Marine Sediments from a Contaminated Site: Geotechnical Properties and Chemo-Mechanical Coupling Processes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geological Features of the Site
2.2. Environmental Features of the Site
2.3. In Situ Sampling, Laboratory Procedures and Equipment
3. Results
3.1. Physical Properties, State, and Chemical Composition
3.2. Mechanical Behavior
3.3. Washing Tests Results
4. Discussion
5. Conclusions and Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- GESAMP (IMO/FAO/Unesco/WMO/WHO/IAEA/UN/UNEP Joint Group of Experts on the Scientific Aspects of Marine Pollution). Reducing Environmental Impacts of Coastal Aquaculture. Rep. Stud. GESAMP 1991, 47, 35. [Google Scholar]
- Hueckel, T. On effective stress concepts and deformation in clays subjected to environmental loads: Discussion. Can. Geotech. J. 1992, 29, 1120–1125. [Google Scholar] [CrossRef]
- Di Maio, C.; Santoli, L.; Schiavone, P. Volume change behaviour of clays: The influence of mineral composition, pore fluid composition and stress state. Mech. Mater. 2004, 36, 435–451. [Google Scholar] [CrossRef]
- Calvello, M.; Lasco, M.; Vassallo, R.; Di Maio, C. Compressibility and residual shear strength of smectitic clays: Influence of pore aqueous solutions and organic solvents. RIG 2005, 1, 34–47. [Google Scholar]
- Gajo, A.; Maines, M. Mechanical effects of aqueous solutions of inorganic acids and bases on a natural active clay. Géotechnique 2007, 57, 687–699. [Google Scholar] [CrossRef]
- Wahid, A.S.; Gajo, A.; Di Maggio, R. Chemo-mechanical effects in kaolinite. Part 1: Prepared samples. Géotechnique 2011, 61, 439–447. [Google Scholar] [CrossRef]
- Wahid, A.S.; Gajo, A.; Di Maggio, R. Chemo-mechanical effects in kaolinite. Part 2: Exposed samples and chemical and phase analyses. Géotechnique 2011, 61, 449–457. [Google Scholar] [CrossRef]
- Federico, A.; Vitone, C.; Murianni, A. On the mechanical behaviour of dredged submarine clayey sediments stabilized with lime or cement. Can. Geotech. J. 2015, 52, 2030–2040. [Google Scholar] [CrossRef]
- Santamarina, J.C.; Klein, K.; Palomino, A.; Guimaraes, M.S. Micro-Scale aspects of chemical–mechanical coupling: Interparticle forces and fabric. In Chemo-Mechanical Coupling in Clays: From Nanoscale to Engineering Applications, Proceedings of the Workshop, Maratea, Italy, 28–30 June 2001; Di Maio, C., Hueckel, T., Loret, B., Balkema, A.A., Eds.; Swets & Zeitlinger: Lisse, The Netherlands, 2002; pp. 47–64. [Google Scholar]
- Italian Law n. 349 Istituzione del Ministero dell’Ambiente e norme in materia di danno ambientale. Gazzetta Ufficiale della Repubblica Italiana n. 162 del 1986. Available online: https://www.minambiente.it/sites/default/files/legge_08_07_1986_349.pdf (accessed on 25 July 2019).
- Italian Law n. 426 Nuovi interventi in campo ambientale. Gazzetta Ufficiale della Repubblica Italiana n. 291 del 1998. Available online: https://www.gazzettaufficiale.it/atto/stampa/serie_generale/originario (accessed on 25 July 2019).
