Neurocognitive Impairment in Idiopathic Pulmonary Fibrosis: A Systematic Review of Current Evidence
Abstract
1. Introduction
2. Materials and Methods
Study Selection and Data Extraction
3. Results
3.1. Presence of Cognitive Impairment in IPF
3.2. Cognitive Domains Affected in IPF
3.3. Physiological and Clinical Correlations of Cognitive Impairment
4. Discussion
- Longitudinal studies to track cognitive evolution over time and identify early predictors of decline.
- Targeted interventions, such as cognitive exercises combined with respiratory rehabilitation, to assess the impact on cognitive function and quality of life.
- Integrating inflammatory or imaging biomarkers to better understand the neurobiological substrate of cognitive dysfunction in IPF.
- Evaluating the impact of antifibrotic therapy on cognition, considering potential indirect effects through amelioration of hypoxia and reduction in exacerbations.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| Abbreviation | Meaning |
| 6MWD | Six-minute walk distance |
| AHI | Apnea–Hypopnea Index |
| BDI-II | Beck Depression Inventory-II |
| COPD | Chronic Obstructive Pulmonary Disease |
| DLCO | Diffusing capacity of the lung for carbon monoxide |
| FEV1 | Forced expiratory volume in one second |
| FVC | Forced vital capacity |
| GRADE | Grading of Recommendations, Assessment, Development and Evaluation |
| HR | Heart rate |
| HRQoL | Health-related quality of life |
| HVLT-DR | Hopkins Verbal Learning Test—Delayed Recall |
| ILD | Interstitial lung disease |
| IPF | Idiopathic pulmonary fibrosis |
| JBI | Joanna Briggs Institute |
| mMRC | Modified Medical Research Council Dyspnea Scale |
| MoCA | Montreal Cognitive Assessment |
| MMSE | Mini-Mental State Examination |
| OSA | Obstructive sleep apnea |
| PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
| PROSPERO | International Prospective Register of Systematic Reviews |
| RAVLT | Rey Auditory Verbal Learning Test |
| SF-36 | Short Form-36 Health Survey |
| SpO2 | Peripheral oxygen saturation |
| TMT-A/B | Trail Making Test A and B |
References
- Barratt, S.L.; Creamer, A.; Hayton, C.; Chaudhuri, N. Idiopathic pulmonary fibrosis (IPF): An overview. J. Clin. Med. 2018, 7, 201. [Google Scholar] [CrossRef]
- Kropski, J.A. Familial Interstitial Lung Disease. Semin. Respir. Crit. Care Med. 2020, 41, 229. [Google Scholar] [CrossRef]
- Podolanczuk, A.J.; Wong, A.W.; Saito, S.; Lasky, J.A.; Ryerson, C.J.; Eickelberg, O. Update in interstitial lung disease 2020. Am. J. Respir. Crit. Care Med. 2021, 203, 1343–1352. [Google Scholar] [CrossRef]
- Vastag, Z.; Tudorache, E.; Traila, D.; Fira-Mladinescu, O.; Marc, M.S.; Oancea, C.; Rosca, E.C. Neurocognitive and Neuropsychiatric Implications of Fibrosing Interstitial Lung Diseases. Biomedicines 2024, 12, 2572. [Google Scholar] [CrossRef]
- Siraj, R.A. Comorbid Cognitive Impairment in Chronic Obstructive Pulmonary Disease (COPD): Current Understanding, Risk Factors, Implications for Clinical Practice, and Suggested Interventions. Medicina 2023, 59, 732. [Google Scholar] [CrossRef]
