Magnetoelectric Plasma Preparation of Silicon-Carbon Nanocomposite as Anode Material for Lithium Ion Batteries
Abstract
1. Introduction
2. Experimental
2.1. Material Preparation
2.2. Material Characterization
2.3. Electrochemical Characterization
3. Results and Discussion
3.1. Yields under Different Carrier Gas Flow
3.2. Effect of Silane/Methane Ratio on Silicon-Carbon Nanocomposite
3.3. Effect of Hydrogen on Silicon-Carbon Nanocomposite
3.4. Characterization of the Silicon-Carbon Nanocomposite
3.5. Electrochemical Performance of Silicon-Carbon Nanocomposite
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Choi, J.W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1, 1–13. [Google Scholar] [CrossRef]
- Bruce, P.; Scrosati, B.; Tarascon, J.M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 2008, 47, 2930–2946. [Google Scholar] [CrossRef] [PubMed]
- Dunn, B.; Kamath, H.; Tarascon, J.M. Electrical Energy Storage for the Grid: A Battery of Choices. Science 2011, 334, 928–935. [Google Scholar] [CrossRef] [PubMed]
- Winter, M.; Jürgen, O.B.; Spahr, M.E.; Novak, P. Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 1998, 10, 725–763. [Google Scholar] [CrossRef]
- Endo, M.; Kim, C.; Nishimura, K.; Fujino, T.; Miyashita, K. Recent Development of Carbon Materials for Li Ion Batteries. Carbon 2000, 38, 183–197. [Google Scholar] [CrossRef]
- Zhou, M.; Liu, Y.; Chen, J.; Yang, X.; Mater, J. Double shelled hollow SnO2/polymer microsphere as a high-capacity anode material for superior reversible lithium ion storage. J. Mater. Chem. A 2015, 3, 1068–1076. [Google Scholar] [CrossRef]
- Zhu., Z.; Wang, S.; Du, J.; Jin, Q.; Zhang, T.; Cheng, F. Ultrasmall sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries. Nano Lett. 2014, 14, 153–157. [Google Scholar] [CrossRef]
- Huang, X.; Yang, J.; Mao, S.; Chang, J.; Hallac, P.B.; Fell, C.R.; Metz, B.; Jiang, J.; Hurley, P.T.; Chen, J. Controllable synthesis of hollow Si anode for long-cycle-life lithium-ion batteries. Adv. Mater. 2014, 26, 4326–4332. [Google Scholar] [CrossRef]
- Zhou, X.; Guo, Y.G. A peo-assisted electrospun silicon-graphene composite as an anode material for lithium-ion batteries. J. Mater. Chem. A 2013, 1, 9019–9023. [Google Scholar] [CrossRef]
- Yang, X.Y.; Tachikawa, N.; Katayama, Y.; Li, L.; Yan, J.W. Effect of the pillar size on the electrochemical performance of laser-induced silicon micropillars as anodes for lithium-ion batteries. Appl. Sci. 2019, 9, 3623. [Google Scholar] [CrossRef]
- Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J.M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Zhang, H.J.; Bai, Y.J.; Zhang, Y.; Wang, Y. A self-supported peapod-like mesoporous TiO2-C array with excellent anode performance in lithium-ion batteries. Nanoscale 2015, 7, 8758–8765. [Google Scholar] [CrossRef]
- Wang, B.; Li, X.; Zhang, X.; Luo, B.; Jin, M.; Liang, M.; Dayeh, S.A.; Picraux, S.T.; Zhi, L. Adaptable silicon-carbon nanocables sandwiched between reduced graphene oxide sheets as lithium ion battery anodes. Acs Nano 2013, 7, 1437–1445. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.P.; Zheng, J.M.; Song, J.K.; Luo, L.L.; Zhang, J.-G. A novel approach to synthesize micrometer-sized porous silicon as a high performance anode for lithium-ion batteries. Nano Energy 2018, 50, 589–597. [Google Scholar] [CrossRef]
- Yu, Y.; Gu, L.; Zhu, C.; Tsukimoto, S.; van Aken, P.A.; Maier, J. Reversible storage of lithium in silver-coated three-dimensional macroporous silicon. Adv. Mater. 2010, 22, 2247–2250. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Lu, C.; Zhang, B. A straightforward approach towards Si@C/graphene nanocomposite and its superior lithium storage performance. Electrochim. Acta 2014, 120, 96–101. [Google Scholar] [CrossRef]
- Feng, K.; Li, M.; Liu, W.W.; Kashkooli, A.G.; Chen, Z.W. Silicon-based anodes for lithium-ion batteries: From fundamentals to practical applications. Small 2018, 14, 1702737–1702769. [Google Scholar] [CrossRef]