- Lisco, S.; Corselli, C.; De Giosa, F.; Mastronuzzi, G.; Moretti, M.; Siniscalchi, A.; Marchese, F.; Bracchi, V.; Tessarolo, V.; Tursi, A. Geology of Mar Piccolo, Taranto (southern Italy): The physical basis for remediation of a polluted marine area. J. Maps 2015, 12, 173–180. [Google Scholar] [CrossRef]
- Ricchetti, G.; Ciaranfi, N.; Luperto Sinni, E.; Mongelli, F.; Pieri, P. Geodinamica ed evoluzione sedimentaria e tettonica dell’Avampaese Apulo. Mem. Soc. Geol. Ital. 1988, 41, 57–82. [Google Scholar]
- Doglioni, C.; Mongelli, F.; Pieri, P. The Puglia uplift (SE Italy): An anomaly in the foreland of the Apenninic subduction due to the buckling of a thick lithosphere. Tectonics 1994, 13, 1309–1321. [Google Scholar] [CrossRef]
- Belluomini, G.; Caldara, M.; Casini, C.; Cerasoli, M.; Manfra, L.; Mastronuzzi, G.; Palmentola, G.; Sanso’, P.; Tuccimei, P.; Vesica, P.L. Age of Late Pleistocene shorelines, morphological evolution and tectonic history of Taranto area, Southern Italy. Quat. Sci. Rev. 2002, 21, 427–454. [Google Scholar] [CrossRef]
- Mastronuzzi, G.; Sansò, P. Pleistocene sea level changes, sapping processes and development of valleys network in Apulia region (southern Italy). Geomorphology 2002, 46, 19–34. [Google Scholar] [CrossRef]
- Mastronuzzi, G. Evoluzione dell’orografia antica della città di Taranto. In Proceedings of the Dal Kastron Bizantino al Castello Aragonese, Castello Aragonese, Taranto, Italy, 17 November 2004; Scorpione Editrice: Taranto, Italy, 2006; pp. 123–140. [Google Scholar]
- Mastronuzzi, G.; Sansò, P. Quaternary coastal morphology and sea level changes. In Proceedings of the Final Conference-Project IGCP 437 UNESCO - IUGS, GI2S Coast Coast-Gruppo Informale di Studi Costieri, Taranto, Italy, 22–28 September 2003; Research Publication Brizio srl: Taranto, Italy, 2003; p. 184. [Google Scholar]
- Cotecchia, V.; Lollino, G.; Pagliarulo, R.; Stefanon, A.; Tadolini, T.; Trizzino, R. Studi e controlli in situ per la captazione della sorgente sottomarina Galeso, Mar Piccolo di Taranto. In Proceedings of the International Congress of Geo-engineering, Torino, Italy, 27–30 September 1989; Associazione Mineraria Subalpina: Torino, Italy, 1989; pp. 475–484. [Google Scholar]
- Cotecchia, V. Le Acque Sotterranee E L’Intrusione Marina in Puglia: Dalla Ricerca All’Emergenza Nella Salvaguardia Della Risorsa. the Groundwater and the Seawater Intrusion in Apulia: From Research to Emergency in the Safeguard of the Water Resource. ISPRA. 2014. Available online: http://www.isprambiente.gov.it/it/pubblicazioni/periodici-tecnici/memorie-descrittive-della-carta-geologica-ditalia/le-acque-sotterranee-e-lintrusione-marina-in-puglia-dalla-ricerca-allemergenza-nella-salvaguardia-della-risorsa (accessed on 25 July 2019).
- Ciaranfi, N.; Pieri, P.; Ricchetti, G. Note alla carta geologica delle Murge e del Salento (Puglia centromeridionale). Mem. Soc. Geol. Ital. 1988, 41, 449–460. [Google Scholar]
- ISPRA. Elaborazione E Valutazione Dei Risultati Della Caratterizzazione AI Fini Della Individuazione Degli Opportuni Interventi Di Messa in Sicurezza E Bonifica Del Sito Di Interesse Nazionale Di Taranto. Available online: http://www.inchiostroverde.it/wp-content/uploads/2011/09/CII-El-PU-TA-Mar-Grande-II-Lotto-e-Mar-Piccolo-01.06.pdf (accessed on 25 July 2019).
- Panetta, P.; Dell’Angelo, B. I citri del Mar Piccolo di Taranto. Conchiglie 1975, 11, 65–86. [Google Scholar]
- De Serio, F.; Malcangio, D.; Mossa, M. Circulation in a southern Italy coastal basin: Modelling and field measurement. Cont. Shelf Res. 2007, 27, 779–797. [Google Scholar] [CrossRef]
- Conisma, Progetto Spicamar. Studio Pilota per La Caratterizzazione Delle Aree Marine a Rischio. Available online: http://www.conisma.it/it/ricerca-2/ricerca/ (accessed on 25 July 2019).
