Risk of Chronic Kidney Disease and Implications in Patients with Atrial Fibrillation for the Development of Major Adverse Cardiovascular Events with Machine Learning
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Inclusion and Exclusion Criteria
2.3. Variables
- Sociodemographic variables: age, sex, primary care team, and sub-region.
- Cardiovascular risk factors and diagnoses (ICD-11 code prefixes): hypertension (I10–I15), hypercholesterolemia (E78), body mass index (BMI), diabetes mellitus (E10–E14), sleep apnea–hypopnea syndrome (G47), heart failure (I50–I51), ischemic heart disease (myocardial infarction, percutaneous coronary intervention, stable or unstable angina, or coronary artery bypass grafting) (I20–I25), CKD (N18), UACR (mg/g) and eGFR (mL/min/1.73 m2), cerebrovascular disease (transient ischemic attack or ischemic stroke) (G25, I63), chronic obstructive pulmonary disease (J40–J45), cognitive impairment (F06, G31), and cancer (C00–C96).
- Clinical scores: stroke risk by CHA2DS2-VA and CHA2DS2-VASc; Barthel Index for basic activities of daily living; Wells score for the probability of deep-vein thrombosis; and the Controlling Nutritional Status (CONUT) score.
- Pharmacologic treatments: antiplatelet agents, direct oral anticoagulants (DOACs), and vitamin K antagonists.
- Vital status at end of follow-up: alive/deceased.
2.4. Chronic Kidney Disease Identification and Classification
2.5. Statistical Analysis
2.6. Machine Learning Development
3. Results
3.1. Baseline Characteristics
3.2. Association Between AF and Chronic Kidney Disease
3.3. Risk of MACE Depending on eGFR
3.4. Risk of MACE Depending on Albuminuria
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tan, S.; Zhou, J.; Veang, T.; Lin, Q.; Liu, Q. Trends in Global Burden and Socioeconomic Profiles of Atrial Fibrillation and Atrial Flutter: Insights from the Global Burden of Disease Study 2021. CJC Open 2025, 7, 247–258. [Google Scholar] [CrossRef]
- Daoudi, S.; John, K.; Chalhoub, F.; Chee, J.; Infeld, M.; Elbaz-Greener, G.; Homoud, M.; Ruskin, J.N.; Heist, E.K.; Madias, C.; et al. Nationwide Trends in Hospitalizations for Atrial Fibrillation and Flutter in the United States before and during the Outbreak of the COVID-19 Pandemic. J. Clin. Med. 2024, 13, 4883. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Linz, D.; Gawalko, M.; Betz, K.; Hendriks, J.M.; Lip, G.Y.H.; Vinter, N.; Guo, Y.; Johnsen, S. Atrial fibrillation: Epidemiology, screening and digital health. Lancet Reg. Health Eur. 2024, 37, 100786. [Google Scholar] [CrossRef] [PubMed]
- Moltó-Balado, P.; Reverté-Villarroya, S.; Monclús-Arasa, C.; Balado-Albiol, M.T.; Baset-Martínez, S.; Carot-Domenech, J.; Clua-Espuny, J.L. Heart Failure and Major Adverse Cardiovascular Events in Atrial Fibrillation Patients: A Retrospective Primary Care Cohort Study. Biomedicines 2023, 11, 1825. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kornej, J.; Börschel, C.S.; Benjamin, E.J.; Schnabel, R.B. Epidemiology of Atrial Fibrillation in the 21st Century: Novel Methods and New Insights. Circ. Res. 2020, 127, 4–20. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moltó-Balado, P.; Reverté-Villarroya, S.; Alonso-Barberán, V.; Monclús-Arasa, C.; Balado-Albiol, M.T.; Clua-Queralt, J.; Clua-Espuny, J.-L. Machine Learning Approaches to Predict Major Adverse Cardiovascular Events in Atrial Fibrillation. Technologies 2024, 12, 13. [Google Scholar] [CrossRef]
- Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2024, 105, S117–S314. [Google Scholar] [CrossRef] [PubMed]
- Stevens, P.E.; Levin, A.; Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group Members. Evaluation and management of chronic kidney disease: Synopsis of the kidney disease: Improving global outcomes 2012 clinical practice guideline. Ann. Intern. Med. 2013, 158, 825–830. [Google Scholar] [CrossRef] [PubMed]
- Levin, A.; Ahmed, S.B.; Carrero, J.J.; Foster, B.; Francis, A.; Hall, R.K.; Herrington, W.G.; Hill, G.; Inker, L.A.; Kazancıoğlu, R.; et al. Executive summary of the KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease: Known knowns and known unknowns. Kidney Int. 2024, 105, 684–701. [Google Scholar] [CrossRef] [PubMed]
- Siddiqi, H.K.; Vinayagamoorthy, M.; Gencer, B.; Ng, C.; Pester, J.; Cook, N.R.; Lee, I.-M.; Buring, J.; Manson, J.E.; Albert, C.M.; et al. Sex differences in atrial fibrillation risk: The VITAL Rhythm Study. JAMA Cardiol. 2022, 7, 1027–1035. [Google Scholar] [CrossRef]
- Vaidya, S.R.; Aeddula, N.R. Chronic Kidney Disease. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK535404/ (accessed on 3 October 2025).
