Perspectives on the Use of Germinated Legumes in the Bread Making Process, A Review
Abstract
:1. Introduction
2. Description of the Germination Process
3. Germination Changes on the Sensory and Nutritional Characteristics of the Seeds
3.1. Sensory Characteristics
3.2. Nutritional Characteristics
4. The Use of Germinated Seeds in the Bread Making Recipe
4.1. The Influence of the Addition of Germinated Seeds on the Wheat Flour Dough
4.2. The Influence of the Addition of Germinated Seeds on the Bread Quality
5. Conclusions and Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Steinbrecher, T.; Leubner-Metzger, G. The biomechanics of seed germination. J. Exp. Bot. 2017, 68, 765–783. [Google Scholar] [CrossRef] [PubMed]
- Nonogaki, M.; Nonogaki, H. Germination. Encycl. Appl. Plant Sci. 2017, 1, 509–512. [Google Scholar]
- Li, Q.F.; Zhou, Y.; Xiong, M.; Ren, X.Y.; Han, L.; Wang, J.D.; Zhang, C.Q.; Fan, X.L.; Liu, Q.Q. Gibberellin recovers seed germination in rice with impaired brassinosteroid signalling. Plant Sci. 2020, 293, 110435. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Zhang, H.; Xie, Y.; Yang, M.; Tang, J.; Wang, P.; Yang, R.; Zhenxin, G. Response of nutritional and functional composition, anti-nutritional factors and antioxidant activity in germinated soybean under UV-B radiation. LWT Food Sci. Technol. 2020, 118, 108709. [Google Scholar] [CrossRef]
- Ohanenye, I.C.; Tsopmo, A.; Ejike, C.E.C.C.; Udenigwe, C.C. Germination as a bioprocess for enhancing the quality and nutritional prospects of legume proteins. Trends Food Sci. Technol. 2020, 101, 213–222. [Google Scholar] [CrossRef]
- EL-Suhaibani, M.; Ahmed, M.A.; Osman, M.A. Study of germination, soaking and cooking effects on the nutritional quality of goat pea (Securigera securidaca L.). J. King Saud Univ. Sci. 2020, 32, 2029–2033. [Google Scholar] [CrossRef]
- Xu, L.; Chen, L.; Yang, N.; Chen, Y.; Wu, F.; Jin, Z.; Xu, X. Impact of germination on nutritional and physicochemical properties of adlay seed (Coixlachryma-jobi L.). Food Chem. 2017, 229, 312–318. [Google Scholar] [CrossRef]
- Singh, A.; Sharma, S. Bioactive components and functional properties of biologically activated cereal grains: A bibliographic review. Crit. Rev. Food Sci. 2017, 57, 3051–3071. [Google Scholar] [CrossRef]
- Sokrab, A.M.; Mohamed-Ahmed, I.A.; Babiker, E.E. Effect of germination on antinutritional factors, total, and extractable minerals of high and low phytate corn (Zea mays L.) genotypes. J. Saudi Soc. Agric. Sci. 2012, 11, 123–128. [Google Scholar] [CrossRef] [Green Version]
- Sangronis, E.; Machado, C.J. Influence of germination on the nutritional quality of Phaseolus vulgaris and Cajanus cajan. LWT Food Sci. Technol. 2007, 40, 116–120. [Google Scholar] [CrossRef]
- Ma, Z.; Boye, J.Y.; Hu, X. Nutritional quality and techno-functional changes in raw, germinated and fermented yellow field pea (Pisum sativum L.) upon pasteurization. LWT Food Sci. Technol. 2018, 92, 147–154. [Google Scholar] [CrossRef]
- Han, A.; Arijaje, E.O.; Jinn, J.R.; Mauromoustakos, A.; Wang, Y.J. Effects of germination duration on milling, physicochemical, and textural properties of medium- and long-grain rice. Cereal Chem. 2016, 93, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Chu, C.; Du, Y.; Yu, X.; Shi, J.; Yuan, X.; Liu, X.; Liu, Y.; Zhang, H.; Zhang, Z.; Yan, N. Dynamics of antioxidant activities, metabolites, phenolic acids, flavonoids, and phenolic biosynthetic genes in germinating Chinese wild rice (Zizania latifolia). Food Chem. 2020, 318, 126483. [Google Scholar] [CrossRef] [PubMed]
