Evaluation of Morphological Changes in Grapes Coated with a Biosurfactant Extract Obtained from Corn Steep Liquor
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Biosurfactant Extraction from Corn Steep Liquor
2.2. Treatment of Grapes with Biosurfactant Extract Solution
2.3. Morphological Analysis of Grapes
2.4. Contact Angle Measurements
2.5. Statistical Analysis
3. Results and Discussion
3.1. Effect of Biosurfactant Extract on the Grape Morphology
3.2. Effect of Biosurfactant on Contact Angle of Grapes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodríguez-López, L.; Rincón-Fontán, M.; Vecino, X.; Cruz, J.M.; Moldes, A. Ionic Behavior Assessment of Surface-Active Compounds from Corn Steep Liquor by Exchange Resins. J. Surfactants Deterg. 2017, 20, 207–217. [Google Scholar] [CrossRef] [Green Version]
- López-Prieto, A.; Vecino, X.; Rodríguez-López, L.; Moldes, A.B.; Cruz, J.M. A Multifunctional Biosurfactant Extract Obtained from Corn Steep Water as Bactericide for Agrifood Industry. Foods 2019, 8, 410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Prieto, A.; Vecino, X.; Rodríguez-López, L.; Moldes, A.B.; Cruz, J.M. Fungistatic and Fungicidal Capacity of a Biosurfactant Extract Obtained from Corn Steep Water. Foods 2020, 9, 662. [Google Scholar] [CrossRef]
- Ben Khedher, S.; Boukedi, H.; Laarif, A.; Tounsi, S. Biosurfactant Produced by Bacillus Subtilis V26: A Potential Biological Control Approach for Sustainable Agriculture Development. Org. Agric. 2020, 10, 117–124. [Google Scholar] [CrossRef]
- Kourmentza, K.; Gromada, X.; Michael, N.; Degraeve, C.; Vanier, G.; Ravallec, R.; Coutte, F.; Karatzas, K.A.; Jauregi, P. Antimicrobial Activity of Lipopeptide Biosurfactants against Foodborne Pathogen and Food Spoilage Microorganisms and Their Cytotoxicity. Front. Microbiol. 2021, 11, 561060. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Das, P.; Sen, R. Towards Commercial Production of Microbial Surfactants. Trends Biotechnol. 2006, 24, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Makkar, R.S.; Cameotra, S.S.; Banat, I.M. Advances in Utilization of Renewable Substrates for Biosurfactant Production. AMB Express 2011, 1, 5. [Google Scholar] [CrossRef] [Green Version]
- Vecino, X.; Cruz, J.M.; Moldes, A.B.; Rodrigues, L.R. Biosurfactants in Cosmetic Formulations: Trends and Challenges. Crit. Rev. Biotechnol. 2017, 37, 911–923. [Google Scholar] [CrossRef]
- Vecino, X.; Barbosa-Pereira, L.; Devesa-Rey, R.; Cruz, J.M.; Moldes, A.B. Study of the Surfactant Properties of Aqueous Stream from the Corn Milling Industry. J. Agric. Food Chem. 2014, 62, 5451–5457. [Google Scholar] [CrossRef]
- Vecino, X.; Barbosa-Pereira, L.; Devesa-Rey, R.; Cruz, J.M.; Moldes, A.B. Optimization of Liquid–Liquid Extraction of Biosurfactants from Corn Steep Liquor. Bioprocess Biosyst. Eng. 2015, 38, 1629–1637. [Google Scholar] [CrossRef]