- Kim, S.M.; Jeong, Y.; Kim, Y.L.; Kang, M.; Kang, E.; Ryu, H.; Kim, Y.; Han, S.S.; Ahn, C.; Oh, K.H. Association of Chronic Kidney Disease With Atrial Fibrillation in the General Adult Population: A Nationwide Population-Based Study. J. Am. Heart Assoc. 2023, 12, e028496. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kiuchi, M.G. Atrial fibrillation and chronic kidney disease: A bad combination. Kidney Res. Clin. Pract. 2018, 37, 103–105. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ha, J.T.; Freedman, S.B.; Kelly, D.M.; Neuen, B.L.; Perkovic, V.; Jun, M.; Badve, S.V. Kidney Function, Albuminuria, and Risk of Incident Atrial Fibrillation: A Systematic Review and Meta-Analysis. Am. J. Kidney Dis. 2024, 83, 350–359.e1. [Google Scholar] [CrossRef]
- Bansal, N.; Xie, D.; Sha, D.; Appel, L.J.; Deo, R.; Feldman, H.I.; He, J.; Jamerson, K.; Kusek, J.W.; Messe, S.; et al. Cardiovascular Events After New-Onset Atrial Fibrillation in Adults With CKD (CRIC). J. Am. Soc. Nephrol. 2018, 29, 2859–2869. [Google Scholar] [CrossRef] [PubMed]
- Odutayo, A.; Wong, C.X.; Hsiao, A.J.; Hopewell, S.; Altman, D.G.; A Emdin, C. Atrial Fibrillation and Risks of Cardiovascular Disease, Renal Disease, and Death: Systematic Review and Meta-analysis. BMJ 2016, 354, i4482. [Google Scholar] [CrossRef] [PubMed]
- Massicotte-Azarniouch, D.; Kuwornu, J.P.; Carrero, J.J.; Lam, N.N.; Molnar, A.O.; Zimmerman, D.; McCallum, M.K.; Garg, A.X.; Sood, M.M. Incident AF and Risk of CHF, MI, ESKD, and Mortality in Decreased eGFR. Am. J. Kidney Dis. 2018, 71, 191–199. [Google Scholar] [CrossRef]
- Lau, Y.C.; Proietti, M.; Guiducci, E.; Blann, A.D.; Lip, G.Y.H. Atrial Fibrillation and Thromboembolism in CKD. J. Am. Coll. Cardiol. 2016, 68, 1452–1464. [Google Scholar] [CrossRef]
- Ding, W.Y.; Gupta, D.; Wong, C.F.; Lip, G.Y.H. Pathophysiology of Atrial Fibrillation and Chronic Kidney Disease. Cardiovasc. Res. 2021, 117, 1046–1059. [Google Scholar] [CrossRef]
- Ding, W.Y.; Lip, G.Y.H.; Pastori, D.; Shantsila, A. Effects of AF and CKD on Major Adverse Cardiovascular Events. Am. J. Cardiol. 2020, 132, 72–78. [Google Scholar] [CrossRef]
- Ocak, G.; Khairoun, M.; Khairoun, O.; Bos, W.J.W.; Fu, E.L.; Cramer, M.J.; Westerink, J.; Verhaar, M.C.; Visseren, F.L.; UCC-SMART study group. Chronic Kidney Disease and Atrial Fibrillation: A Dangerous Combination. PLoS ONE 2022, 17, e0266046. [Google Scholar] [CrossRef]
- Joglar, J.A.; Chung, M.K.; Armbruster, A.L.; Benjamin, E.J.; Chyou, J.Y.; Cronin, E.M.; Deswal, A.; Eckhardt, L.L.; Goldberger, Z.D.; Gopinathannair, R.; et al. 2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of AF. Circulation 2024, 149, e1–e156. [Google Scholar] [CrossRef] [PubMed]
- Moltó-Balado, P.; Clua-Espuny, J.L.; Reverté-Villarroya, S.; Balado-Albiol, M.T.; García-Olcina, M.; Simeó-Monzó, A.; Serra-Garcia, A.; Canela-Royo, J. Estado de malnutrición como factor pronóstico de eventos cardiovasculares adversos mayores (MACE) en los pacientes con fibrilación auricular [Poor nutrition status as a predictor of major adverse cardiovascular events (MACE) in patients with atrial fibrillation]. Semergen 2025, 51, 102458. [Google Scholar] [CrossRef] [PubMed]