- Bors, M.; Tomic, R.; Perlman, D.M.; Kim, H.J.; Whelan, T.P.M. Cognitive function in idiopathic pulmonary fibrosis. Chron. Respir. Dis. 2015, 12, 365–372. [Google Scholar] [CrossRef]
- Giannouli, V.; Markopoulou, A.; Kiosseoglou, G.; Kosmidis, M.H. Neuropsychological functioning in patients with interstitial lung disease. Appl. Neuropsychol. Adult 2022, 29, 1290–1295. [Google Scholar] [CrossRef]
- Sharp, C.; Adamali, H.; Millar, A.; Dodd, J. P274 Cognitive function in idiopathic pulmonary fibrosis. Thorax 2016, 71 (Suppl. S3), A237. [Google Scholar] [CrossRef]
- Tudorache, V.; Traila, D.; Marc, M.; Oancea, C.; Manolescu, D.; Tudorache, E.; Timar, B.; Albai, A.; Fira-Mladinescu, O. Impact of moderate to severe obstructive sleep apnea on the cognition in idiopathic pulmonary fibrosis. PLoS ONE 2019, 14, e0211455. [Google Scholar] [CrossRef] [PubMed]
- Hanada, M.; Tanaka, T.; Kozu, R.; Ishimatsu, Y.; Sakamoto, N.; Orchanian-Cheff, A.; Rozenberg, D.; Reid, W.D. The interplay of physical and cognitive function in rehabilitation of interstitial lung disease patients: A narrative review. J. Thorac. Dis. 2023, 15, 4503–4521. [Google Scholar] [CrossRef] [PubMed]
- Annaka, H.; Honma, K.; Nomura, T. A Scoping Review of Factor-Related Cognitive Impairment in Interstitial Lung Disease. Cureus 2024, 16, e67791. [Google Scholar] [CrossRef]
- Hilton, M. JBI Critical appraisal checklist for systematic reviews and research syntheses. J. Can Health Libr. Assoc. 2024, 45, 180. [Google Scholar] [CrossRef]
- Schünemann, H.J.; Oxman, A.D.; Brozek, J.; Glasziou, P.; Jaeschke, R.; Vist, G.E.; Williams, J.W., Jr.; Kunz, R.; Craig, J.; Montori, V.M.; et al. Grading quality of evidence and strength of recommendations for diagnostic tests and strategies. BMJ 2008, 336, 1106–1110. [Google Scholar] [CrossRef] [PubMed]
- Annaka, H.; Nomura, T.; Moriyama, H. Cognitive Function in Patients with Mild Idiopathic Pulmonary Fibrosis: A Case-Control Pilot Study. Occup. Ther. Health Care 2025, 39, 397–411. [Google Scholar] [CrossRef]
- Hopkins, R.O.; Weaver, L.K.; Pope, D.; Orme, J.F.; Bigler, E.D.; Larson-Lohr, V. Neuropsychological sequelae and impaired health status in survivors of severe acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 1999, 160, 50–56. [Google Scholar] [CrossRef]
- Miyo, K.; Uchida, Y.; Nakano, R.; Kamijo, S.; Hosonuma, M.; Yamazaki, Y.; Isobe, H.; Ishikawa, F.; Onimaru, H.; Yoshikawa, A.; et al. Intermittent Hypoxia Induces Cognitive Dysfunction and Hippocampal Gene Expression Changes in a Mouse Model of Obstructive Sleep Apnea. Int. J. Mol. Sci. 2025, 26, 7495. [Google Scholar] [CrossRef] [PubMed]
- Michiels, C. Review Physiological and Pathological Responses to Hypoxia. Am. J. Pathol. 2004, 164, 1875–1882. [Google Scholar] [CrossRef]
- Leng, Y.; McEvoy, C.T.; Allen, I.; Yaffe, K. [P1–588]: Sleep-disordered breathing, cognitive function and risk of cognitive impairment: A systematic review and meta-analysis. Alzheimer’s Dement 2017, 13, P246–P247. [Google Scholar] [CrossRef]
