Concentrations and Estimation of Sources of Ultrafine Particles in the City of Belgrade at Ada Marina Urban Background Site
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Monitoring Site
2.2. Instrumentation and Measurements
2.3. Data Processing
3. Results and Discussion
3.1. Basic Statistics
3.2. Source Apportionment Results
3.2.1. Factor 1: Nucleation
3.2.2. Factor 2: Nucleation Growth
3.2.3. Factor 3: Traffic 1
3.2.4. Factor 4: Mixed Traffic
3.2.5. Factor 5: Traffic 2
3.2.6. Factor 6: Biomass Burning
3.2.7. Factor 7: Urban Diffuse Source
3.2.8. Contributions of Factors to Total Particle Concentration
3.3. Comparison of Quantitative Factor Contributions in Different Cities
3.4. Seasonal Variability of Particle Number Concentration
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Trechera, P.; Garcia-Marlès, M.; Liu, X.; Reche, C.; Pérez, N.; Savadkoohi, M.; Beddows, D.; Salma, I.; Vörösmarty, M.; Casans, A.; et al. Phenomenology of Ultrafine Particle Concentrations and Size Distribution across Urban Europe. Environ. Int. 2023, 172, 107744. [Google Scholar] [CrossRef]
- Leikauf, G.D.; Kim, S.-H.; Jang, A.-S. Mechanisms of Ultrafine Particle-Induced Respiratory Health Effects. Exp. Mol. Med. 2020, 52, 329–337. [Google Scholar] [CrossRef]
- Oberdorster, G. Lung Particle Overload: Implications for Occupational Exposures to Particles. Regul. Toxicol. Pharmacol. 1995, 21, 123–135. [Google Scholar] [CrossRef]
- Utell, M.J.; Frampton, M.W.; Zareba, W.; Devlin, R.B.; Cascio, W.E. Cardiovascular effects associated with air pollution: Potential mechanisms and methods of testing. Inhal. Toxicol. 2002, 14, 1231–1247. [Google Scholar] [CrossRef] [PubMed]
- Jaques, P.A.; Kim, C.S. Measurement of Total Lung Deposition of Inhaled Ultrafine Particles in Healthy Men and Women. Inhal. Toxicol. 2000, 12, 715–731. [Google Scholar] [CrossRef]
- Seagrave, J.; Campen, M.J.; McDonald, J.D.; Mauderly, J.L.; Rohr, A.C. Oxidative Stress, Inflammation, and Pulmonary Function Assessment in Rats Exposed to Laboratory-Generated Pollutant Mixtures. J. Toxicol. Environ. Health A 2008, 71, 1352–1362. [Google Scholar] [CrossRef]
- Yang, H.; Liu, C.; Yang, D.; Zhang, H.; Xi, Z. Comparative Study of Cytotoxicity, Oxidative Stress and Genotoxicity Induced by Four Typical Nanomaterials: The Role of Particle Size, Shape and Composition. J. Appl. Toxicol. 2009, 29, 69–78. [Google Scholar] [PubMed]
- Qiongliang, L.; Yang, L.; Li, C.; Han, L.; Wilmot, J.; Yang, G.; Leinardi, R.; Zhou, Q.; Schröppel, A.; Kutschke, D.; et al. Alveolar macrophages initiate the spatially targeted recruitment of neutrophils after nanoparticle inhalation. Sci. Adv. 2025, 11, eadx8586. [Google Scholar] [CrossRef]
- Chen, L.; Yousaf, M.; Xu, J.; Ma, X. Ultrafine particles: Sources, toxicity, and deposition dynamics in the human respiratory tract——Experimental and computational approaches. J. Environ. Manag. 2025, 376, 124458. [Google Scholar]
