The Bimodal Neutron and X-ray Imaging Driven by a Single Electron Linear Accelerator
Abstract
:1. Introduction
2. Materials and Methods
2.1. System Overview
2.2. Imaging Sequence
2.3. The Spatial Distribution of Imaging Neutrons and Imaging Photons
3. Results
4. Discussion
4.1. The Influence of Counting Statistics on Identifying the Material
4.2. To Improve the Neutron Yield of the Photoneutron Source
4.3. The Hardening Effect
4.4. The Capability for Nuclides Sensitive Imaging
4.5. The Applcation in Fast Process Imaging
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Electron Linear Acceleractor
Appendix A.2. Heavy Water Converter
Appendix A.3. Neutron Moderator
Appendix A.4. Shielding and Collimator
Appendix A.5. Detector
Appendix A.6. Fusion of Images
References
- Anderson, I.S.; Robert, L.M.; Bilheux, H.Z. Neutron Imaging and Applications; Springer: Berlin/Heidelberg, Germany, 2009; p. 987. [Google Scholar]
- Banhart, J.; Borbély, A.; Dzieciol, K.; Garcia-Moreno, F.; Manke, I.; Kardjilov, N.; Kaysser-Pyzalla, A.R.; Strobl, M.; Treimer, W. X-ray and neutron imaging–Complementary techniques for materials science and engineering. Int. J. Mater. Res. 2010, 101, 1069–1079. [Google Scholar] [CrossRef]
- Horn, Q.C.; Yang, S.-H. Morphology and spatial distribution of ZnO formed in discharged alkaline Zn/MnO2 AA cells. J. Electrochem. Soc. 2003, 150, A652. [Google Scholar] [CrossRef]
- Tötzke, C.; Kardjilov, N.; Lenoir, N.; Manke, I.; Oswald, S.E.; Tengattini, A. What comes NeXT?—High-speed neutron tomography at ILL. Opt. Express 2019, 27, 28640–28648. [Google Scholar] [CrossRef] [PubMed]
- De Beer, F.C. Neutron and X-ray tomography at Necsa. J. South. Afr. Inst. Min. Metall. 2008, 108, 613–620. [Google Scholar]
- Clark, T.; Burca, G.; Boardman, R.; Blumensath, T. Correlative X-ray and neutron tomography of root systems using cadmium fiducial markers. J. Microsc. 2020, 277, 170–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehmann, E.H.; Vontobel, P.; Deschler-Erb, E.; Soares, M. Non-invasive studies of objects from cultural heritage. Nucl. Instr. Methods Phys. Res. Sect. A Accel. Spectr. Detect. Assoc. Equip. 2005, 542, 68–75. [Google Scholar] [CrossRef]
- Carminati, A.; Kaestner, A.; Lehmann, P.; Flühler, H.; Lehmann, E.; Hassanein, R.; Vontobel, P.; Stampanoni, M.; Groso, A. Monitoring water flow in soils, using neutron and x-ray tomography. PSI Sci. Rep. 2005, 2006, 28–29. [Google Scholar]
- Kaestner, A.P.; Hovind, J.; Boillat, P.; Muehlebach, C.; Carminati, C.; Zarebanadkouki, M.; Lehmann, E.H. Bimodal imaging at ICON using neutrons and X-rays. Phys. Procedia 2017, 88, 314–321. [Google Scholar] [CrossRef]
- Fedrigo, A.; Marstal, K.; Bender Koch, C.; Andersen Dahl, V.; Bjorholm Dahl, A.; Lyksborg, M.; Gundlach, C.; Ott, F.; Strobl, M. Investigation of a Monturaqui Impactite by means of bi-modal X-ray and neutron tomography. J. Imaging 2018, 4, 72. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, E.H.; Mannes, D.; Kaestner, A.P.; Hovind, J.; Trtik, P.; Strobl, M. The XTRA Option at the NEUTRA Facility—More Than 10 Years of Bi-Modal Neutron and X-ray Imaging at PSI. Appl. Sci. 2021, 11, 3825. [Google Scholar] [CrossRef]
- LaManna, J.M.; Hussey, D.S.; Baltic, E.; Jacobson, D.L. Neutron and X-ray Tomography (NeXT) system for simultaneous, dual modality tomography. Rev. Sci. Instr. 2017, 88, 113702. [Google Scholar] [CrossRef] [PubMed]
- Tengattini, A.; Lenoir, N.; Andò, E.; Giroud, B.; Atkins, D.; Beaucour, J.; Viggiani, G. NeXT-Grenoble, the Neutron and X-ray tomograph in Grenoble. Nucl. Instr. Methods Phys. Res. Sect. A Accel. Spectr. Detect. Assoc. Equip. 2020, 968, 163939. [Google Scholar] [CrossRef]
- Development Opportunities for Small and Medium Scale Accelerator Driven Neutron Sources; IAEA-TECDOC-1439; IAEA: Vienna, Austria, 2005.