- López-Prieto, A.; Martínez-Padrón, H.; Rodríguez-López, L.; Moldes, A.B.; Cruz, J.M. Isolation and Characterization of a Microorganism That Produces Biosurfactants in Corn Steep Water. CyTA-J. Food 2019, 17, 509–516. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-López, L.; Rincón-Fontán, M.; Vecino, X.; Cruz, J.M.; Moldes, A.B. Extraction, Separation and Characterization of Lipopeptides and Phospholipids from Corn Steep Water. Sep. Purif. Technol. 2020, 248, 117076. [Google Scholar] [CrossRef]
- López-Prieto, A.; Rodríguez-López, L.; Rincón-Fontán, M.; Cruz, J.M.; Moldes, A.B. Characterization of Extracellular and Cell Bound Biosurfactants Produced by Aneurinibacillus Aneurinilyticus Isolated from Commercial Corn Steep Liquor. Microbiol. Res. 2021, 242, 126614. [Google Scholar] [CrossRef]
- Rodríguez-López, L.; López-Prieto, A.; Lopez-Álvarez, M.; Pérez-Davila, S.; Serra, J.; González, P.; Cruz, J.M.; Moldes, A.B. Characterization and Cytotoxic Effect of Biosurfactants Obtained from Different Sources. ACS Omega 2020, 5, 31381–31390. [Google Scholar] [CrossRef]
- López-Prieto, A.; Moldes, A.B.; Cruz, J.M.; Pérez Cid, B. Towards More Ecofriendly Pesticides: Use of Biosurfactants Obtained from the Corn Milling Industry as Solubilizing Agent of Copper Oxychloride. J. Surfactants Deterg. 2020, 23, 1055–1066. [Google Scholar] [CrossRef]
- Rodríguez-López, L.; Rincón-Fontán, M.; Vecino, X.; Moldes, A.B.; Cruz, J.M. Biodegradability Study of the Biosurfactant Contained in a Crude Extract from Corn Steep Water. J. Surfactants Deterg. 2020, 23, 79–90. [Google Scholar] [CrossRef]
- Scalzini, G.; López-Prieto, A.; Paissoni, M.A.; Englezos, V.; Giacosa, S.; Rolle, L.; Gerbi, V.; Segade, S.R.; Cid, B.P.; Moldes, A.B.; et al. Can a Corn-Derived Biosurfactant Improve Colour Traits of Wine? First Insight on Its Application during Winegrape Skin Maceration versus Oenological Tannins. Foods 2020, 9, 1747. [Google Scholar] [CrossRef] [PubMed]
- Stover, E.; Mercure, E.W. The Pomegranate: A New Look at the Fruit of Paradise. HortScience 2007, 42, 1088–1092. [Google Scholar] [CrossRef] [Green Version]
- Czieczor, L.; Bentkamp, C.; Damerow, L.; Blanke, M. Non-Invasive Determination of the Quality of Pomegranate Fruit. Postharvest Biol. Technol. 2018, 136, 74–79. [Google Scholar] [CrossRef]
- Thompson, A.K. Controlled Atmosphere Storage of Fruits and Vegetables; Wilford, S., Carroll, M., Eds.; CABI: Wallingford, UK, 2010; ISBN 9781845936464. [Google Scholar]
- Rodríguez-López, L.; Vecino, X.; Barbosa-Pereira, L.; Moldes, A.B.; Cruz, J.M. A Multifunctional Extract from Corn Steep Liquor: Antioxidant and Surfactant Activities. Food Funct. 2016, 7, 3724–3732. [Google Scholar] [CrossRef]