- Liu, X.; Du, Y.; Hu, L.; Zhou, X.; Li, Y.; Dai, Z.; Bao, J. Understanding the effect of different polymeric surfactants on enhancing the silicon/reduced graphene oxide anode performance. J. Phys. Chem. C 2015, 119, 5848–5854. [Google Scholar] [CrossRef]
- Kim, J.; Yang, S.Y.; Kim, K.Y. Improving the microstructure and electrochemical performance of carbon nano-fibers containing graphene-wrapped silicon nanoparticles as a li-ion battery anode. J. Power Sources 2015, 273, 404–412. [Google Scholar] [CrossRef]
- Park, M.S.; Park, E.; Lee, J.; Jeong, G.; Kim, K.J.; Kim, J.H.; Kim, Y.J.; Kim, H. Hydrogen silsequioxane-derived Si/SiOx nano-spheres for high-capacity lithium storage materials. Acs Appl. Mater. Inter. 2014, 6, 9608–9613. [Google Scholar] [CrossRef]
- Kim, S.Y.; Kim, B.H.; Yang, K.Y. Preparation and electrochemical characteristics of a polyvinyl pyrrolidone-Stabilized Si/carbon composite nanofiber anode for a lithium ion battery. J. Electroanal. Chem. 2013, 705, 52–56. [Google Scholar] [CrossRef]
- Liu, N.; Wu, H.; McDowell, M.T.; Yao, Y.; Wang, C.; Cui, Y. A yolk-shell design for stabilized and scalable li-ion battery alloy anodes. Nano Lett. 2012, 12, 3315–3321. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Wang, H.; Gao, D.; Chen, S.; Tan, L.; Li, L. Facile synthesis of yolk-shell structured Si-C nanocomposites as anodes for lithium-ion batteries. Chem. Commun. 2014, 50, 5878–5880. [Google Scholar] [CrossRef]
- Ng, S.H.; Wang, J.; Wexler, D.; Konstantinov, K.; Guo, Z.P.; Liu, H.K. Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries. Angew. Chem. Int. Ed. 2006, 45, 6896–6899. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Lee, J.; Kim, B.H.; Kim, Y.J.; Yang, K.S.; Park, M. A facile synthesis of carbon-coated silicon/graphite spherical composites for high-performance lithium-ion Batteries. Acs Appl. Mater. Inter. 2016, 8, 12109–12117. [Google Scholar] [CrossRef]
- Wang, L.Y.; Liu, Z.J.; Guo, Q.G.; Guo, X.H.; Gu, J.J. Electrochemical properties of a silicon nanoparticle/hollow graphite fiber/carbon coating composite as an anode for lithium-ion batteries. Rsc Adv. 2017, 7, 36735–36743. [Google Scholar] [CrossRef]
- Saint, J.; Morcrette, M.; Larcher, D.; Laffont, L.; Beattie, S.; Pérès, J.P.; Talaga, D.; Couzi, M.; Tarascon, J.M. Towards a fundamental understanding of the improved electrochemical performance of silicon-carbon composites. Adv. Funct. Mater. 2007, 17, 1765–1774. [Google Scholar] [CrossRef]
- Ng, S.H.; Wang, J.; Wexler, D.; Chew, S.Y.; Liu, H.K. Amorphous carbon-coated silicon nanocomposites: A low-temperature synthesis via spray pyrolysis and their application as high-capacity anodes for lithium-ion batteries. J. Phys. Chem. C 2007, 111, 11131–11138. [Google Scholar] [CrossRef]
- Wang, F.; Hong, R.Y. Continuous preparation of structure-controlled carbon nanoparticle via arc plasma and the reinforcement of polymeric composites. Chem. Eng. J. 2017, 328, 1098–1111. [Google Scholar] [CrossRef]
- Park, J.; Heberlein, J.; Pfender, E.; Candler, G.; Chang, C.H. Two-dimensional numerical modeling of direct-current electric arcs in nonequilibrium. Plasma Chem. PlasmaP. 2008, 28, 213–231. [Google Scholar] [CrossRef]
- Wang, F.; Sun, D.L.; Hong, R.Y.; Kumar, M.R. Preparation of carbon nanoparticles by plasma arc discharge under fluidized dynamic equilibrium. J. Nanopart. Res. 2006, 18, 148–162. [Google Scholar] [CrossRef]
- Zhong, R.P.; Hong, R.Y. Continuous preparation and formation mechanism of few-layer graphene by gliding arc plasma. Chem. Eng. J. 2020, 387, 124102–124111. [Google Scholar] [CrossRef]
- Li, B.; Nan, Y.L.; Cao, H.; Yan, P.; Zhao, S.R.; Zhao, X.; Song, X.L. Arc plasma-assisted hydrogenation of few-layer graphene in methane hydrogen atmospheres. Diam. Relat. Mater. 2017, 76, 44–49. [Google Scholar] [CrossRef]