- Knoll, G.F. Radiation Detection and Measurement; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Tsukimura, R.R.; Meren, A.W.; Scott, V.P. Detection of residual core in air-cooled turbine blades using neutron radiography. In Proceedings of the SPIE 2455, Nondestructive Evaluation of Aging Aircraft, Airports, Aerospace Hardware, and Materials, Oakland, CA, USA, 7 July 1995. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM–The stopping and range of ions in matter. Nucl. Instr. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2010, 268, 1818–1823. [Google Scholar] [CrossRef] [Green Version]
- Gruenzweig, C. Visualization of a Fired Two-Stroke Chain Saw Engine Running at Idle Speed by Dynamic Neutron Radiography; SAE Technical Paper 2010-32-0013; SAE International: Warrendale, PA, USA, 2010. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Y.; Wang, X.; Li, Y. Readout for a large area neutron sensitive microchannel plate detector. Nucl. Instr. Methods Phys. Res. Sect. A Accel. Spectr. Detect. Assoc. Equip. 2015, 784, 226–231. [Google Scholar] [CrossRef]
- Siegmund, O.H.; Vallerga, J.V.; Tremsin, A.S.; Mcphate, J.; Feller, B. High spatial resolution neutron sensing microchannel plate detectors. Nucl. Instr. Methods Phys. Res. Sect. A Accel. Spectr. Detect. Assoc. Equip. 2007, 576, 178–182. [Google Scholar] [CrossRef]
- Tremsin, A.S.; Vallerga, J.V. Unique capabilities and applications of Microchannel Plate (MCP) detectors with Medipix/Timepix readout. Radiat. Meas. 2020, 130, 106228. [Google Scholar] [CrossRef]
- Trtik, P.; Morgano, M.; Bentz, R.; Lehmann, E. 100 Hz neutron radiography at the BOA beamline using a parabolic focussing guide. MethodsX 2016, 3, 535–541. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Zhang, R.; Lu, L.; Yang, Y. The Bimodal Neutron and X-ray Imaging Driven by a Single Electron Linear Accelerator. Appl. Sci. 2021, 11, 6050. https://doi.org/10.3390/app11136050
Yu Y, Zhang R, Lu L, Yang Y. The Bimodal Neutron and X-ray Imaging Driven by a Single Electron Linear Accelerator. Applied Sciences. 2021; 11(13):6050. https://doi.org/10.3390/app11136050
Chicago/Turabian StyleYu, Yangyi, Ruiqin Zhang, Lu Lu, and Yigang Yang. 2021. "The Bimodal Neutron and X-ray Imaging Driven by a Single Electron Linear Accelerator" Applied Sciences 11, no. 13: 6050. https://doi.org/10.3390/app11136050
APA StyleYu, Y., Zhang, R., Lu, L., & Yang, Y. (2021). The Bimodal Neutron and X-ray Imaging Driven by a Single Electron Linear Accelerator. Applied Sciences, 11(13), 6050. https://doi.org/10.3390/app11136050