- Caroppo, C.; Rubino, F.; Giordano, L.; Trono, A.; Forleo, M.; Petrocelli, A.; Bellio, G.; Colella, R.; Palmieri, N.; Sclafani, P.; et al. System Design for ssa14 Mar Piccolo of Taranto (Southern Italy). Available online: http://spicosa-inline.databases.eucc-d.de/files/documents/00000925_System%20Design%20SSA14_%20Mar%20Piccolo_V02.pdf (accessed on 25 July 2019).
- Di Leo, A.; Cardellicchio, N.; Giandomenico, S.; Spada, L. Mercury andmethylmercury contamination in Mytilus galloprovincialis from Taranto Gulf (Ionian Sea, southern Italy): Risk evaluation for consumers. Food Chem. Toxicol. 2010, 48, 3131–3136. [Google Scholar] [CrossRef]
- ARPA PUGLIA. IL Mar Piccolo Di Taranto: Approfondimento Tecnico-Scientifico Sulle Interazioni Tra IL Sistema Ambientale Ed I Flussi Di Contaminanti Da Fonti Primarie E Secondarie. Available online: http://www.arpa.puglia.it/web/guest/rapporti (accessed on 25 July 2019).
- ICRAM. Progetto per La Messa in Sicurezza D’Emergenza Mar Piccolo—Area 170 Ha Sito Di Interesse Nazionale Di Taranto; Technical Report; ICRAM: Chioggia, Italy, 2005. [Google Scholar]
- Cardellicchio, N.; Buccolieri, A.; Di Leo, A.; Spada, L. Heavy metals in marine sediments from the Mar Piccolo of Taranto (Ionian Sea, Southern Italy). Ann. Chim. 2006, 96, 727–741. [Google Scholar] [CrossRef]
- Cardellicchio, N.; Buccolieri, A.; Di Leo, A.; Giandomenico, S.; Lopez, L.; Pizzulli, F.; Spada, L. Organic pollutants (PAHs, PCBs) in sediments from the Mar Piccolo in Taranto (Ionian Sea, Southern Italy). Mar. Pollut. Bull. 2007, 55, 451–458. [Google Scholar] [CrossRef]
- Petronio, B.M.; Cardellicchio, N.; Calace, N.; Pietroletti, M.; Pietrantonio, M.; Caliandro, L. Spatial and temporal heavy metal concentration (Cu, Pb, Zn, Hg, Fe, Mn, Hg) in sediments of the Mar Piccolo in Taranto. Water Air Soil Pollut. 2012. [Google Scholar] [CrossRef]
- ICRAM 2004. doc. # CII-Pr-PU-TA-valori intervento-01.04. Available online: https://va.minambiente.it/File/Documento/76634 (accessed on 25 July 2019).
- Italian Law n. 152 Norme in materia ambientale. Gazzetta Ufficiale della Repubblica Italiana n. 88 del 2006. Available online: https://www.gazzettaufficiale.it/atto/serie_generale/caricaDettaglioAtto/originario?atto.dataPubblicazioneGazzetta=2006-04-14&atto.codiceRedazionale=006G0171 (accessed on 25 July 2019).
- Mayer, L.M. Organic matter at the sediment–water interface. In Organic Geochemistry; Engel, M.H., Macko, S.A., Eds.; Springer: Boston, MA, USA, 1993; pp. 171–184. [Google Scholar]
- Meyers, P.A. Applications of organic geochemistry of paleolimnological reconstructions: A summary of examples from the Laurentian Great Lakes. Org. Geochem. 2003, 34, 261–289. [Google Scholar] [CrossRef]
- Caroppo, C.; Giordano, L.; Palmieri, N.; Bellio, G.; Paride Bisci, A.; Portacci, G.; Scafani, P.; Sawyer Hopkins, T. Progress towards sustainable mussel aquaculture in Mar Piccolo, Italy. Ecol. Soc. 2012, 17, 10. [Google Scholar] [CrossRef]
- EEC Reg. 1992/43. On the Conservation of Natural Habitats and of Wild Fauna and Flora (Habitat Directive). Available online: https://eur-lex.europa.eu/legal-content/IT/TXT/?uri=CELEX:31992L0043 (accessed on 13 March 2018).