- Aisyah, S.; Vincken, J.P.; Andini, S.; Mardiah, Z.; Gruppen, H. Compositional changes in (iso)flavonoids and estrogenic activity of three edible Lupinus species by germination and Rhizopus-elicitation. Phytochemistry 2016, 122, 65–75. [Google Scholar] [CrossRef]
- Ujiroghene, O.J.; Liu, L.; Zhang, S.; Lu, J.; Zhang, C.; Lv, J.; Pang, X.; Zhang, M. Antioxidant capacity of germinated quinoa-based yoghurt and concomitant effect of sprouting on its functional properties. LWT Food Sci. Technol. 2019, 116, 108592. [Google Scholar] [CrossRef]
- Agdel-Aty, A.M.; Salama, W.H.; Fahmy, A.S.; Mohamed, S.A. Impact of germination on antioxidant capacity of garden cress: New calculation for determination of total antioxidant activity. Sci. Hortic. 2019, 246, 155–160. [Google Scholar] [CrossRef]
- Rasera, G.B.; Hilkner, M.H.; de Soares-Castro, R.J. Free and insoluble-bound phenolics: How does the variation of these compounds affect the antioxidant properties of mustard grains during germination? Food Res. Int. 2020, 133, 109115. [Google Scholar] [CrossRef]
- Cornejo, F.; Novillo, G.; Villacrés, E.; Rosello, C.M. Evaluation of the physicochemical and nutritional changes in two amaranth species (Amaranthus quitensis and Amaranthus caudatus) after germination. Food Res. Int. 2019, 121, 933–939. [Google Scholar] [CrossRef]
- Gong, K.; Chen, L.; Li, X.; Sun, L.; Liu, K. Effects of germination combined with extrusion on the nutritional composition, functional properties and polyphenol profile and related in vitro hypoglycemic effect of whole grain corn. J. Cereal Sci. 2018, 83, 1–8. [Google Scholar] [CrossRef]
- Padmashree, A.; Negi, N.; Handu, S.; Khan, M.A.; Semwal, A.D.; Sharma, G.K. Effect of Germination on Nutritional, Antinutritional and Rheological Characteristics of Quinoa (Chenopodium quinoa). Def. Life Sci. J. 2019, 4, 55–60. [Google Scholar] [CrossRef]
- Polat, H.; Capar, T.D.; Inanir, C.; Ekici, L.; Yalcin, H. Formulation of functional crackers enriched with germinated lentil extract: A Response Surface Methodology Box-Behnken Design. LWT Food Sci. Technol. 2020, 123, 109056. [Google Scholar] [CrossRef]
- Patel, M.M.; Venkateswara Rao, G. Effect of untreated, roasted and germinated black gram (phaseolus mungo) flours on the physico-chemical and biscuit (cookie) making characteristics of soft wheat flour. J. Cereal Sci. 1995, 22, 285–291. [Google Scholar] [CrossRef]
- Chavan, M.; Gat, Y.; Harmalkar, M.; Wagnmare, R. Development of non-dairy fermented probiotic drink based on germinated and ungerminated cereals and legume. LWT Food Sci. Technol. 2018, 91, 339–344. [Google Scholar] [CrossRef]
- Jiménez, D.; Lobo, M.; Irigaray, B.; Grompone, M.A.; Sammán, N. Oxidative stability of baby dehydrated purees formulated with different oils and germinated grain flours of quinoa and amaranth. LWT—Food Sci. Technol. 2020, 127, 109229. [Google Scholar] [CrossRef]
- Kaczmarska, K.T.; Chandra-Hioe, M.V.; Frank, D.; Arcot, J. Enhancing wheat muffin aroma through addition of germinated and fermented Australian sweet lupin (Lupinus angustifolius L.) and soybean (Glycine max L.) flour. LWT Food Sci. Technol. 2018, 96, 205–214. [Google Scholar] [CrossRef]
- Kaur, A.; Kaur, R.; Bhise, S. Baking and sensory quality of germinated and ungerminated flaxseed muffins prepared from wheat flour and wheat atta. J. Saudi Soc. Agric. Sci. 2020, 19, 109–120. [Google Scholar] [CrossRef]
- Cáceres, P.J.; Peñas, E.; Martínez-Villaluenga, C.; García-Mora, P.; Frías, J. Development of a multifunctional yogurt-like product from germinated brown rice. Food Sci. Technol. 2019, 99, 306–312. [Google Scholar] [CrossRef] [Green Version]