- Marinello, F.; Pezzuolo, A. Application of ISO 25178 Standard for Multiscale 3D Parametric Assessment of Surface Topographies. IOP Conf. Ser. Earth Environ. Sci. 2019, 275, 012011. [Google Scholar] [CrossRef]
- AENOR (Asociación Española de Normalización y Certificación). Geometrical Product Specifications (GPS)—Surface Texture: Areal—Part 1: Indication of Surface Texture; BSI: London, UK, 2016; ISO 25178-1:2016; pp. 1–32. [Google Scholar]
- Sapper, M.; Bonet, M.; Chiralt, A. Wettability of Starch-Gellan Coatings on Fruits, as Affected by the Incorporation of Essential Oil and/or Surfactants. LWT-Food Sci. Technol. 2019, 116, 108574. [Google Scholar] [CrossRef]
- Wenzel, R.N. Resistance of Solid Surfaces to Wetting by Water. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar] [CrossRef]
NON-COATED GRAPES (FINE STRUCTURE + SHAPE) | ||||||
---|---|---|---|---|---|---|
Parameter | Units | 1 Day | 3 Days | 5 Days | 9 Days | 11 Days |
Sa | nm | 960.20 ± 116.08 | 1764.82 908.96 | 6866.36 2551.66 | 7071.60 1996.39 | 6910.16 2145.21 |
Sq | nm | 1166.55 ± 161.17 | 2150.18 1002.70 | 8406.54 3038.88 | 8833.72 2502.39 | 8666.92 2752.21 |
Sp | µm | 3.75 ± 1.96 | 5.97 2.76 | 22.65 14.44 | 15.47 1.86 | 15.98 2.31 |
Sv | µm | 8.43 ± 4.20 | 11.29 7.71 | 25.04 9.15 | 34.07 9.70 | 28.75 11.91 |
Sz | µm | 12.18 ± 5.38 | 17.26 10.15 | 47.69 21.54 | 49.55 10.30 | 44.73 13.14 |
S10z | µm | 10.87 ± 4.57 | 14.10 7.34 | 38.87 18.27 | 46.05 11.15 | 37.82 7.10 |
Ssk | −0.36 ± 0.22 | −0.37 0.39 | −0.30 0.51 | −0.82 0.51 | −0.61 0.46 | |
Sku | 3.86 ± 2.08 | 3.33 1.10 | 2.62 0.33 | 3.96 1.83 | 3.02 0.45 | |
Sdq | 0.22 ± 0.15 | 0.22 0.14 | 0.39 0.27 | 0.34 0.14 | 0.29 0.06 | |
Sdr | 2.39 ± 2.79 | 2.65 2.91 | 7.16 8.28 | 5.55 3.67 | 4.22 1.70 | |
COATED GRAPES (FINE STRUCTURE + SHAPE) | ||||||
Sa | nm | 1145.55 63.39 | 885.65 126.08 | 1021.05 243.30 | 2696.16 935.96 | 3803.46 1056.51 |
Sq | nm | 1206.95 166.54 | 1077.16 143.59 | 1231.65 285.29 | 3344.78 1285.49 | 4681.28 1268.89 |
Sp | µm | ND * | 2.53 0.45 | 2.65 0.53 | 6.75 1.56 | 8.13 1.50 |
Sv | µm | ND * | 3.98 0.60 | 4.17 0.71 | 13.51 10.91 | 17.41 4.23 |
Sz | µm | ND * | 6.51 1.04 | 6.83 1.15 | 20.26 11.71 | 25.54 5.59 |
S10z | µm | ND * | 6.14 1.03 | 6.10 1.04 | 15.97 5.30 | 22.31 4.95 |
Ssk | −0.78 0.44 | −0.47 0.12 | −0.34 0.18 | −0.66 0.50 | −0.70 0.27 | |
Sku | 1.36 0.71 | 2.74 0.20 | 2.50 0.24 | 3.19 1.62 | 3.01 0.38 | |
Sdq | 0.09 0.03 | 0.08 0.02 | 0.07 0.01 | 0.13 0.03 | 0.16 0.02 | |
Sdr | 0.43 0.27 | 0.30 0.14 | 0.22 0.06 | 0.87 0.32 | 1.29 0.24 |
NON-COATED GRAPES (FINE STRUCTURE) | ||||||
---|---|---|---|---|---|---|
Parameter | Units | 1 Day | 3 Days | 5 Days | 9 Days | 11 Days |
