Influence of Non-Reactive Epoxy Binder on the Permeability and Friction Coefficient of Twill-Woven Carbon Fabric in the Liquid Composite Molding Process
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preforming Process
2.3. Permeability Measurement
2.3.1. In-Plane Direction
2.3.2. Out-of-Plane Direction
2.4. Friction Coefficient Test
3. Results and Discussion
3.1. Permeability in the in-Plane Direction
3.2. Permeability in the out-of-Plane Direction
3.3. Microstructure Observations
3.4. Friction Coefficient Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kang, M.K.; Lee, W.I.; Hahn, H.T. Analysis of vacuum bag resin transfer molding process. Compos. Part A Appl. Sci. Manuf. 2001, 32, 1553–1560. [Google Scholar] [CrossRef]
- Trochu, F.; Ruiz, E.; Achim, V.; Soukane, S. Advanced numerical simulation of liquid composite molding for process analysis and optimization. Compos. Part A Appl. Sci. Manuf. 2006, 37, 890–902. [Google Scholar] [CrossRef]
- Kim, R.W.; Kim, C.M.; Hwang, K.H.; Kim, S.R. Embedded Based Real-Time Monitoring in the High-Pressure Resin Transfer Molding Process for CFRP. Appl. Sci. 2019, 9, 1795. [Google Scholar] [CrossRef] [Green Version]
- Yoo, H.M.; Kwon, D.J.; Park, J.M.; Yum, S.H.; Lee, W.I. Mechanical properties of norbornene-based silane treated glass fiber reinforced polydicyclopentadiene composites manufactured by the S-RIM process. e-Polymers 2017, 17, 159–166. [Google Scholar] [CrossRef]
- Ogale, V.; Alagirusamy, R. Textile Preforms for Advanced Composites. IJFTR 2004, 29, 366–375. [Google Scholar]
- Shih, C.H.; Lee, L.J. Tackification of textile fiber preforms in resin transfer molding. J. Compos. Mater. 2001, 35, 1954–1981. [Google Scholar] [CrossRef]
- Carley, E.P.; Dockum, J.F., Jr.; Schell, P.L. Preforming for liquid composite molding. SAE Trans. 1990, 99, 344–361. [Google Scholar]
- Tanoglu, M.; Robert, S.; Heider, D.; McKnight, S.H.; Brachos, V.; Gillespie, J.W., Jr. Effects of thermoplastic preforming binder on the properties of S2-glass fabric reinforced epoxy composites. Int. J. Adhes. Adhes. 2001, 21, 187–195. [Google Scholar] [CrossRef]
- Estrada, G.; Vieux-Pernon, C.; Advani, S.G. Experimental characterization of the influence of tackifier material on preform permeability. J. Compos. Mater. 2002, 36, 2297–2310. [Google Scholar] [CrossRef]
- Tanoğlu, M.; Seyhan, A.T. Compressive mechanical behaviour of E-glass/polyester composite laminates tailored with a thermoplastic preforming binder. Mater. Sci. Eng. A 2003, 363, 335–344. [Google Scholar] [CrossRef] [Green Version]
- Brody, J.C.; Gillespie, J.W., Jr. Reactive and non-reactive binders in glass/vinyl ester composites. Polym. Compos. 2005, 26, 377–387. [Google Scholar] [CrossRef]
- Asareh, M.; Mills, A.R.; Denis, D.C. Investigation of preform manufacturing techniques using novel binder coated carbon fibre tows. In Proceedings of the 13th European Conference on Composite Materials, Stockholm, Sweden, 2–5 June 2008. [Google Scholar]
- Rohatgi, V.; Lee, L.J. Moldability of tackified fiber preforms in liquid composite molding. J. Compos. Mater. 1997, 31, 720–744. [Google Scholar] [CrossRef]
- Sommerlot, S.; Luchini, T.; Loos, A. The effects of a low areal weight inter-layer tackifier on saturated permeability of carbon fabrics. In Proceedings of the American Society for Composites: Thirty-First Technical Conference, Williamsburg, VA, USA, 19–22 September 2016.