- SPA Protocol. Protocol Concerning Specially Protected Areas and Biological Diversity in the Mediterranean; UNEP: Barcelona, Spain, 1995. [Google Scholar]
- Giandomenico, S.; Cardellicchio, N.; Spada, L.; Annicchiarico, C. Di Leo, A. Metals and PCB levels in some edible marine organisms from the Ionian Sea: Dietary intake evaluation and risk for consumers. Environ. Sci. Pollut. Res. Int. 2016, 23, 12596–12612. [Google Scholar] [CrossRef]
- Bartholini, G. L’Influenza Della Sostanza Organica Nei Processi Di Diagenesi Precoce Nei Sedimenti Del Mar. Adriatico E Ionio. Ph.D. Thesis, Alma Mater Studiorum—Università di Bologna, Bologna, Italy, 2015. [Google Scholar]
- Vitone, C.; Federico, A.; Puzrin, A.M.; Ploetze, M.; Carrassi, E.; Todaro, F. On the geotechnical characterisation of the polluted submarine sediments from Taranto. Environ. Sci. Pollut. Res. 2016, 23, 12495–12501. [Google Scholar] [CrossRef]
- ASTM D2216. Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass; ASTM International: West Conshohocken, PA, USA, 2019. [Google Scholar]
- BS 1337. Methods of Test Soils for Civil Engineering Purposes; Classification Tests; BSI Standards Limited: London, UK, 2016. [Google Scholar]
- ASTM D4542. Standard Test Methods for Pore Water Extraction and Determination of the Soluble Salt Content of Soils by Refractometer; ASTM International: West Conshohocken, PA, USA, 2000. [Google Scholar]
- Imai, G.; Tsoruya, K.; Yano, K. A treatment of salinity in water content determination of very soft clays. Technical note. Soils Found. 1978, 19, 84–89. [Google Scholar] [CrossRef]
- Ho, E.W.L. Geotechnical Properties of Deep-Ocean Sediments: A Critical State Approach. Ph.D. Thesis, The City University, London, UK, 1987. [Google Scholar]
- Nash, D.F.T.; Sills, G.C.; Davison, L.R. One-dimensional consolidation testing of soft clay from Bothkennar. Géotechnique 1992, 42, 241–256. [Google Scholar] [CrossRef]
- Le, M.H. Caracterisation Physique ET Mecanique Des Sols Marins D’Offshore Profound. Ph.D. Thesis, l’Ecole Nationale des Ponts et Chaussées, Paris, France, 2008. [Google Scholar]
- ASTM D4318. Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils; ASTM International: West Conshohocken, PA, USA, 2017. [Google Scholar]
- ASTM D2487. Standard Practice for Classification of Soils for Engineering Purposes; ASTM International: West Conshohocken, PA, USA, 2017. [Google Scholar]
- Sollecito, F.; Cotecchia, F.; Vitone, C. Geotechnical characterisation of submarine sediments from a polluted site. Environ. Sci. Eng. 2019, 756–763. [Google Scholar] [CrossRef]
- Di Maio, C.; Onorati, R. Influence of pore liquid composition on the shear strength of an active clay. In Proceedings of the VIII International Symposium on Landslide, Wales, UK, 26–30 June 2000; pp. 1–463. [Google Scholar]
- ASTM D3080. Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions; ASTM International: West Conshohocken, PA, USA, 2011. [Google Scholar]
- ASTM D422. Standard Test Method for Particle-Size Analysis of Soils; ASTM International: West Conshohocken, PA, USA, 2007. [Google Scholar]
- ASTM D854. Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer; ASTM International: West Conshohocken, PA, USA; Available online: https://www.astm.org/Standards/D854 (accessed on 25 July 2019).
- CNR-UNI 10013. Prove Sulle Terre-Peso Specifico Dei Granuli; UNI: Milano, Italy, 1964. [Google Scholar]
- ASTM D2435. Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading; ASTM International: West Conshohocken, PA, USA; Available online: https://www.astm.org/Standards/D2435 (accessed on 25 July 2019).