- Doğan, İ.; Weeks, S.L.; Agarwal, S.; van de Sanden, M.C.M. Nucleation of silicon nanocrystals in a remote plasma without subsequent coagulation. J. Appl. Phys. 2014, 115, 244301–244309. [Google Scholar] [CrossRef]
- Seo, M.H.; Park, M.; Lee, K.T.; Kim, K.; Kim, J.; Cho, J. High performance Ge nanowire anode sheathed with carbon for lithium rechargeable batteries. Energ. Environ. Sci. 2011, 4, 425–428. [Google Scholar] [CrossRef][Green Version]
- Lee, J.I.; Choi, N.S.; Park, S. Highly stable Si-based multicomponent anodes for practical use in lithium-ion batteries. Energ. Environ. Sci. 2012, 5, 7878–7882. [Google Scholar] [CrossRef]
- Li, Z.; Huang, J.J.; Zhang, Z.Z.; Zhao, F.X.; Wu, Y. Preparation of high purity nano-silicon powders by direct current arc plasma evaporation method. Mater. Sci. Eng. B 2018, 229, 6–12. [Google Scholar] [CrossRef]
- Lu, S.; Blanco, C.; Appleyard, S.; Hammond, C.; Rand, B. Texture studies of carbon and graphite tapes by XRD texture goniometry. J. Mater. Sci. 2002, 37, 5283–5290. [Google Scholar] [CrossRef]
- Yin, L.; Wang, J.; Lin, F.; Yang, J.; Nuli, Y. Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li-S batteries. Energ. Environ. Sci. 2012, 5, 6966–6972. [Google Scholar] [CrossRef]
- Li, B.; Yu, D.; Zhang, S.L. Raman spectral study of silicon nanowires. Phys. Rev. B 1999, 59, 1645–1648. [Google Scholar] [CrossRef]
- Guo, J.C.; Sun, A.; Chen, X.L.; Wang, C.S.; Manivannan, A. Cyclability study of silicon-carbon composite anodes for lithium-ion batteries using electrochemical impedance spectroscopy. Electrochim. Acta 2011, 56, 3981–3987. [Google Scholar] [CrossRef]
- Hu, R.Z.; Sun, W.; Liu, H.; Zeng, M.; Zhu, M. The fast filling of nano-SnO2 in CNTs by vacuum absorption: A new approach to realize cyclic durable anodes for lithium ion batteries. Nanoscale 2013, 5, 11971–11979. [Google Scholar] [CrossRef] [PubMed]
- Hassoun, J.; Lee, K.S.; Sun, Y.K.; Scrosati, B. An advanced lithium ion battery based on high performance electrode materials. J. Am. Chem. Soc. 2011, 133, 3139–3143. [Google Scholar] [CrossRef]
- Sun, W.; Hu, R.Z.; Zhang, H.Y.; Wang, Y.K.; Yang, L.C.; Liu, J.W.; Zhu, M. A long-life nano-silicon anode for lithium ion batteries: Supporting of graphene nanosheets exfoliated from expanded graphite by plasma-assisted milling. Electrochim. Acta 2016, 187, 1–10. [Google Scholar] [CrossRef]
- Wu, J.X.; Qin, X.Y.; Zhang, H.R.; He, Y.B.; Li, B.H.; Ke, L.; Lv, W.; Du, H.D.; Yang, Q.H.; Kang, F.Y. Multilayered silicon embedded porous carbon/graphene hybrid film as a high performance anode. Carbon 2015, 84, 434–443. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Li, K.; Ji, P.Y.; Chen, D.Q.; Zeng, J.; Sun, Y.Z.; Zhang, P.; Zhao, J.B. Silicon-multi-walled carbon nanotubes-carbon microspherical composite as high-performance anode for lithium-ion batteries. J. Mater. Sci. 2016, 52, 1–12. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Gao, M.; Hong, R.; Lu, X. Magnetoelectric Plasma Preparation of Silicon-Carbon Nanocomposite as Anode Material for Lithium Ion Batteries. Appl. Sci. 2020, 10, 2672. https://doi.org/10.3390/app10082672
Wang F, Gao M, Hong R, Lu X. Magnetoelectric Plasma Preparation of Silicon-Carbon Nanocomposite as Anode Material for Lithium Ion Batteries. Applied Sciences. 2020; 10(8):2672. https://doi.org/10.3390/app10082672
Chicago/Turabian StyleWang, Fangfang, Maochuan Gao, Ruoyu Hong, and Xuesong Lu. 2020. "Magnetoelectric Plasma Preparation of Silicon-Carbon Nanocomposite as Anode Material for Lithium Ion Batteries" Applied Sciences 10, no. 8: 2672. https://doi.org/10.3390/app10082672
APA StyleWang, F., Gao, M., Hong, R., & Lu, X. (2020). Magnetoelectric Plasma Preparation of Silicon-Carbon Nanocomposite as Anode Material for Lithium Ion Batteries. Applied Sciences, 10(8), 2672. https://doi.org/10.3390/app10082672