- Park, K.M.; Oh, S.H. Production of yogurt with enhanced levels of gamma-aminobutyric acid and valuable nutrients using lactic acid bacteria and germinated soybean extract. Bioresour. Technol. 2007, 98, 1675–1679. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, K.Z.; Wang, W.Q.; Liu, S.J.; Song, S.Q. Proteome analysis reveals an energy-dependent central process for Populus × canadensis seed germination. J. Plant Physiol. 2017, 213, 134–147. [Google Scholar] [CrossRef]
- Eckelmann, D.; Kusari, S.; Spiteller, M. Spatial profiling of maytansine during the germination process of Maytenus senegalensis seeds. Fitoterapia 2017, 119, 51–56. [Google Scholar] [CrossRef]
- Dai, W.; Wang, T.; Wang, C. Effects of interspecific interactions on seed germination between dominant species in the Yangtze River Estuary. Estuar Coast Shelf S. 2020, 232, 106483. [Google Scholar] [CrossRef]
- Bubel, N.; Nick, J. The New Seed-Starters Handbook; Rodale Wellness: Allentown, PA, USA, 2018. [Google Scholar]
- Rifna, E.J.; Ratish-Ramanan, K.; Mahendran, R. Emerging technology applications for improving seed germination. Trends Food Sci. Tech. 2019, 86, 95–108. [Google Scholar] [CrossRef]
- Ding, J.; Hou, G.G.; Dong, M.; Xiong, S.; Zhao, S.; Feng, H. Physicochemical properties of germinated dehulled rice flour and energy requirement in germination as affected by ultrasound treatment. Ultrason. Sonochem. 2018, 41, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Porto, C.L.; Ziuzina, D.; Los, A.; Boehm, D.; Palumbo, F.; Favia, P.; Tiwari, B.; Bourke, P.; Cullen, P.J. Plasma activated water and airborne ultrasound treatments for enhanced germination and growth of soybean. Innov. Food Sci. Emerg. 2018, 49, 13–19. [Google Scholar] [CrossRef]
- Kaczmarska, K.T.; Chandra-Hioe, M.V.; Frank, D.; Arcot, J. Aroma characteristics of lupin and soybean after germination and effect of fermentation on lupin aroma. LWT Food Sci. Technol. 2018, 87, 225–233. [Google Scholar] [CrossRef]
- Aguilera, Y.; Herrera, T.; Liébana, R.; Rebollo-Hernanz, M.; Sanchez-Puelles, C.; Martín-Cabrejas, M.A. Impact of melatonin enrichment during germination of legumes on bioactive compounds and antioxidant activity. J. Agric. Food Chem. 2015, 63, 7967–7974. [Google Scholar] [CrossRef]
- Xu, M.; Jin, Z.; Lan, Y.; Rao, J.; Chen, B. HS-SPME-GC-MS/olfactometry combined with chemometrics to assess the impact of germination on flavor attributes of chickpea, lentil, and yellow pea flours. Food Chem. 2019, 280, 83–95. [Google Scholar] [CrossRef]
- Xu, M.; Jin, Z.; Gu, Z.; Rao, J.; Bingcan, C. Changes in odor characteristics of pulse protein isolates from germinated chickpea, lentil, and yellow pea: Role of lipoxygenase and free radicals. Food Chem. 2020, 314, 126184. [Google Scholar] [CrossRef]
- Dueñas, M.; Sarmento, T.; Aguilera, Y.; Benitez, V.; Mollá, E.; Esteban, R.M.; Martín-Cabrejas, M.A. Impact of cooking and germination on phenolic composition and dietary fiber fractions in dark beans (Phaseolus vulgaris L.) and lentils (Lens culinaris L.). LWT Food Sci. Technol. 2016, 66, 72–78. [Google Scholar] [CrossRef]
- Xu, J.; Wang, W.; Li, Y. Dough properties, bread quality, and associated interactions with added phenolic compounds: A review. J. Funct. Foods 2019, 52, 629–639. [Google Scholar] [CrossRef]
- Gębski, J.; Jezewska-Zychowicz, M.; Szlachciuk, J.; Kosicka-Gębska, M. Impact of nutritional claims on consumer preferences for bread with varied fiber and salt content. Food Qual. Prefer. 2019, 76, 91–99. [Google Scholar] [CrossRef]
- Bueno, D.B.; Silva-Júnior, S.I.; Seriani Chiarotoo, A.B.; Cardoso, T.M.; Neto, J.A.; Lopes dos Reis, G.C.; Abreu Glória, M.B.; Tavano, O.L. The germination of soybeans increases the water-soluble components and could generate innovations in soy-based foods. LWT Food Sci. Technol. 2020, 117, 108599. [Google Scholar] [CrossRef]