- Zhang, W.; Xiao, D.; Mao, Q.; Xia, H. Role of neuroinflammation in neurodegeneration development. Signal Transduct. Target. Ther. 2023, 8, 267. [Google Scholar] [CrossRef] [PubMed]
- Hirano, T.; Doi, K.; Matsunaga, K.; Takahashi, S.; Donishi, T.; Suga, K.; Oishi, K.; Yasuda, K.; Mimura, Y.; Harada, M.; et al. A Novel Role of Growth Differentiation Factor (GDF)-15 in Overlap with Sedentary Lifestyle and Cognitive Risk in COPD. J. Clin. Med. 2020, 9, 2737. [Google Scholar] [CrossRef]
- Boa Sorte Silva, N.C.; Barha, C.K.; Erickson, K.I.; Kramer, A.F.; Liu-Ambrose, T. Physical exercise, cognition, and brain health in aging. Trends Neurosci. 2024, 47, 402–417. [Google Scholar] [CrossRef]
- Gimeno-Santos, E.; Frei, A.; Steurer-Stey, C.; de Batlle, J.; Rabinovich, R.A.; Raste, Y.; Hopkinson, N.S.; Polkey, M.I.; van Remoortel, H.; Troosters, T.; et al. Determinants and outcomes of physical activity in patients with COPD: A systematic review. Thorax 2014, 69, 731–739. [Google Scholar] [CrossRef]
- Cleutjens, F.A.; Wouters, E.F.; Dijkstra, J.B.; Spruit, M.A.; Franssen, F.M.; Vanfleteren, L.E.; Ponds, R.W.; Janssen, D.J. The COgnitive-Pulmonary Disease (COgnitive-PD) study: Protocol of a longitudinal observational comparative study on neuropsychological functioning of patients with COPD. BMJ Open 2014, 4, e004495. [Google Scholar] [CrossRef]
- Wuyts, W.A.; Papiris, S.; Manali, E.; Kilpeläinen, M.; Davidsen, J.R.; Miedema, J.; Robalo-Cordeiro, C.; Morais, A.; Artés, M.; Asijee, G.; et al. The Burden of Progressive Fibrosing Interstitial Lung Disease: A DELPHI Approach. Adv Ther. 2020, 37, 3246–3264. [Google Scholar] [CrossRef]
- Raghu, G.; Remy-Jardin, M.; Myers, J.L.; Richeldi, L.; Ryerson, C.J.; Lederer, D.J.; Behr, J.; Cottin, V.; Danoff, S.K.; Morell, F.; et al. Diagnosis of idiopathic pulmonary fibrosis An Official ATS/ERS/JRS/ALAT Clinical practice guideline. Am. J. Respir. Crit. Care Med. 2018, 198, e44–e68. [Google Scholar] [CrossRef]
- Kalaria, R.N.; Akinyemi, R.; Ihara, M. Does vascular pathology contribute to Alzheimer changes? J. Neurol. Sci. 2012, 322, 141–147. [Google Scholar] [CrossRef]
- Yohannes, A.M.; Chen, W.; Moga, A.M.; Leroi, I.; Connolly, M.J. Cognitive Impairment in Chronic Obstructive Pulmonary Disease and Chronic Heart Failure: A Systematic Review and Meta-analysis of Observational Studies. J. Am. Med. Dir. Assoc. 2017, 18, e1–e451. [Google Scholar] [CrossRef]
- Alosco, M.L.; Spitznagel, M.B.; van Dulmen, M.; Raz, N.; Cohen, R.; Sweet, L.H.; Colbert, L.H.; Josephson, R.; Hughes, J.; Rosneck, J.; et al. Cognitive function and treatment adherence in older adults with heart failure. Psychosom. Med. 2012, 74, 965–973. [Google Scholar] [CrossRef]
- Kristensen, F.; Gregersen, R.; Pedersen, M.K.; Skrubbeltrang, C.; Thuesen, J. Rehabilitation needs in people living with Dementia: A scoping review of assessment tools and procedures. Aging Health Res. 2024, 4, 100187. [Google Scholar] [CrossRef]
- Tainta, M.; Iriondo, A.; Ecay-Torres, M.; Estanga, A.; de Arriba, M.; Barandiaran, M.; Clerigue, M.; Garcia-Sebastian, M.; Villanua, J.; Izagirre, A.; et al. Brief cognitive tests as a decision-making tool in primary care. A population and validation study. Neurologia 2024, 39, 781–791. [Google Scholar]