- Cersosimo, A.; Zito, E.; Pierucci, N.; Matteucci, A.; La Fazia, V.M. A Talk with ChatGPT: The Role of Artificial Intelligence in Shaping the Future of Cardiology and Electrophysiology. J. Pers. Med. 2025, 15, 205. [Google Scholar] [CrossRef] [PubMed]

| Variables | No AF | (%) | AF | (%) | p | ALL |
|---|---|---|---|---|---|---|
| All (n %) | 37,723 | 93.6% | 2574 | 6.4% | - | 40,297 |
| Women | 17,535 | 46.5% | 1343 | 3.3% | <0.001 | 18,878 |
| Age average | 77.6 ± 8.7 | 81.2 ± 7.9 | <0.001 | 77.9 ± 8.5 | ||
| CHA2DS2-VASc | 3.2 ± 1.2 | 3.8 ± 1.2 | <0.001 | 3.2 ± 1.2 | ||
| CHA2DS2-VA | 2.6 ± 1.1 | 3.4 ± 1.2 | <0.001 | 2.7 ± 1.1 | ||
| Hypertension arterial | 23,610 | 62.6% | 1945 | 75.6% | <0.001 | 25,555 |
| Diabetes mellitus | 9689 | 25.7% | 769 | 30% | <0.001 | 10,458 |
| Dyslipidemia | 17,913 | 47.5% | 1216 | 47.3% | 0.822 | 19,129 |
| BMI 1 (kg/m2) | 28.7 ± 5.1 | 29.5 ± 5.4 | <0.001 | 28.7 ± 5.2 | ||
| Ischemic cardiomyopathy | 2558 | 6.8% | 357 | 13.9% | <0.001 | 2915 |
| Heart failure | 2096 | 5.6% | 676 | 26.·% | <0.001 | 2772 |
| Stroke/TIA | 698 | 1.9% | 187 | 7.3% | <0.001 | 885 |
| Vascular peripheral disease | 2431 | 6.4% | 345 | 13.4% | <0.001 | 2776 |
| Dementia/cognitive impairment | 3471 | 9.2% | 310 | 12.1% | <0.001 | 3781 |
| Chronic kidney disease | 5481 | 14.5% | 795 | 30.9% | <0.001 | 5834 |
| Glomerular filtration rate (mL/min/1.73 m2) | 72.9 ± 18.6 | 63.5 ± 20.4 | <0.001 | 72.2 ± 19 | ||
| OSAHS 2 | 1022 | 2.7% | 126 | 4.9% | <0.001 | 1148 |
| COPD 3/asthma/bronchitis | 4591 | 12.2% | 447 | 17.4% | <0.001 | 5038 |
| Statins | 11,806 | 31.3% | 945 | 36.7% | <0.001 | 12,751 |
| Antiaggregants | 6110 | 16.2% | 141 | 5.5% | <0.001 | 6251 |
| Anticoagulation | 987 | 2.6% | 1994 | 77.5% | <0.001 | 2981 |
| VKA 4 | 754 | 2% | 944 | 36.7% | <0.001 | 1698 |
| NOAC 5 | 235 | 0.6% | 1053 | 40.9% | <0.001 | 1288 |
| CHARLSON | 1.3 ± 1.3 | 1.8 ± 1.4 | <0.001 | 1.3 ± 1.3 | ||
| Average follow-up time | 80.8 ± 9.3 | 78.6 ± 12.1 | <0.001 | 80.7 ± 9.5 |
| No-AF | New AF | HR AF/No-AF | |
|---|---|---|---|
| N | 37,723 | 2574 | |
| AF (n) Incidence/1000 people-years [CI95%] | - | 2574 8.9 [8.6–9.2] | - |
| Chronic kidney disease (n %) Incidence/1000 people-years [CI95%] | 5481 (14.52%) 20.3 [19.8–20.9] | 795 (30.88%) 40.1 [37.1–43.2] | 1.97 [1.82–2.13] p < 0.001 |
| Heart failure (n %) Incidence/1000 people-years [CI95%] | 2096 (5.56%) 8.3 [7.9–8.6] | 676 (26.26%) 40.1 [37.1–43.2] | 4.85 [4.5–5.3] p < 0.001 |
| Ischemic heart disease (n %) Incidence/1000 people-years [CI95%] | 2558 (6.78%) 10.1 [9.7–10.5] | 367 (14.26%) 21.8 [19.6–24.1] | 2.16 [1.93–2.41] p < 0.001 |
| Stroke/transient ischemic attack (n %) Incidence/1000 people-years [CI95%] | 698 (1.85%) 2.7 [2.5–3.0] | 187 (7.26%) 11.1 [9.6–12.8] | 4.03 [3.43–4.74] p < 0.001 |