- Adamo, F.; Andria, G.; Bottiglieri, O.; Cotecchia, F.; Di Nisio, A.; Miccoli, D.; Sollecito, F.; Spadavecchia, M.; Todaro, F.; Trotta, A.; et al. GeoLab, a measurement system for the geotechnical characterization of polluted submarine sediments. Measurement 2018, 127, 335–347. [Google Scholar] [CrossRef]
- Italian law, DM 13/09/1999 “Metodi ufficiali di analisi chimica del suolo”. Available online: http://ctntes.arpa.piemonte.it/Bonifiche/Documenti/Norme/13_Set_99.pdf (accessed on 25 July 2019).
- Cardellicchio, N.; (CNR, Institute for Marine Coastal Environment, Taranto, Italy). Personal Communication, 2014.
- Roscoe, K.H.; Schofield, A.N.; Wroth, C.P. On the yielding of soils. Géotechnique 1958, 8, 22–53. [Google Scholar] [CrossRef]
- Schofield, A.N.; Wroth, C.P. Critical State Soil Mechanics; McGraw-Hill: London, UK, 1968. [Google Scholar]
- Skempton, A.W. The consolidation of clays by gravitational compaction. Q. J. Geol. Surv. Lond. 1970, 125, 373–411. [Google Scholar] [CrossRef]
- Bennet, R.H.; Lehman, L.; Hulbert, M.H.; Harvey, G.R.; Bush, S.A.; Forde, E.B.; Crews, P.; Sawyer, W.B. Interrelationships of Organic Carbon and Submarine Sediment Geotechnical Properties. Mar. Geotechnol. 1985, 6, 61–98. [Google Scholar] [CrossRef]
- Pusch, R. Influence of salinity and organic matter on the formation of clay microstructure. In Proceedings of the International Symposium on Soil Structure, Gothenburg, Sweden, 1–2 August 1973; pp. 161–173. [Google Scholar]
- Coutinho, R.Q.; Lacerda, W.A. Characterization and consolidation of Juturnaiba organic clays. In Proceedings of the International Symposium of Geotechnical Engineering Soft Soils, Mexico City, Mexico, 13–14 August 1987; Volume 1, pp. 17–24. [Google Scholar]
- Levesque, C.L.; Locat, J.; Leroueil, S. Characterisation of postglacial sediments of the Saguenay Fjord, Quebec, Canada. In Characterisation and Engineering Properties of Natural Soils; Taylor & Francis Group: London, UK, 2007; pp. 2645–2677. [Google Scholar]
- ASTM D 2217. Standard Practice for Wet Preparation of Soil Samples for Particle-Size Analysis and Determination of Soil Constants; ASTM International: West Conshohocken, PA, USA, 1998. [Google Scholar]
- Mitchell, J.K.; Soga, K. Fundamentals of Soil Behavior, 3rd ed; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Skempton, A.W. Notes on the Compressibility of Clays. Q. J. Geol. Soc. Lond. 1944, 100, 119–135. [Google Scholar] [CrossRef]
- Terzaghi, K.; Peck, R.B. Soil Mechanics in Engineering Practice; John Wiley & Sons: Hoboken, NJ, USA, 1948. [Google Scholar]
- Keller, G.H. Organic matter and the geotechnical properties of submarine sediments. Geo-Mar. Lett. 1982, 2, 191–198. [Google Scholar] [CrossRef]
- Paul, M.A.; Barras, B.F. Role of organic material in the plasticity of Bothkennar clay. Géotechnique 1999, 49, 529–535. [Google Scholar] [CrossRef]
- Jang, J.; Santamarina, J.C. Fines classification based on sensitivity to pore-fluid chemistry. J. Geotech. Geoenviron. Eng. 2016, 142, 06015018. [Google Scholar] [CrossRef]
- Torrance, J.K. A laboratory investigation of the effect of leaching on the compressibility and shear strength of Norwegian marine clays. Géotechnique 1975, 24, 155–173. [Google Scholar] [CrossRef]
