Droplet Production
2.3. Droplet Formation Visualization
3. Theoretical Approach
4. Results and Discussion
4.1. Selection of the Optimum Vibration Frequency
4.2. Selection of the Vibrated Membrane
4.3. Mean Diameter and Size Dispersion Distribution
4.4. Jet Expansion
5. Droplet Diameter versus Jet Diameter
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kierstan, M.; Bucke, C. The immobilization of microbial cells, subcellular organelles, and enzymes in calcium alginate gels. Biotechnol. Bioeng. 1977, 19, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Xie, W.; Liu, X.; Zhang, Y.; Yu, W.; Wang, W.; Ma, X. A new multinozzle encapsulation system for the large-scale production of uniform alginate beads. J. Biotechnol. 2008, 136, S141–S142. [Google Scholar] [CrossRef]
- Bahry, H.; Abdalla, R.; Pons, A.; Taha, S.; Vial, C. Optimization of lactic acid production using immobilized Lactobacillus Rhamnosus and carob pod waste from the Lebanese food industry. J. Biotechnol. 2019, 306, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Schoebitz, M.; Simonin, H.; Poncelet, D. Starch filler and osmoprotectants improve the survival of rhizobacteria in dried alginate beads. J. Microencapsul. 2012, 29, 532–538. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.P.; Tulini, F.; Ribas, M.M.; Penning, M.; Favaro-Trindade, C.S.; Poncelet, D. Microcapsules loaded with the probiotic Lactobacillus paracasei BGP-1 produced by co-extrusion technology using alginate/shellac as wall material: Characterization and evaluation of drying processes. Food Res. Int. 2016, 89, 582–590. [Google Scholar] [CrossRef] [PubMed]
- Abang, S.; Chan, E.-S.; Poncelet, D. Effects of process variables on the encapsulation of oil in ca-alginate capsules using an inverse gelation technique. J. Microencapsul. 2012, 29, 417–428. [Google Scholar] [CrossRef] [PubMed]
- Poncelet, D.; Neufeld, R.; Bugarski, B.; Amsden, B.G.; Zhu, J.; Goosen, M.F.A. A Parallel plate electrostatic droplet generator: Parameters affecting microbead size. Appl. Microbiol. Biotechnol. 1994, 42, 251–255. [Google Scholar] [CrossRef]
- Brandenberger, H.; Widmer, F. A new multinozzle encapsulation/immobilisation system to produce uniform beads of alginate. J. Biotechnol. 1998, 63, 73–80. [Google Scholar] [CrossRef]
- Schwinger, C.; Koch, S.; Jahnz, U.; Wittlich, P.; Rainov, N.G.; Kressler, J. High throughput encapsulation of murine fibroblasts in alginate using the JetCutter technology. J. Microencapsul. 2002, 19, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Savart, F. Memoire sur la constitution des veines liquides lancees par des orifices circulaires en mince paroi. Ann. Chim. Phys. 1833, 53, 337–386. [Google Scholar]
- Rayleigh, J.W.S. On the capillary phenomena of jets. Proc. R. Soc. Lond. 1879, 29, 71–97. Available online: https://www.jstor.org/stable/113738 (accessed on 23 March 2021).
- Yuen, M.C. Nonlinear capillary instability of a liquid jet. J. Fluid Mech. 1968, 33, 131–163. [Google Scholar] [CrossRef]
- Bousfield, D.W.; Keunings, R.; Marrucchi, G.; Denn, M.M. Nonlinear analysis of the surface driven breakup of viscoelastic filaments. J. Non-Newton. Fluid Mech. 1986, 21, 79–97. [Google Scholar] [CrossRef]
- Ardekani, A.M.; Sharma, V.; McKinley, G.H. Dynamics of bead formation, filament thinning and breakup in weakly viscoelastic jets. J. Fluid Mech. 2010, 665, 46–56. [Google Scholar] [CrossRef] [Green Version]
- Büchi Labortechnik AG. Buchi Encapsulator B-390-Operation Manual, Version E; BÜCHI Labortechnik AG: Flawil, Switzerland, 2016. [Google Scholar]
- Schneider, J.M.; Hendricks, C.D. Source of Uniform-Sized Liquid Droplets. Rev. Sci. Instrum. 1964, 35, 1349–1350. [Google Scholar] [CrossRef]
- Weber, C. Zum zerfall eines flussikeitstahles. Z. Angew. Math. Mech. 1931, 11, 136–155. [Google Scholar] [CrossRef]
- Buchi Corporation. Encapsulator B-390, Switzerland. 2018. Available online: https://www.buchi.com/us-en/products/spray-drying-and-encapsulation/encapsulator-b-390 (accessed on 23 March 2021).
- Nisco Engineering AG. Principle of Laminar Jet Break-up VAR D, Zurich. 2015. Available online: http://www.nisco.ch/working_principle_electromagnetic.htm (accessed on 23 March 2021).
- Brace GmbH. Spherisator M2, Germany. 2021. Available online: https://www.brace.de/en/spherisator-m2.html (accessed on 26 March 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chalella Mazzocato, M.; Chevallier, S.; Fávaro-Trindade, C.S.; Poncelet, D. Monitoring the Capillary Jet Breakage by Vibration Using a Fast-Video Camera. Appl. Sci. 2021, 11, 10222. https://doi.org/10.3390/app112110222
Chalella Mazzocato M, Chevallier S, Fávaro-Trindade CS, Poncelet D. Monitoring the Capillary Jet Breakage by Vibration Using a Fast-Video Camera. Applied Sciences. 2021; 11(21):10222. https://doi.org/10.3390/app112110222
Chicago/Turabian StyleChalella Mazzocato, Marcella, Sylvie Chevallier, Carmen S. Fávaro-Trindade, and Denis Poncelet. 2021. "Monitoring the Capillary Jet Breakage by Vibration Using a Fast-Video Camera" Applied Sciences 11, no. 21: 10222. https://doi.org/10.3390/app112110222
APA StyleChalella Mazzocato, M., Chevallier, S., Fávaro-Trindade, C. S., & Poncelet, D. (2021). Monitoring the Capillary Jet Breakage by Vibration Using a Fast-Video Camera. Applied Sciences, 11(21), 10222. https://doi.org/10.3390/app112110222