Sa | nm | 232.89 90.37 | 403.41 72.26 | 792.24 114.51 | 1066.72 388.53 | 959.62 265.49 |
Sq | nm | 319.46 128.15 | 546.19 113.88 | 1023.26 146.70 | 1347.96 519.25 | 1194.56 306.42 |
Sp | µm | 3.14 2.42 | 4.88 3.22 | 13.08 20.09 | 5.36 2.15 | 4.77 0.54 |
Sv | µm | 6.11 5.12 | 8.64 8.58 | 13.10 11.15 | 7.76 3.63 | 4.37 0.97 |
Sz | µm | 9.25 7.19 | 13.52 11.74 | 26.18 29.01 | 13.12 5.29 | 9.14 1.23 |
S10z | µm | 7.08 5.19 | 10.03 7.08 | 19.15 25.37 | 11.31 5.05 | 8.32 1.26 |
Ssk | −1.28 2.75 | −1.01 1.41 | −0.34 1.01 | −0.15 0.48 | 0.12 0.39 | |
Sku | 37.74 37.32 | 46.10 76.60 | 16.48 25.37 | 3.66 0.92 | 3.28 0.78 | |
Sdq | 0.20 0.18 | 0.21 0.15 | 0.33 0.29 | 0.26 0.14 | 0.21 0.04 | |
Sdr | 2.41 3.40 | 2.42 2.87 | 5.61 8.05 | 3.15 2.82 | 2.26 0.82 | |
COATED GRAPES (FINE STRUCTURE) | ||||||
Sa | nm | 140.42 15.39 | 159.82 27.65 | 188.74 27.99 | 424.71 54.13 | 538.46 31.17 |
Sq | nm | 181.59 21.57 | 208.71 41.70 | 238.72 34.39 | 537.53 64.68 | 691.43 52.35 |
Sp | µm | 1.31 0.22 | 1.42 0.44 | 1.41 0.34 | 2.12 0.62 | 3.18 0.71 |
Sv | µm | 0.84 0.06 | 1.39 1.10 | 0.98 0.15 | 3.56 2.89 | 3.59 0.89 |
Sz | µm | 2.15 0.27 | 2.81 1.27 | 2.39 0.42 | 5.68 2.75 | 6.76 0.71 |
S10z | µm | 1.77 0.30 | 2.38 1.17 | 2.03 0.33 | 4.49 1.15 | 5.98 0.49 |
Ssk | 0.66 0.20 | 0.33 0.75 | 0.30 0.19 | −0.23 0.24 | −0.33 0.32 | |
Sku | 4.12 0.55 | 6.78 4.86 | 3.47 0.42 | 4.13 1.49 | 4.03 0.85 | |
Sdq | 0.07 0.01 | 0.07 0.02 | 0.06 0.01 | 0.11 0.02 | 0.12 0.01 | |
Sdr | 0.24 0.06 | 0.27 0.13 | 0.18 0.06 | 0.60 0.15 | 0.70 0.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Arcos, A.; López-Prieto, A.; Rodríguez-López, L.; Pérez-Cid, B.; Vecino, X.; Moldes, A.B.; Cruz, J.M. Evaluation of Morphological Changes in Grapes Coated with a Biosurfactant Extract Obtained from Corn Steep Liquor. Appl. Sci. 2021, 11, 5904. https://doi.org/10.3390/app11135904
Martínez-Arcos A, López-Prieto A, Rodríguez-López L, Pérez-Cid B, Vecino X, Moldes AB, Cruz JM. Evaluation of Morphological Changes in Grapes Coated with a Biosurfactant Extract Obtained from Corn Steep Liquor. Applied Sciences. 2021; 11(13):5904. https://doi.org/10.3390/app11135904
Chicago/Turabian StyleMartínez-Arcos, Andrea, Alejandro López-Prieto, Lorena Rodríguez-López, Benita Pérez-Cid, Xanel Vecino, Ana Belén Moldes, and José Manuel Cruz. 2021. "Evaluation of Morphological Changes in Grapes Coated with a Biosurfactant Extract Obtained from Corn Steep Liquor" Applied Sciences 11, no. 13: 5904. https://doi.org/10.3390/app11135904
APA StyleMartínez-Arcos, A., López-Prieto, A., Rodríguez-López, L., Pérez-Cid, B., Vecino, X., Moldes, A. B., & Cruz, J. M. (2021). Evaluation of Morphological Changes in Grapes Coated with a Biosurfactant Extract Obtained from Corn Steep Liquor. Applied Sciences, 11(13), 5904. https://doi.org/10.3390/app11135904