- Yiming, Z.; Hong, W.; Linlin, C.; Xiaoli, Z.; Wen, T.; Xinli, S. Evolution of nutrient ingredients in tartary buckwheat seeds during germination. Food Chem. 2015, 186, 244–248. [Google Scholar] [CrossRef] [PubMed]
- Faris, M.I.E.; Mohammad, M.G.; Soliman, S. Lentils (Lens culinaris L.): A candidate chemopreventive and antitumor functional food. Funct. Foods Cancer Prev. Ther 2020, 99–120. [Google Scholar] [CrossRef]
- Xu, M.; Jin, Z.; Simsek, S.; Hall, C.; Rao, J.; Chen, B. Effect of germination on the chemical composition, thermal, pasting, and moisture sorption properties of flours from chickpea, lentil, and yellow pea. Food Chem. 2019, 295, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Cornejo, F.; Caceres, P.J.; Martínez-Villaluenga, C.; Rosell, C.M. Effects of germination on the nutritive value and bioactive compounds of brown rice breads. Food Chem. 2015, 173, 298–304. [Google Scholar] [CrossRef] [Green Version]
- Fouad, A.A.; Rehab, F.M.A. Effect of germination time on proximate analysis, bioactive compounds and antioxidant activity of lentil (Lens culinaris Medik) sprouts. Acta Sci. Pol. Technol. Aliment. 2015, 14, 233–246. [Google Scholar] [CrossRef] [Green Version]
- Ghumman, A.; Kaur, A.; Singh, N. Impact of germination on flour, protein and starch characteristics of lentil (Lens culinari) and horsegram (Macrotyloma uniflorum L.) lines. LWT Food Sci. Technol. 2016, 65, 137–144. [Google Scholar] [CrossRef]
- Acevedo, B.A.; Thompson, C.M.B.; González-Foutel, N.S.; Chaves, M.G.; Avanza, M.V. Effect of different treatments on the microstructure and functional and pasting properties of pigeon pea (Cajanus cajan L.), dolichos bean (Dolichos lablab L.) and jack bean (Canavalia ensiformis) flours from the north-east Argentina. Int. J. Food Sci. Tech. 2017, 52, 222–230. [Google Scholar] [CrossRef]
- Rachwa-Rosiak, D.; Nebesny, E.; Budryn, G. Chickpeas—Composition, Nutritional Value, Health Benefits, Application to Bread and Snacks: A Review. Crit. Rev. Food Sci. 2015, 8, 1137–1145. [Google Scholar] [CrossRef] [PubMed]
- Mamilla, R.K.; Mishra, V.K. Effect of germination on antioxidant and ACE inhibitory activities of legumes. LWT Food Sci. Technol. 2017, 75, 51–58. [Google Scholar] [CrossRef]
- Kigel, J.; Rosenthal, L.; Fait, A. Seed physiology and germination of grain legumes, Grain legumes. Handb. Plant Breed. 2015, 10, 327–363. [Google Scholar]
- Fernandez, M.L.; Berry, J.M. Nutritional evaluation of chickpea and germinated chickpea flours. Plant Food Hum. Nutr. 1988, 38, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Arispuro, D.M.; Cuevas-Rodrı´guez, E.O.; Mila´n-Carrillo, J.; Leo´n-Lo´pez, L.; Gutie´rrez-Dorado, R.; Reyes-Moreno, C. Optimal germination condition impacts on the antioxidant activity and phenolic acids profile in pigmented desi chickpea (Cicer arietinum L.) seeds. J. Food. Sci. Technol. 2018, 55, 638–647. [Google Scholar] [CrossRef]
- El-Adawy, T.A. Nutritional composition and antinutritional factors of chickpeas (Cicer arietinum L.) undergoing different cooking methods and germination. Plant Food Hum. Nutr. 2002, 57, 83–97. [Google Scholar] [CrossRef]
- Watanabe, S.; Uehara, M. Health Effects and Safety of Soy and Isoflavones. Role Funct. Food Secur. Glabal Health 2019, 379–394. [Google Scholar] [CrossRef]
- Cao, Z.H.; Green-Johnson, J.M.; Buckley, N.D.; Lin, Q.Y. Bioactivity of soy-based fermented foods: A review. Biotechnol Adv. 2019, 37, 223–238. [Google Scholar] [CrossRef]
- Ju, M.; Huang, G.; Shen, X.; Zhang, Y.; Jiang, L.; Sui, X. A novel pickering emulsion produced using soy protein-anthocyanin complex nanoparticles. Food Hydrocolloid. 2020, 99, 105329. [Google Scholar] [CrossRef]