- Totlandsdal, A.I.; Cassee, F.R.; Schwarze, P.; Refsnes, M.; Låg, M. Diesel Exhaust Particles Induce CYP1A1 and Pro-Inflammatory Responses via Differential Pathways in Human Bronchial Epithelial Cells. Part. Fibre Toxicol. 2010, 7, 41. [Google Scholar] [CrossRef]
- Tsien, A.; Diaz-Sanchez, D.; Ma, J.; Saxon, A. The Organic Component of Diesel Exhaust Particles and Phenanthrene, a Major Polyaromatic Hydrocarbon Constituent, Enhances IgE Production by IgE-Secreting EBV-Transformed Human B Cells in Vitro. Toxicol. Appl. Pharmacol. 1997, 142, 256–263. [Google Scholar]
- Cheng, H.; Saffari, A.; Sioutas, C.; Forman, H.J.; Morgan, T.E.; Finch, C.E. Nanoscale Particulate Matter from Urban Traffic Rapidly Induces Oxidative Stress and Inflammation in Olfactory Epithelium with Concomitant Effects on Brain. Environ. Health Perspect. 2016, 124, 1537–1546. [Google Scholar]
- Samoli, E.; Andersen, Z.J.; Katsouyanni, K.; Hennig, F.; Kuhlbusch, T.A.J.; Bellander, T.; Cattani, G.; Cyrys, J.; Forastiere, F.; Jacquemin, B. Exposure to Ultrafine Particles and Respiratory Hospitalisations in Five European Cities. Eur. Respir. J. 2016, 48, 674–682. [Google Scholar] [CrossRef]
- Salma, I.; Németh, Z.; Kerminen, V.-M.; Aalto, P.; Nieminen, T.; Weidinger, T.; Molnár, Á.; Imre, K.; Kulmala, M. Regional Effect on Urban Atmospheric Nucleation. Atmos. Chem. Phys. 2016, 16, 8715–8728. [Google Scholar] [CrossRef]
- Németh, Z.; Rosati, B.; Zíková, N.; Salma, I.; Bozó, L.; de España, C.D.; Schwarz, J.; Ždímal, V.; Wonaschütz, A. Comparison of Atmospheric New Particle Formation Events in Three Central European Cities. Atmos. Environ. 2018, 178, 191–197. [Google Scholar] [CrossRef]
- Garcia-Marlès, M.; Lara, R.; Reche, C.; Pérez, N.; Tobías, A.; Savadkoohi, M.; Beddows, D.; Salma, I.; Vörösmarty, M.; Weidinger, T.; et al. Source Apportionment of Ultrafine Particles in Urban Europe. Environ. Int. 2024, 194, 109149. [Google Scholar] [CrossRef]
- Rivas, I.; Beddows, D.C.S.; Amato, F.; Green, D.C.; Järvi, L.; Hueglin, C.; Reche, C.; Timonen, H.; Fuller, G.W.; Niemi, J. V Source Apportionment of Particle Number Size Distribution in Urban Background and Traffic Stations in Four European Cities. Environ. Int. 2020, 135, 105345. [Google Scholar] [CrossRef] [PubMed]
- Stacey, B.; Harrison, R.M.; Pope, F. Evaluation of Ultrafine Particle Concentrations and Size Distributions at London Heathrow Airport. Atmos. Environ. 2020, 222, 117148. [Google Scholar]
- Giechaskiel, B.; Maricq, M.; Ntziachristos, L.; Dardiotis, C.; Wang, X.; Axmann, H.; Bergmann, A.; Schindler, W. Review of Motor Vehicle Particulate Emissions Sampling and Measurement: From Smoke and Filter Mass to Particle Number. J. Aerosol Sci. 2014, 67, 48–86. [Google Scholar] [CrossRef]
- Bousiotis, D.; Dall’Osto, M.; Beddows, D.C.S.; Pope, F.D.; Harrison, R.M. Analysis of New Particle Formation (NPF) Events at Nearby Rural, Urban Background and Urban Roadside Sites. Atmos. Chem. Phys. 2019, 19, 5679–5694. [Google Scholar]