- Kernick, D.; Chew-Graham, C.A.; O’Flynn, N. Clinical assessment and management of multimorbidity: Nice guideline. Br. J. Gen. Pract. 2017, 67, 235–236. [Google Scholar] [CrossRef] [PubMed]
- Cox, I.A.; Borchers Arriagada, N.; de Graaff, B.; Corte, T.J.; Glaspole, I.; Lartey, S.; Walters, E.H.; Palmer, A.J. Health-related quality of life of patients with idiopathic pulmonary fibrosis: A systematic review and meta-analysis. Eur. Respir. Rev. 2020, 29, 200154. [Google Scholar] [CrossRef]
- Helmy, E.M.; Sakrana, A.A.; Abdel-Fattah, S.; Elsaid, A.R. Diffusion tensor imaging of white matter integrity in relation to smoking index and exacerbations in severe chronic obstructive pulmonary disease. Egypt. J. Radiol. Nucl. Med. 2019, 50, 1–8. [Google Scholar] [CrossRef]
- He, M.; Liu, Y.; Guan, Z.; Li, C.; Zhang, Z. Neuroimaging insights into lung disease-related brain changes: From structure to function. Front. Aging Neurosci. 2025, 17, 1550319. [Google Scholar] [PubMed]

| Authors | Design | IPF Sample Size | Age Range (Years) | Cognitive Tests | Main Cognitive Domains Affected | Associated Clinical Factors | JBI | Grade |
|---|---|---|---|---|---|---|---|---|
| Bors et al. [6] | Prospective descriptive study | 46 IPF (moderate n = 34 Severe n = 12) Control (n = 15) | Moderate IPF = 63.2 ± 9.6; Severe = 69.3 ± 9.4; Controls = 66.0 ± 10.8 | Trail Making Test A/B, Stroop Color-Word (1–3), Hopkins Verbal Learning Tes–Delayed Recall, Boston Naming Test, Grooved Pegboard (a/b) | Divided attention (TMT-B), processing speed (TMT-A, Stroop), psychomotor coordination (Pegboard), verbal memory (HVLT-DR) | Severe IPF (DLCO ≈ 20% pred., all on home O2) showed slower TMT-B (135 s vs. 86/83; p < 0.01) and Stroop 3 (22 vs. 30 vs. 38; p < 0.01), poorer Pegboard performance (>120 s vs. ≈80 s; p < 0.01), and higher BDI-II scores; greater disease severity correlated with lower HRQoL (SF-36) | 6/8 | Low–very low |
| Tudorache et al. [9] | Cross-sectional study | IPF (n = 23) Control (n = 17) | IPF = 67.6 ± 8.7; Controls = 60.6 ± 7.3 | MoCA (global + subdomains) | Delayed recall, language, naming, and visuospatial abilities significantly impaired in IPF (p < 0.05 each) | Higher OSA severity (AHI 33 vs. 12, p = 0.018) and greater daytime sleepiness (Epworth 6.5 vs. 3, p = 0.013) in IPF with MoCA < 23; no associations with age or lung function parameters | 6/8 | Low–very low |
| Giannouli et al. [7] | Cross-sectional study | 51 ILD patients (including 15 IPF) Controls (n = 49) | ILD = 61.2 ± 12.3; Controls = 63.7 ± 12.5 | Rey–Osterrieth Complex Figure Test, Word List Learning Test, Trail Making Test A/B, Digit Span (forward/backward), Verbal Fluency (semantic and phonological), Ruff 2 & 7 Selective Attention Test, Geriatric Depression Scale | Verbal and visual memory, delayed recall, and recognition scores significantly lower in ILD; psychomotor speed reduced (TMT A/B); attention and executive accuracy (Ruff 2 & 7) relatively preserved | Poorer cognition associated with lower DLCO% (β = 0.58, p = 0.011), shorter 6MWD (β = −0.58, p = 0.047), higher HR post-exercise (β = −0.57, p = 0.015), and lower end-walk SpO2 (β = −0.65, p = 0.005) | 6/8 | Low–very low |