- Miglani, H.; Sharma, S. Impact on germination time and temperature on phenolics, bioactive compounds and antioxidant activity of different coloured soybean. Proc. Natl. Acad. Sci. India Sect. B Boil. Sci. 2016, 88, 175–184. [Google Scholar] [CrossRef]
- Megat, R.M.R.; Azrina, A.; Norhaizan, M.E. Effect of germination on total dietary fibre and total sugar in selected legumes. Int. Food. Res. J. 2016, 23, 257–261. [Google Scholar]
- Lee, A.L.; Yu, Y.P.; Hsieh, J.F.; Kuo, M.I.; Ma, Y.S.; Lu, C.P. Effect of germination on composition profiling and antioxidant activity of the polysaccharide-protein conjugate in black soybean [Glycine max (L.) Merr.]. Int. J. Biol. Macromol. 2018, 113, 601–606. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chang, S.K.C. Macronutrients, Phytochemicals, and Antioxidant Activity of Soybean Sprout Germinated with or without Light Exposure. J. Food Sci. 2015, 80, S1391–S1398. [Google Scholar] [CrossRef] [PubMed]
- Joshi, P.; Varma, K. Effect of germination and dehulling on the nutritive value of soybean. Nutr. Food Sci. 2016, 46, 595–603. [Google Scholar] [CrossRef]
- Maetens, E.; Hettiarachchy, N.; Dewettinck, K.; Horax, R.; Moens, K.; Moseley, D.O. Physicochemical and nutritional properties of a healthy snack chip developed from germinated soybeans. LWT Food Sci. Technol. 2017, 84, 505–510. [Google Scholar] [CrossRef]
- Koeberl, M.; Sharp, M.F.; Tian, R.; Buddhadasa, S.; Clarke, D.; Roberts, J. Lupine allergen detecting capability and cross-reactivity of related legumes by ELISA. Food Chem. 2018, 256, 105–112. [Google Scholar] [CrossRef]
- Cabello-Hurtado, F.; Keller, J.; Ley, J.; Sanchez-Lucas, R.; Jorrin-Novo, J.; Aïnouche, A. Proteomics for exploiting diversity of lupin seed storage proteins and their use as nutraceuticals for health and welfare. J. Proteom. 2016, 143, 57–68. [Google Scholar] [CrossRef]
- Cruz-Chamorro, I.; Álvarez-Sánchez, N.; Millán-Linares, M.C.; Yust, M.M.; Pedroche, J.; Millán, F.; Lardone, P.J.; Carrera-Sánchez, C.; Guerrero, J.M.; Carrillo-Vico, A. Lupine protein hydrolysates decrease the inflammatory response and improve the oxidative status in human peripheral lymphocytes. Food Res Int. 2019, 126, 108585. [Google Scholar] [CrossRef]
- Olkowski, B. Feeding high lupine based diets for broiler chickens: Effect of soybean meal substitution with yellow lupine meal at various time points of growth cycle. Livest. Sci. 2018, 218, 114–118. [Google Scholar] [CrossRef]
- El-Adawy, T.A.; Rahma, E.H.; El-Bedawey, A.A.; Gafar, A.F. Nutritional potential and functional properties of sweet and bitter lupin seed protein isolates. Food Chem. 2001, 74, 455–462. [Google Scholar] [CrossRef]
- López, E.P.; Goldner, M.C. Influence of storage time for the acceptability of bread formulated with lupine protein isolate and added brea gum. LWT Food Sci. Technol. 2015, 64, 1171–1178. [Google Scholar] [CrossRef]
- Saleh, H.M.; Hassan, A.A.; Mansour, E.H.; Fahmy, H.A.; El-Fath, A.; El-Bedawey, A.E. Melatonin, phenolics content and antioxidant activity of germinated selected legumes and their fractions. J. Saudi Soc. Agric. Sci. 2019, 18, 294–301. [Google Scholar] [CrossRef]
- Philipo, M.; Ndakidemi, P.A.; Mbega, E.R. Environmental and genotypes influence on seed iron and zinc levels of landraces and improved varieties of common bean (Phaseolus vulgaris L.) in Tanzania. Ecol. Genet Genom. 2020, 15, 100056. [Google Scholar] [CrossRef]
- UCSF Medical Center. Hemoglobin and Functions of Iron. Ucsf Heal. 2019. Available online: https://www.ucsfhealth.org/education/hemoglobin-and-functions-of-iron (accessed on 2 May 2020).