- Kalkavouras, P.; BougiatiotI, A.; Hussein, T.; Kalivitis, N.; Stavroulas, I.; Michalopoulos, P.; Mihalopoulos, N. Regional New Particle Formation over the Eastern Mediterranean and Middle East. Atmosphere 2020, 12, 13. [Google Scholar] [CrossRef]
- Carnerero, C.; Pérez, N.; Reche, C.; Ealo, M.; Titos, G.; Lee, H.-K.; Eun, H.-R.; Park, Y.-H.; Dada, L.; Paasonen, P. Vertical and Horizontal Distribution of Regional New Particle Formation Events in Madrid. Atmos. Chem. Phys. 2018, 18, 16601–16618. [Google Scholar]
- Kalkavouras, P.; Grivas, G.; Stavroulas, I.; Petrinoli, K.; Bougiatioti, A.; Liakakou, E.; Gerasopoulos, E.; Mihalopoulos, N. Source Apportionment of Fine and Ultrafine Particle Number Concentrations in a Major City of the Eastern Mediterranean. Sci. Total Environ. 2024, 915, 170042. [Google Scholar] [CrossRef] [PubMed]
- Vu, T.V.; Delgado-Saborit, J.M.; Harrison, R.M. Review: Particle Number Size Distributions from Seven Major Sources and Implications for Source Apportionment Studies. Atmos. Environ. 2015, 122, 114–132. [Google Scholar]
- Dai, Q.; Ding, J.; Song, C.; Liu, B.; Bi, X.; Wu, J.; Zhang, Y.; Feng, Y.; Hopke, P.K. Changes in Source Contributions to Particle Number Concentrations after the COVID-19 Outbreak: Insights from a Dispersion Normalized PMF. Sci. Total Environ. 2021, 759, 143548. [Google Scholar] [CrossRef]
- Hopke, P.K.; Feng, Y.; Dai, Q. Source Apportionment of Particle Number Concentrations: A Global Review. Sci. Total Environ. 2022, 819, 153104. [Google Scholar] [CrossRef]
- Rowell, A.; Brean, J.; Beddows, D.C.S.; Petäjä, T.; Vörösmarty, M.; Salma, I.; Niemi, J.V.; Manninen, H.E.; Van Pinxteren, D.; Tuch, T.; et al. Insights into the Sources of Ultrafine Particle Numbers at Six European Urban Sites Obtained by Investigating COVID-19 Lockdowns. Atmos. Chem. Phys. 2024, 24, 9515–9531. [Google Scholar]
- Hopke, P.K. An Introduction to Receptor Modeling. Chemom. Intell. Lab. Syst. 1991, 10, 21–43. [Google Scholar] [CrossRef]
- Paatero, P.; Tapper, U. Positive Matrix Factorization: A Non-negative Factor Model with Optimal Utilization of Error Estimates of Data Values. Environmetrics 1994, 5, 111–126. [Google Scholar]
- Hopke, P.K.; Dai, Q.; Li, L.; Feng, Y. Global Review of Recent Source Apportionments for Airborne Particulate Matter. Sci. Total Environ. 2020, 740, 140091. [Google Scholar]
- Brines, M.; Dall’Osto, M.; Beddows, D.C.S.; Harrison, R.M.; Gómez-Moreno, F.; Núñez, L.; Artinano, B.; Costabile, F.; Gobbi, G.P.; Salimi, F. Traffic and Nucleation Events as Main Sources of Ultrafine Particles in High-Insolation Developed World Cities. Atmos. Chem. Phys. 2015, 15, 5929–5945. [Google Scholar] [CrossRef]
- Beddows, D.; Harrison, R.M. Receptor Modelling of Both Particle Composition and Size Distribution from a Background Site in London, UK–A Two-Step Approach. Atmos. Chem. Phys. 2019, 19, 4863–4876. [Google Scholar] [CrossRef]