| Death (n %) Incidence/1000 people-years [CI95%] | 6799 (18.02%) 26.8 [26.1–27.4] | 518 (20.12%) 30.7 [28.1–33.5] | 1.14 [1.04–1.25] p = 0.027 |
| Total MACE (n%) Incidence/1000 people-years [CI95%] | 5352 (14.11%) 21.1 [20.5–21.6] | 1748 (67.9%) 73.0 [68.9–77.1] | 3.52 [3.31–3.75] p < 0.001 |
| Stage | Estimated Glomerular Filtration Rate (eGFR) | AF + MACE+ | AF + MACE- | HR IC95% | Total AF | |
|---|---|---|---|---|---|---|
| 1 | eGFR ≥ 90 mL/min (Kidney damage with normal) | 42 | 106 | 0.66 (0.51–0.85) | 148 | |
| 2 | eGFR 60–89 mL/min (Mild kidney damage) | 371 | 604 | 0.83 (0.74–0.92) | 975 | |
| 3 | a | eGFR 45–59 mL/min (Moderate loss of kidney function) | 175 | 208 | 1.11 (1.03–1.27) | 383 |
| b | eGFR 30–44 mL/min (moderate to severe loss of kidney function) | 121 | 112 | 1.27 (1.12–1.46) | 133 | |
| 4 | eGFR 15–29 mL/min (Severe loss of kidney function) | 52 | 33 | 1.49 (1.24–1.78) | 85 | |
| 5 | eGFR ≤ 15 mL/min (Kidney failure) | 53 | 64 | 2.08 (1.88–2.33) | 117 | |
| Albuminuria | AF + MACE+ | AF + MACE− | HR IC95% | Total AF |
|---|---|---|---|---|
| <30 mg/g (normal) | 850 | 566 | 0.78 (0.69–0.88) | 1416 |
| 30–299 mg/g (moderate) | 675 | 225 | 1.51 (1.47–1.55) | 901 |
| ≥300 mg/g (severe) | 222 | 35 | 1.76 (1.67–1.81) | 257 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moltó-Balado, P.; Clua-Espuny, J.-L.; Tarongi-Vidal, C.; Barrios-Carmona, P.; Alonso-Barberán, V.; Balado-Albiol, M.-T.; Simeó-Monzó, A.; Canela-Royo, J.; del Barrio-González, A. Risk of Chronic Kidney Disease and Implications in Patients with Atrial Fibrillation for the Development of Major Adverse Cardiovascular Events with Machine Learning. Med. Sci. 2025, 13, 289. https://doi.org/10.3390/medsci13040289
Moltó-Balado P, Clua-Espuny J-L, Tarongi-Vidal C, Barrios-Carmona P, Alonso-Barberán V, Balado-Albiol M-T, Simeó-Monzó A, Canela-Royo J, del Barrio-González A. Risk of Chronic Kidney Disease and Implications in Patients with Atrial Fibrillation for the Development of Major Adverse Cardiovascular Events with Machine Learning. Medical Sciences. 2025; 13(4):289. https://doi.org/10.3390/medsci13040289
Chicago/Turabian StyleMoltó-Balado, Pedro, Josep-Lluís Clua-Espuny, Carlos Tarongi-Vidal, Paula Barrios-Carmona, Victor Alonso-Barberán, Maria-Teresa Balado-Albiol, Andrea Simeó-Monzó, Jorge Canela-Royo, and Alba del Barrio-González. 2025. "Risk of Chronic Kidney Disease and Implications in Patients with Atrial Fibrillation for the Development of Major Adverse Cardiovascular Events with Machine Learning" Medical Sciences 13, no. 4: 289. https://doi.org/10.3390/medsci13040289
APA StyleMoltó-Balado, P., Clua-Espuny, J.-L., Tarongi-Vidal, C., Barrios-Carmona, P., Alonso-Barberán, V., Balado-Albiol, M.-T., Simeó-Monzó, A., Canela-Royo, J., & del Barrio-González, A. (2025). Risk of Chronic Kidney Disease and Implications in Patients with Atrial Fibrillation for the Development of Major Adverse Cardiovascular Events with Machine Learning. Medical Sciences, 13(4), 289. https://doi.org/10.3390/medsci13040289