- Lokuruka, M.N.I. Role of zinc in human health with reference to African elderly: A review. AJFAND 2012, 12, 6646–6664. [Google Scholar]
- Reverri, E.J.; Randolph, J.M.; Kappagoda, C.T.; Park, E.; Edirisinghe, I.; Burton-Freeman, B.M. Assessing beans as a source of intrinsic fiber on satiety in men and women with metabolic syndrome. Appetite 2017, 118, 75–81. [Google Scholar] [CrossRef]
- Xia, Q.; Gu, N.; Liu, J.; Niu, Y.; Yu, L.L. Novel composite gels of gelatin and soluble dietary fiber from black bean coats with interpenetrating polymer networks. Food Hydrocolloid. 2018, 83, 72–78. [Google Scholar] [CrossRef]
- Kutoš, T.; Golob, T.; Kač, M.; Plestenjak, A. Dietary fibre content of dry and processed beans. Food Chem. 2003, 80, 231–235. [Google Scholar] [CrossRef]
- Hayat, I.; Ahmad, A.; Masud, T.; Ahmed, A.; Bashir, S. Nutritional and Health Perspectives of Beans (Phaseolus vulgaris L. ): An Overview. Crit. Rev. Food Sci. 2014, 54, 580–592. [Google Scholar]
- Yin, Y.; Yang, R.; Gu, Z. Organ-specific proteomic analysis of NaCl-stressed germinating soybeans. J. Agric. Food Chem. 2014, 62, 7233–7244. [Google Scholar] [CrossRef]
- Rosa-Millán, J.; Heredia-Olea, E.; Perez-Carrillo, E.; Guajardo-Flores, S.; Serna-Saldívar, S.R.O. Effect of decortication, germination and extrusion on physicochemical and in vitro protein and starch digestion characteristics of black beans (Phaseolus vulgaris L. ). LWT Food Sci. Technol. 2019, 102, 330–337. [Google Scholar] [CrossRef]
- Menon, L.; Majumdar, S.D.; Ravi, U. Development and analysis of composite flour bread. J. Food Sci. Tech. 2015, 52, 4156–4165. [Google Scholar] [CrossRef] [Green Version]
- Ertaș, N.; Bilgiçli, N. Effect of different debittering processes on mineral and phytic acid content of lupin (Lupinus albus L.) seeds. J. Food Sci. Tech. 2014, 51, 3348–3354. [Google Scholar] [CrossRef] [Green Version]
- Boukid, F.; Zannini, E.; Carini, E.; Vittadini, E. Pulses for bread fortification: A necessity or a choice? Trends Food Sci. Tech. 2019, 88, 416–428. [Google Scholar] [CrossRef]
- Patrascu, L.; Aprodu, I.; Garnai, M.; Vasilean, I. Effect of germination and fermentation on the functionality of wheat-pulses flour mixtures. J. Biotechnol. 2018, 280, S52–S53. [Google Scholar] [CrossRef]
- Shin, D.J.; Kim, W.; Kim, Y. Physicochemical and sensory properties of soy bread made with germinated, steamed, and roasted soy flour. Food Chem. 2013, 141, 517–523. [Google Scholar] [CrossRef]
- Rosales-Juárez, M.; Beatriz-González-Mendoza, B.; López-Guel, E.C.; Lozano-Bautista, F.; Chanona-Pérez, J.; Gutiérrez-López, G.; Farrera-Rebollo, R.; Calderón-Domínguez, G. Changes on Dough Rheological Characteristics and Bread Quality as a Result of the Addition of Germinated and Non-Germinated Soybean Flour. Food Bioprocess. Tech. 2008, 1, 152–160. [Google Scholar] [CrossRef]
- Ribotta, P.D.; Arnulphi, S.A.; León, A.E.; Añón, M.C. Effect of soybean addition on the rheological properties and breadmaking quality of wheat flour. J. Sci. Food Agric. 2005, 85, 1889–1896. [Google Scholar] [CrossRef]
- Labat, E.; Rouau, X.; Morel, M.H. Effect of Flour Water-Extractable Pentosans on Molecular Associations in Gluten During Mixing. LWT Food Sci. Technol. 2002, 35, 185–189. [Google Scholar] [CrossRef]
- Morard, M.M.; Leung, H.K.; Hsu, D.L. și Finney, P.L. Effect of Germination on Physicochemical and Bread-Baking Properties of Yellow Pea, Lentil, and Faba Bean Flours and Starches. Cereal Chem. 1980, 57, 390–396. [Google Scholar]
