New Ternary Compounds of the Composition Cu2SnTi3 and Their Crystal Structures
Abstract
Featured Application
Abstract
1. Introduction
2. Experimental Procedures
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Standing, R.; Nicholas, M. The wetting of alumina and vitreous carbon by copper-tin-titanium alloys. J. Mater. Sci. 1978, 13, 1509. [Google Scholar] [CrossRef]
- Hsieh, Y.Z.; Chen, J.F.; Lin, S.T. Pressureless sintering of metal-bonded diamond particle composite blocks. J. Mater. Sci. 2000, 35, 5383. [Google Scholar] [CrossRef]
- Dezellus, O.; Hoda, F.J.; Andreas, M.; Nicolas, E. Diffusion-limited reactive wetting: Spreading of Cu-Sn-Ti alloys on vitreous carbon. Scr. Mater. 2001, 44, 2543. [Google Scholar] [CrossRef]
- Li, W.C.; Lin, S.T.; Liang, C. Interfacial segregation of Ti in the brazing of diamond grits onto a steel substrate using a Cu-Sn-Ti brazing alloy. Metall. Mater. Trans. A 2002, 33, 2163. [Google Scholar] [CrossRef]
- Li, W.C.; Liang, C.; Lin, S.T. Epitaxial interface of nanocrystalline TiC formed between Cu-10Sn-15Ti alloy and diamond. Diam. Relat. Mater. 2002, 11, 1336. [Google Scholar] [CrossRef]
- Gummeson, D.A.; Gustafson, P.U. Modern Developments in Powder Metallurgy; Metal Powder Industries Federation Press: Princeton, NJ, USA, 1988; Volume 3, p. 443. [Google Scholar]
- Villars, P.; Prince, A.; Okamoto, H. Handbook of Ternary Alloy Phase Diagrams; ASM International, Metals Park Press: Novelty, OH, USA, 1995; Volume 8, p. 10083. [Google Scholar]
- Weitzer, F.; Perring, L.; Shibayanagi, T.; Naka, M.; Schuster, J.C. Determination of the crystal structure of CuSnTi by full profile Rietveld analysis. Powder Diffr. 2000, 15, 91–93. [Google Scholar] [CrossRef]
- Hamar-Thibault, S.; Allibert, C.H. New phases in the ternary Cu–Ti–Sn system. J. Alloy. Compd. 2001, 363, 317. [Google Scholar] [CrossRef]
- Schuster, J.C.; Naka, M.; Shibayanagi, T. Crystal structure of CuSn3Ti5 and related phases. J. Alloy. Compd. 2000, 305, L1. [Google Scholar] [CrossRef]
- Naka, M.; Schuster, J.C.; Nakade, I.; Urai, S. Determination of the Liquidus of the Ternary System Cu-Sn-Ti. J. Phase Equilibria 2001, 22, 352–356. [Google Scholar] [CrossRef]
- Huang, S.F.; Tsai, H.L.; Lin, S.T. Crystal structure and X-ray diffraction pattern of CuSnTi3 intermetallic phase. Intermetallic 2005, 13, 87–92. [Google Scholar] [CrossRef]
- Zhou, G.-J.; Zhou, Y.; Luo, Y. Phase equilibria of the Cu-Sn-Ti ternary system at 823K. AIP Adv. 2017, 7, 025118. [Google Scholar] [CrossRef]
- Sdobnyakov, N.; Khort, A.; Myasnichenko, V.; Podbolotov, K.; Romanovskaia, E.; Kolosov, A.; Sokolov, D.; Romanovski, V. Solution combustion synthesis and Monte Carlo simulation of the formation of CuNi integrated nanoparticles. Comput. Mater. Sci. 2020, 184, 109936. [Google Scholar] [CrossRef]
- Massalski, T.B.; Okamoto, H.; Subramanian, P.R.; Kacprzak, L. Binary Alloy Phase Diagram, 2nd ed.; ASM International, Metals Park Press: Novelty, OH, USA, 1990; pp. 1482, 1495, 3406. [Google Scholar]