- Hopke, P.K.; Chen, Y.; Chalupa, D.C.; Rich, D.Q. Long Term Trends in Source Apportioned Particle Number Concentrations in Rochester NY. Environ. Pollut. 2024, 347, 123708. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.R.; Hu, B.; Liu, Q.; Sun, Y.; Wang, Y.S. Source Apportionment of Urban Fine Particle Number Concentration during Summertime in Beijing. Atmos. Environ. 2014, 96, 359–369. [Google Scholar] [CrossRef]
- Vörösmarty, M.; Hopke, P.K.; Salma, I. Attribution of Aerosol Particle Number Size Distributions to Main Sources Using an 11-Year Urban Dataset. Atmos. Chem. Phys. 2024, 24, 5695–5712. [Google Scholar] [CrossRef]
- Harrison, R.M.; Beddows, D.; Dall’Osto, M. PMF analysis of wide-range particle size spectra collected on a major highway. Environ. Sci. Technol. 2011, 45, 5522–5528. [Google Scholar]
- Damayanti, S.; Harrison, R.M.; Pope, F.; Beddows, D.C. Limited impact of diesel particle filters on road traffic emissions of ultrafine particles. Environ. Int. 2023, 174, 107888. [Google Scholar] [CrossRef]
- Dall’Osto, M.; Thorpe, A.; Beddows, D.C.S.; Harrison, R.M.; Barlow, J.F.; Dunbar, T.; Williams, P.I.; Coe, H. Remarkable dynamics of nanoparticles in the urban atmosphere. Atmos. Chem. Phys. 2011, 11, 6623–6637. [Google Scholar] [CrossRef]
- Harrison, R.M.; Jones, A.M.; Beddows, D.C.; Dall’Osto, M.; Nikolova, I. Evaporation of traffic-generated nanoparticles during advection from source. Atmos. Environ. 2016, 125, 1–7. [Google Scholar] [CrossRef]
- Leoni, C.; Pokorná, P.; Hovorka, J.; Masiol, M.; Topinka, J.; Zhao, Y.; Křůmal, K.; Cliff, S.; Mikuška, P.; Hopke, P.K. Source Apportionment of Aerosol Particles at a European Air Pollution Hot Spot Using Particle Number Size Distributions and Chemical Composition. Environ. Pollut. 2018, 234, 145–154. [Google Scholar] [CrossRef]
- Squizzato, S.; Masiol, M.; Emami, F.; Chalupa, D.C.; Utell, M.J.; Rich, D.Q.; Hopke, P.K. Long-Term Changes of Source Apportioned Particle Number Concentrations in a Metropolitan Area of the Northeastern United States. Atmosphere 2019, 10, 27. [Google Scholar] [CrossRef]
- Ogulei, D.; Hopke, P.K.; Chalupa, D.C.; Utell, M.J. Modeling Source Contributions to Submicron Particle Number Concentrations Measured in Rochester, New York. Aerosol Sci. Technol. 2007, 41, 179–201. [Google Scholar] [CrossRef]
- Paatero, P.; Hopke, P.K. Discarding or Downweighting High-Noise Variables in Factor Analytic Models. Anal. Chim. Acta 2003, 490, 277–289. [Google Scholar] [CrossRef]
- McGuire, M.L.; Jeong, C.-H.; Slowik, J.G.; Chang, R.-W.; Corbin, J.C.; Lu, G.; Mihele, C.; Rehbein, P.J.G.; Sills, D.M.L.; Abbatt, J.P.D. Elucidating Determinants of Aerosol Composition through Particle-Type-Based Receptor Modeling. Atmos. Chem. Phys. 2011, 11, 8133–8155. [Google Scholar]
- U.S. Environmental Protection Agency (EPA). EPA Positive Matrix Factorization (PMF) 5.0: Fundamentals and User Guide; Office of Research and Development: Washington, DC, USA, 2014. [Google Scholar]
- Rejano, F.; Casquero-Vera, J.A.; Lyamani, H.; Andrews, E.; Casans, A.; Perez-Ramirez, D.; Alados-Arboledas, L.; Titos, G.; Olmo, F.J. Impact of Urban Aerosols on the Cloud Condensation Activity Using a Clustering Model. Sci. Total Environ. 2023, 858, 159657. [Google Scholar] [CrossRef] [PubMed]