- Aprodu, I.; Vasilean, I.; Muntenită, C. și Patrasu, L. Impact of broad beans addition on rheological and thermal properties of wheat flour based sourdoughs. Food Chem. 2019, 293, 520–528. [Google Scholar] [CrossRef]
- Guardianelli, L.M.; Salinas, M.V.; Puppo, M.C. Hydration and rheological properties of amaranth-wheat flour dough: Influence of germination of amaranth seeds. Food Hydrocolloid. 2019, 97, 105242. [Google Scholar] [CrossRef]
- Bojňanská, T.; Šmitalová, J. Impact of amaranth (amaranth sp.) on technological quality of bakery products during frozen storage. JMBFS 2014, 3, 187–189. [Google Scholar]
- Houben, A.; Götz, H.; Mitzscherling, M.; Becker, T. Modification of the rheological behavior of amaranth (Amaranthus hypochondriacus) dough. J. Cereal Sci. 2010, 51, 350–356. [Google Scholar] [CrossRef]
- Poudel, R.; Finnie, S.; Rose, D.J. Effects of wheat kernel germination time and drying temperature on compositional and end-use properties of the resulting whole wheat flour. J. Cereal Sci. 2019, 86, 33–40. [Google Scholar] [CrossRef]
- Boukid, F.; Prandi, B.; Vittadini, E.; Francia, E.; Sforza, S. Tracking celiac disease-triggering peptides and whole wheat flour quality as function of germination kinetics. Food Res. Int. 2018, 112, 345–352. [Google Scholar] [CrossRef]
- Millar, K.A.; Barry-Ryan, C.; Burke, R.; McCarthy, S.; Gallagher, E. Dough properties and baking characteristics of white bread, as affected by addition of raw, germinated and toasted pea flour. Innov. Food Sci. Emerg. 2019, 56, 102189. [Google Scholar] [CrossRef]
- Ouazib, M.; Garzon, R.; Zaidi, F.; Rosell, C.M. Germinated, toasted and cooked chickpea as ingredients for breadmaking. J. Food Sci. Tech. 2016, 53, 2664–2672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guardado-Félix, D.; Lazo-Vélez, M.A.; Pérez-Carrillo, E.; Panata-Saquicili, D.E.; Serna-Saldívar, S.O. Effect of partial replacement of wheat flour with sprouted chickpea flours with or without selenium on physicochemical, sensory, antioxidant and protein quality of yeast-leavened breads. LWT Food Sci. Technol. 2020, 129, 109517. [Google Scholar] [CrossRef]
- Farnandez, M.L.; Berry, J.W. Rheological properties of flour and sensory characteristics of bread made from germinated chickpea. Int. J. Food Sci. Tech. 1989, 24, 103–110. [Google Scholar] [CrossRef]
- Levent, H.; Bilgiçli, N.; Ertaş, N. The assessment of leavened and unleavened flat breads properties enriched with wheat germ. Qual. Assur. Saf. Crop 2014, 7, 321–326. [Google Scholar] [CrossRef]
- Mostafa, M.M.; Rahma, E.H.; Rady, A.H. Chemical and nutritional changes in soybean during germination. Food Chem. 1987, 23, 257–275. [Google Scholar] [CrossRef]
- Diowksz, A.; Kordialik-Bogacka, E.; Ambroziak, W. Se-enriched sprouted seeds as functional additives in sourdough fermentation. LWT Food Sci. Technol. 2014, 56, 524–528. [Google Scholar] [CrossRef]
- López-Guel, E.C.; Lozano-Bautista, F.; Mora-Escobedo, R.; Farrera-Rebollo, R.R.; Chanona-Pérez, J.; Gutiérrez-López, G.F.; Calderón-Domínguez, G. Effect of Soybean 7S Protein Fractions, Obtained from Germinated and Nongerminated Seeds, on Dough Rheological Properties and Bread Quality. Food Bioprocess Tech. 2012, 5, 226–234. [Google Scholar] [CrossRef]
- al Omari, D.Z.; Abdul-Hussain, S.S.; Ajo, R.Y. Germinated lupin (Lupinus albus) flour improves Arabic flat bread properties. Qual. Assur. Saf. Crop 2016, 8, 57–63. [Google Scholar] [CrossRef]