- Joint Committee on Powder Diraction Standards (JCPDS). Powder Diffraction Files V.2.3; International Centre for Diffraction Data (ICDD): Newton Square, PA, USA, 2002. [Google Scholar]
- Kresse, G.; Furthmuller, G. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J. Phys. Condens. Matter. 1994, 6, 8245. [Google Scholar] [CrossRef]
Phase | Chemical Formula | Composition (at. %) | Average Atomic Mass | ||
---|---|---|---|---|---|
Cu | Sn | Ti | |||
A | Cu2SnTi3 | 32.92 | 15.95 | 51.13 | 64.34 |
B | CuSn3Ti5 | 12.15 | 32.25 | 55.60 | 72.63 |
C | Cu-9 at. %Sn | 90.95 | 8.84 | 0.21 | 68.39 |
D | Cu41Sn11 | 79.68 | 20.02 | 0.30 | 74.54 |
M | Cu-14 at. %Sn | 85.35 | 14.38 | 0.27 | 71.10 |
Diffraction Angles 2θ (deg.) | h k l | Intensity I/I0 (%) | ||
---|---|---|---|---|
Measured | Regressive | Error (%) | ||
21.80 | 21.78 | 0.1 | 1 0 0 | 12 |
25.18 | 25.50 | 1.2 | 1 0 1 | 16 |
27.08 | 26.36 | 2.7 | 0 0 2 | 36 |
33.86 | 34.45 | 1.9 | 1 0 2 | 20 |
38.20 | 38.21 | 0 | 1 1 0 | 45 |
40.52 | 40.55 | 0.1 | 1 1 1 | 100 |
44.34 | 44.41 | 0.2 | 2 0 0 | 50 |
46.44 | 46.50 | 0.1 | 2 0 1 | 25 |
47.02 | 47.02 | 0.0 | 1 1 2 | 18 |
52.44 | 52.38 | 0.1 | 2 0 2 | 27 |
54.90 | 54.27 | 1.2 | 0 0 4 | 21 |
56.70 | 56.51 | 0.3 | 1 1 3 | 10 |
59.34 | 59.16 | 0.3 | 1 0 4 | 10 |
61.48 | 61.29 | 0.3 | 2 0 3 | 13 |
66.10 | 66.66 | 0.8 | 2 1 2 | 12 |
68.90 | 69.06 | 0.2 | 3 0 0 | 35 |
70.44 | 70.65 | 0.3 | 3 0 1 | 21 |
72.80 | 72.64 | 0.2 | 2 0 4 | 17 |
73.12 | 73.82 | 1.0 | 1 0 5 | 18 |
74.60 | 74.56 | 0.1 | 2 1 3 | 18 |
75.20 | 75.32 | 0.2 | 3 0 2 | 16 |
82.96 | 82.91 | 0.1 | 3 0 3 | 13 |
85.28 | 85.17 | 0.1 | 2 1 4 | 11 |
87.56 | 87.75 | 0.2 | 2 2 2 | 14 |
Model | Space Group | Lattice Constants (Å) | Angle (˚) | Total Energy (eV) | ||||
---|---|---|---|---|---|---|---|---|
a | b | c | α | β | γ | |||
Model 1 | P6/mmm | 5.110 | 5.110 | 4.523 | 90.00 | 90.00 | 120.05 | −33.094 |
Model 2 | Cmmm | 5.134 | 4.980 | 4.650 | 90.00 | 90.00 | 119.01 | −33.926 |
Model 3 | Cmmm | 5.113 | 5.113 | 4.728 | 90.00 | 90.00 | 123.22 | −33.909 |
Model 4 | P-3m1 | 4.419 | 4.419 | 5.636 | 90.00 | 90.00 | 120.00 | −35.232 |
Model 5 | P3m1 | 4.520 | 4.520 | 5.445 | 90.00 | 90.00 | 120.00 | −34.730 |
Model 6 | P-3m1 | 4.425 | 4.425 | 5.665 | 90.00 | 90.00 | 120.00 | −35.239 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.-F.; Chang, Y.-C.; Liu, P.-L. New Ternary Compounds of the Composition Cu2SnTi3 and Their Crystal Structures. Appl. Sci. 2020, 10, 8776. https://doi.org/10.3390/app10248776
Huang S-F, Chang Y-C, Liu P-L. New Ternary Compounds of the Composition Cu2SnTi3 and Their Crystal Structures. Applied Sciences. 2020; 10(24):8776. https://doi.org/10.3390/app10248776
Chicago/Turabian StyleHuang, Sheng-Fang, Yen-Cheng Chang, and Po-Liang Liu. 2020. "New Ternary Compounds of the Composition Cu2SnTi3 and Their Crystal Structures" Applied Sciences 10, no. 24: 8776. https://doi.org/10.3390/app10248776
APA StyleHuang, S.-F., Chang, Y.-C., & Liu, P.-L. (2020). New Ternary Compounds of the Composition Cu2SnTi3 and Their Crystal Structures. Applied Sciences, 10(24), 8776. https://doi.org/10.3390/app10248776