- Casquero-Vera, J.A.; Lyamani, H.; Dada, L.; Hakala, S.; Paasonen, P.; Román, R.; Fraile, R.; Petäjä, T.; Olmo-Reyes, F.J.; Alados-Arboledas, L. New Particle Formation at Urban and High-Altitude Remote Sites in the South-Eastern Iberian Peninsula. Atmos. Chem. Phys. 2020, 20, 14253–14271. [Google Scholar] [CrossRef]
- Robinson, A.L.; Donahue, N.M.; Shrivastava, M.K.; Weitkamp, E.A.; Sage, A.M.; Grieshop, A.P.; Lane, T.E.; Pierce, J.R.; Pandis, S.N. Rethinking organic aerosols: Semivolatile emissions and photochemical aging. Science 2007, 315, 1259–1262. [Google Scholar] [CrossRef]
- Ridolfo, S.; Querol, X.; Karanasiou, A.; Rodríguez-Luque, A.; Pérez, N.; Alastuey, A.; Jaén, C.; van Drooge, B.L.; Pandolfi, M.; Pedrero, M.; et al. Size distribution, sources and chemistry of ultrafine particles at Barcelona-El Prat Airport, Spain. Environ. Int. 2024, 193, 109057. [Google Scholar] [CrossRef]
- Zhu, Y.; Hinds, W.C.; Kim, S.; Shen, S.; Sioutas, C. Study of Ultrafine Particles near a Major Highway with Heavy-Duty Diesel Traffic. Atmos. Environ. 2002, 36, 4323–4335. [Google Scholar] [CrossRef]
- Wagner, F.; Amann, M.; Bertok, I.; Cofala, J.; Heyes, C.; Klimont, Z.; Rafaj, P.; Schöpp, W. Baseline Emission Projections and Further Cost-Effective Reductions of Air Pollution Impacts in Europe—A 2010 Perspective; IIASA: Laxenburg, Austria, 2010. [Google Scholar]
- Dahl, A.; Gharibi, A.; Swietlicki, E.; Gudmundsson, A.; Bohgard, M.; Ljungman, A.; Blomqvist, G.; Gustafsson, M. Traffic-Generated Emissions of Ultrafine Particles from Pavement–Tire Interface. Atmos. Environ. 2006, 40, 1314–1323. [Google Scholar] [CrossRef]
- Foitzik, M.-J.; Unrau, H.-J.; Gauterin, F.; Dörnhöfer, J.; Koch, T. Investigation of Ultra Fine Particulate Matter Emission of Rubber Tires. Wear 2018, 394, 87–95. [Google Scholar] [CrossRef]
- Fussell, J.C.; Franklin, M.; Green, D.C.; Gustafsson, M.; Harrison, R.M.; Hicks, W.; Kelly, F.J.; Kishta, F.; Miller, M.R.; Mudway, I.S. A Review of Road Traffic-Derived Non-Exhaust Particles: Emissions, Physicochemical Characteristics, Health Risks, and Mitigation Measures. Environ. Sci. Technol. 2022, 56, 6813–6835. [Google Scholar] [CrossRef] [PubMed]
- Junkermann, W.; Vogel, B.; Bangert, M. Ultrafine particles over Germany–An aerial survey. Tellus B Chem. Phys. Meteorol. 2016, 68, 29250. [Google Scholar] [CrossRef]
- Agudelo-Castañeda, D.M.; Teixeira, E.C.; Braga, M.; Rolim, S.B.A.; Silva, L.F.O.; Beddows, D.C.S.; Harrison, R.M.; Querol, X. Cluster Analysis of Urban Ultrafine Particles Size Distributions. Atmos. Pollut. Res. 2019, 10, 45–52. [Google Scholar] [CrossRef]
- Vouitsis, I.; Amanatidis, S.; Ntziachristos, L.; Kelessis, A.; Petrakakis, M.; Stamos, I.; Mitsakis, E.; Samaras, Z. Daily and seasonal variation of traffic related aerosol pollution in Thessaloniki, Greece, during the financial crisis. Atmos. Environ. 2015, 122, 577–587. [Google Scholar] [CrossRef]