| Annaka et al. [11] | Case–control pilot study | 20 IPF (mild n = 10, mod-severe n = 10) Controls (n = 16) | Controls = 69.0 ± 1.4; Stage I = 66.6 ± 1.4; Stage II–III = 67.7 ± 1.5 | MMSE, Animal Naming, Clock Drawing, Digit Span (forward/backward), RAVLT (recall/delayed), Trail Making Test A/B, Reverse Stroop, Stroop | Verbal learning and delayed recall (RAVLT, p = 0.045–0.047), processing speed and cognitive flexibility (Stroop p = 0.009; Reverse Stroop p = 0.030) | Lower MMSE and Stroop scores in stage II–III vs. stage I (MD = 1.15; p = 0.013); higher mMRC (p < 0.001) and lower DLCO (46.5% vs. 67.1%, p < 0.001) associated with poorer cognition | 6/8 | Low–very low |
| Cognitive Domain | Main Findings Across Studies | Typical Clinical Correlates | Consistency |
|---|---|---|---|
| Memory (verbal/visual) | Reduced immediate and delayed recall; impaired learning and recognition. | ↓ DLCO %, shorter 6-MWD, ↓ end-walk SpO2, ↑ post-exercise HR. | High [6,7,11] |
| Processing speed | Slower TMT A/B completion times. | Disease severity, oxygen-desaturation indices. | Moderate [6,7,11] |
| Working memory | Lower Digit Span scores. | Correlated with DLCO % and 6-MWT parameters. | Moderate [7] |
| Executive function/attention | Divided attention and interference deficits. | Advanced disease; hypoxemia. | Moderate [6,11] |
| Visuospatial/constructional | Impaired figure-copy accuracy. | ↓ DLCO %, ↓ SpO2. | Moderate [6,9] |
| Language | Mild naming/fluency reduction. | Higher OSA severity and daytime sleepiness. | Low [9] |
| Motor coordination | Slower fine-motor performance. | Severe IPF; all on home O2. | Low [6] |
| Global cognition | Mild overall reduction. | Linked with OSA severity only. | Low [9] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mihart, D.; Crisan, A.F.; Carunta, V.; Trăilă, D.; Tudorache, E.; Oancea, C. Neurocognitive Impairment in Idiopathic Pulmonary Fibrosis: A Systematic Review of Current Evidence. Med. Sci. 2025, 13, 288. https://doi.org/10.3390/medsci13040288
Mihart D, Crisan AF, Carunta V, Trăilă D, Tudorache E, Oancea C. Neurocognitive Impairment in Idiopathic Pulmonary Fibrosis: A Systematic Review of Current Evidence. Medical Sciences. 2025; 13(4):288. https://doi.org/10.3390/medsci13040288
Chicago/Turabian StyleMihart, Dacian, Alexandru Florian Crisan, Vlad Carunta, Daniel Trăilă, Emanuela Tudorache, and Cristian Oancea. 2025. "Neurocognitive Impairment in Idiopathic Pulmonary Fibrosis: A Systematic Review of Current Evidence" Medical Sciences 13, no. 4: 288. https://doi.org/10.3390/medsci13040288
APA StyleMihart, D., Crisan, A. F., Carunta, V., Trăilă, D., Tudorache, E., & Oancea, C. (2025). Neurocognitive Impairment in Idiopathic Pulmonary Fibrosis: A Systematic Review of Current Evidence. Medical Sciences, 13(4), 288. https://doi.org/10.3390/medsci13040288