- Lionetto, F.; Moscatello, A.; Maffezzoli, A. Effect of binder powders added to carbon fiber reinforcements on the chemoreology of an epoxy resin for composites. Compos. Part B Eng. 2017, 112, 243–250. [Google Scholar] [CrossRef]
- Schmidt, S.; Mahrholz, T.; Kühn, A.; Wierach, P. Powder binders used for the manufacturing of wind turbine rotor blades. Part 1. Characterization of resin-binder interaction and preform properties. Polym. Compos. 2018, 39, 708–717. [Google Scholar] [CrossRef]
- Adams, K.L.; Russel, W.B.; Rebenfeld, L. Radial penetration of a viscous liquid into a planar anisotropic porous medium. Int. J. Multiph. Flow 1988, 14, 203–215. [Google Scholar] [CrossRef]
- Weitzenböck, J.R.; Shenoi, R.A.; Wilson, P.A. Radial flow permeability measurement. Part A: Theory. Compos. Part A Appl. Sci. Manuf. 1999, 30, 781–796. [Google Scholar]
- Weitzenböck, J.R.; Shenoi, R.A.; Wilson, P.A. Radial flow permeability measurement. Part B: Application. Compos. Part A Appl. Sci. Manuf. 1999, 3, 797–813. [Google Scholar]
- Fauster, E.; Berg, D.C.; Abliz, D.; Grössing, H.; Meiners, D.; Ziegmann, G.; Schledjewski, R. Image processing and data evaluation algorithms for reproducible optical in-plane permeability characterization by radial flow experiments. J. Compos. Mater. 2019, 53, 45–63. [Google Scholar] [CrossRef]
- Endruweit, A.; Luthy, T.; Ermanni, P. Investigation of the influence of textile compression on the out-of-plane permeability of a bidirectional glass fiber fabric. Polym. Compos. 2002, 23, 538–554. [Google Scholar] [CrossRef]
- Francucci, G.; Rodríguez, E.S.; Vázquez, A. Study of saturated and unsaturated permeability in natural fiber fabrics. Compos. Part A Appl. Sci. Manuf. 2010, 41, 16–21. [Google Scholar] [CrossRef]
- Tonejc, M.; Ebner, C.; Fauster, E.; Schledjewski, R. Influence of test fluids on the permeability of epoxy powder bindered non-crimp fabrics. Adv. Manuf. Polym. Compos. Sci. 2019, 5, 128–139. [Google Scholar] [CrossRef] [Green Version]
Fiber Volume Fraction (%) | Binder | |
---|---|---|
Weight (g) | Volume Fraction (%) | |
50 | 3.6 | 1.9 |
55 | 3.6 | 2.1 |
60 | 3.6 | 2.2 |
Fiber Volume Fraction (%) | Permeability–K1,K2 (m2) | |||||
---|---|---|---|---|---|---|
Neat Fabric | Binder (Thermal Treated) | |||||
K1 | K2 | K2/K1 | K1 | K2 | K2/K1 | |
55 | 7.29 10−11 | 5.97 10−11 | 8.19 10−1 | 1.45 10−11 | 1.06 10−11 | 7.31 10−1 |
60 | 6.16 10−11 | 4.30 10−11 | 6.98 10−1 | 1.27 10−11 | 9.93 10−12 | 7.82 10−1 |
Fiber Volume Fraction (%) | Permeability–K3 (m2) | ||
---|---|---|---|
Neat Fabric | Binder | ||
Non-Thermal Treated | Thermal Treated | ||
50 | 1.12 10−12 | 2.36 10−13 | 2.38 10−14 |
55 | 9.13 10−13 | 1.88 10−13 | 2.09 10−14 |
60 | 6.87 10−13 | 1.53 10−13 | 1.85 10−14 |
Temperature Condition (°C) | Friction Coefficient–μ | |||
---|---|---|---|---|
Fabric-Fabric | Fabric-Mold | |||
Case 1 | Case 2 | Case 3 | Case 4 | |
25 | 0.289 | 0.454 | 0.479 | 0.220 |
110 | 0.270 | 0.633 | 0.716 | 0.633 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoo, H.M.; Lee, J.W.; Kim, J.S.; Um, M.K. Influence of Non-Reactive Epoxy Binder on the Permeability and Friction Coefficient of Twill-Woven Carbon Fabric in the Liquid Composite Molding Process. Appl. Sci. 2020, 10, 7039. https://doi.org/10.3390/app10207039
Yoo HM, Lee JW, Kim JS, Um MK. Influence of Non-Reactive Epoxy Binder on the Permeability and Friction Coefficient of Twill-Woven Carbon Fabric in the Liquid Composite Molding Process. Applied Sciences. 2020; 10(20):7039. https://doi.org/10.3390/app10207039
Chicago/Turabian StyleYoo, Hyeong Min, Jung Wan Lee, Jung Soo Kim, and Moon Kwang Um. 2020. "Influence of Non-Reactive Epoxy Binder on the Permeability and Friction Coefficient of Twill-Woven Carbon Fabric in the Liquid Composite Molding Process" Applied Sciences 10, no. 20: 7039. https://doi.org/10.3390/app10207039
APA StyleYoo, H. M., Lee, J. W., Kim, J. S., & Um, M. K. (2020). Influence of Non-Reactive Epoxy Binder on the Permeability and Friction Coefficient of Twill-Woven Carbon Fabric in the Liquid Composite Molding Process. Applied Sciences, 10(20), 7039. https://doi.org/10.3390/app10207039