- Seibert, P.; Beyrich, F.; Gryning, S.E.; Joffre, S.; Rasmussen, A.; Tercier, P. Review and intercomparison of operational methods for the determination of the mixing height. Atmos. Environ. 2000, 34, 1001–1027. [Google Scholar] [CrossRef]
- Li, Z.; Guo, J.; Ding, A.; Liao, H.; Liu, J.; Sun, Y.; Wang, T.; Xue, H.; Zhang, H.; Zhu, B. Aerosol and boundary-layer interactions and impact on air quality. Natl. Sci. Rev. 2017, 4, 810–833. [Google Scholar] [CrossRef]





| Meteorological Parameters | Mean (Std) | Median | Min/Max |
|---|---|---|---|
| Temperature (°) | 19.25 (8.50) | 18.80 | −1.08/38.60 |
| Humidity (%) | 62.08 (18.27) | 62.10 | 20.30/98.90 |
| Wind speed (m/s) | 1.40 (1.57) | 0.78 | 0.01/8.67 |
| Pollutants | |||
| PNC (10–400 nm) (#/cm3) | 10,525.16 (9911.756) | 7482.57 | 1365.02/108,055.7 |
| PNC (10–25 nm) (#/cm3) | 2925.29 (4129.58) | 1741.75 | 173.81/56,658.8 |
| PNC (25–100 nm) (#/cm3) | 6020.51 (6250.99) | 4090.25 | 689.87/63,671.86 |
| PNC (100–400 nm) (#/cm3) | 1849.03 (1645.13) | 1384.62 | 169.75/15,307.76 |
| PM10 (µg/m3) | 27.39 (18.17) | 22.60 | 2.19/301 |
| PM2.5 (µg/m3) | 16.33 (12.57) | 13.30 | 1.67/239 |
| SO2 (µg/m3) | 6.71 (8.47) | 5.13 | 0.05/172 |
| O3 (µg/m3) | 62.29 (30.31) | 60.50 | 4.53/180.88 |
| NO (µg/m3) | 5.10 (10.49) | 2.18 | 0.66/147 |
| NO2 (µg/m3) | 21.78 (18.56) | 15.00 | 2.16/105.00 |
| NOx (µg/m3) | 29.60 (30.11) | 18.70 | 3.24/250.00 |
| OC | 3878.06 (4180.86) | 2568.00 | 341/36,159.50 |
| eBC | 1905.30 (1849.74) | 1259.00 | 90.50/13,833.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ćirović, Ž.; Stojanović, D.B.; Davidović, M.; Onjia, A.; Garcia-Marlès, M.; Lozano, N.P.; Alastuey, A.; Jovašević-Stojanović, M. Concentrations and Estimation of Sources of Ultrafine Particles in the City of Belgrade at Ada Marina Urban Background Site. Environments 2026, 13, 47. https://doi.org/10.3390/environments13010047
Ćirović Ž, Stojanović DB, Davidović M, Onjia A, Garcia-Marlès M, Lozano NP, Alastuey A, Jovašević-Stojanović M. Concentrations and Estimation of Sources of Ultrafine Particles in the City of Belgrade at Ada Marina Urban Background Site. Environments. 2026; 13(1):47. https://doi.org/10.3390/environments13010047
Chicago/Turabian StyleĆirović, Željko, Danka B. Stojanović, Miloš Davidović, Antonije Onjia, Meritxell Garcia-Marlès, Noemí Pérez Lozano, Andres Alastuey, and Milena Jovašević-Stojanović. 2026. "Concentrations and Estimation of Sources of Ultrafine Particles in the City of Belgrade at Ada Marina Urban Background Site" Environments 13, no. 1: 47. https://doi.org/10.3390/environments13010047
APA StyleĆirović, Ž., Stojanović, D. B., Davidović, M., Onjia, A., Garcia-Marlès, M., Lozano, N. P., Alastuey, A., & Jovašević-Stojanović, M. (2026). Concentrations and Estimation of Sources of Ultrafine Particles in the City of Belgrade at Ada Marina Urban Background Site. Environments, 13(1), 47. https://doi.org/10.3390/environments13010047