- Obeidat, B.A.; Abdul-Hussain, S.S.; al Omari, D.Z. Effect of addition of germinated lupin flour on the physiochemical and organoleptic properties of cookies. J. Food Process. Pres. 2013, 37, 637–643. [Google Scholar] [CrossRef]
- Abdul-Hussain, S.S.; Ajo, R.Y.; Obeidat, B.A. Acceptability and chemical composition of thick flat bread supplemented with chickpea flour and isolated soy protein. In Proceedings of the 5th International Congress, Flour-Bread ’09, 7th Croatian Congress of Cereal Technologists, Opatija, Croatia, 21–23 October 2009; pp. 280–287. [Google Scholar]
- Setia, R.; Dai, Z.; Nickerson, M.T.; Sopiwnykb, E.; Malcolmsonc, L.; Ai, Y. Impacts of short-term germination on the chemical compositions, technological characteristics and nutritional quality of yellow pea and faba bean flours. Food Res. Int. 2019, 122, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Marti, A.; Cardone, G.; Ambrogina-Pagani, M.; Casiraghi, M.C. Flour from sprouted wheat as a new ingredient in bread-making. LWT Food Sci. Technol. 2018, 89, 237–243. [Google Scholar] [CrossRef] [Green Version]
- Almeida, E.L.; Chang, Y.K.; Steel, C.J. Dietary fiber sources in bread: Influence on technological quality. LWT Food Sci. Technol. 2013, 50, 545–553. [Google Scholar] [CrossRef] [Green Version]
- Ragaee, S.; Guzar, I.; Dhull, N.; Seetharaman, K. Effects of fiber addition on antioxidant capacity and nutritional quality of wheat bread. LWT Food Sci. Technol. 2011, 44, 2147–2153. [Google Scholar] [CrossRef]
- Wang, J.; Rosell, C.M.; Benedito de Barber, C. Effect of the addition of different fibres on wheat dough performance and bread quality. Food Chem. 2002, 79, 221–226. [Google Scholar] [CrossRef]
- Fendri, L.B.; Chaari, F.; Maaloul, M.; Kallel, F.; Abdelkafi, L.; Chaabouni, S.E.; Ghribi-Aydi, D. Wheat bread enrichment by pea and broad bean pods fibers: Effect on dough rheology and bread quality. LWT Food Sci. Technol. 2016, 73, 584–591. [Google Scholar] [CrossRef]
- Xu, K.; Guo, M.; Roman, L.; Pico, J.; Martinez, M.M. Okra seed and seedless pod: Comparative study of their phenolics and carbohydrate fractions and their impact on bread-making. Food Chem. 2020, 317, 126387. [Google Scholar] [CrossRef] [PubMed]
- Sivam, A.S.; Sun-Waterhouse, D.; Perera, C.O.; Waterhouse, G.I.N. Exploring the interactions between blackcurrant polyphenols, pectin and wheat biopolymers in model breads; a FTIR and HPLC investigation. Food Chem. 2012, 131, 802–810. [Google Scholar] [CrossRef]
- Ning, J.; Hou, G.G.; Sun, J.; Wan, X.; Dubat, A. Effect of green tea powder on the quality attributes and antioxidant activity of whole-wheat flour pan bread. LWT Food Sci. Technol. 2017, 79, 342–348. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atudorei, D.; Codină, G.G. Perspectives on the Use of Germinated Legumes in the Bread Making Process, A Review. Appl. Sci. 2020, 10, 6244. https://doi.org/10.3390/app10186244
Atudorei D, Codină GG. Perspectives on the Use of Germinated Legumes in the Bread Making Process, A Review. Applied Sciences. 2020; 10(18):6244. https://doi.org/10.3390/app10186244
Chicago/Turabian StyleAtudorei, Denisa, and Georgiana Gabriela Codină. 2020. "Perspectives on the Use of Germinated Legumes in the Bread Making Process, A Review" Applied Sciences 10, no. 18: 6244. https://doi.org/10.3390/app10186244
APA StyleAtudorei, D., & Codină, G. G. (2020). Perspectives on the Use of Germinated Legumes in the Bread Making Process, A Review. Applied Sciences, 10(18), 6244. https://doi.org/10.3390/app10186244