PAHs | PCBs | hmwHCs | As | Cd | Cr | Hg | Ni | Pb | V | Cu | Zn | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Site-specific law [33] | 4 | 0.19 | - | 20 | 1 | 160 | 0.8 | 100 | 50 | - | 45 | 110 |
National law [34] | 100 | 5 | 750 | 50 | 15 | 800 | 5.0 | 500 | 1000 | 250 | 600 | 1500 |
No. | Test | Symbol | Standard | Note |
---|---|---|---|---|
1 | Natural fluid content | wf | [43] | Corrected according to Equation (1) |
2 | Atterberg limits (liquid and plastic limit) | wL, wP | [50,51] | Corrected according to Equation (1) |
3 | Soil fractions (clay, silt, sand and gravel fraction) | CF, MF, SF, GF | [55] | Corrected for the presence of shell fragments (retained to the sieve No. 18 (1 mm)) |
4 | Specific gravity of soil solids | Gs* | [56,57] | Corrected according to Equation (2) |
5 | Bulk unit weight | γ | From mechanical tests | - |
6 | Organic matter | OMBS | [44] | - |
7 | Oedometer test | OED | [58] | Marine water in the cell, corrected according to Equation (1) |
8 | Direct shear test | DST | [54] | Marine water in the cell, corrected according to Equation (1) |
Depth | Fmt | Sampler | SF | MF | CF | Gs* | γ | e0 | wf | wL | PI | LI | OMBS |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(m bsf) | (%) | (%) | (%) | (-) | (kN/m3) | (-) | (%) | (%) | (%) | (%) | (%) | ||
0.00–1.00 | H | M | 20 | 52 | 28 | 2.505 | 13.85 | 3.95 | 157.9 | 84.4 | 43.7 | 2.68 | 5.9 |
3.00–6.25 | H | UC | 9 | 55 | 36 | 2.593 | 17.22 | 1.47 | 56.8 | 44.1 | 22.1 | 1.57 | nd |
6.25–10.75 | H | CD | 14 | 56 | 30 | 2.661 | nd | 1.50 | 56.5 | 49.7 | 26.6 | 1.26 | nd |
10.75–15.25 | H | CD | 15 | 52 | 33 | 2.656 | nd | 1.60 | 60.2 | 50.8 | 27.7 | 1.34 | 3.2 |
16.00–16.30 | ASP | UC | 6 | 54 | 40 | 2.701 | 18.72 | 1.10 | 40.8 | 46.2 | 23.8 | 0.77 | nd |
16.30–17.25 | ASP | CD | 8 | 44 | 48 | 2.665 | nd | 1.49 | 55.8 | 50.8 | 27.6 | 1.18 | nd |
17.25–18.00 | ASP | CD | 9 | 46 | 45 | 2.675 | nd | 1.36 | 51.0 | 45.5 | 24.3 | 1.23 | 0.7 |
18.00–18.25 | ASP | UC | 12 | 51 | 37 | 2.670 | 18.14 | 1.05 | 39.3 | 48.7 | 24.7 | 0.62 | nd |
Depth | Qtz | K-feld | Cal | Dol | Hem | Hal | I/S + Chl/S | I | Kao | Chl |
---|---|---|---|---|---|---|---|---|---|---|
(m bsf) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) |
0.00–1.00 | 14 | 3 | 20 | 6 | 4 | 15 | 27 (60) | 6 (22) | 3 (11) | 3 (7) |
1.00–5.00 | 22 | 6 | 23 | 7 | 3 | 4 | 21 (71) | 8 (18) | 2 (6) | 2 (5) |
15.25–16.00 | 19 | 7 | 21 | 8 | <1 | <1 | 23 (62) | 12 (21) | 4 (10) | 5 (7) |
Sampling Depth | wL | PI | OMBS | Cc_AV | Cc Skempton | ϕ’CS | ϕ’CS_Mitchell |
---|---|---|---|---|---|---|---|
(m bsf) | (%) | (%) | (%) | (-) | (-) | (°) | (°) |
0.00–1.00 | 84.4 | 43.7 | 5.9 | 0.90 | 0.52 | 35 | 26 |
3.00–6.25 | 44.1 | 22.1 | n.d | 0.35 | 0.24 | n.d | 30 |
16.00–16.30 | 46.2 | 23.7 | 0.7 | 0.20 | 0.25 | 28 | 29 |
18.00–18.25 | 48.7 | 24.7 | 0.7 | 0.20 | 0.27 | 28 | 29 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sollecito, F.; Vitone, C.; Miccoli, D.; Plötze, M.; Puzrin, A.M.; Cotecchia, F. Marine Sediments from a Contaminated Site: Geotechnical Properties and Chemo-Mechanical Coupling Processes. Geosciences 2019, 9, 333. https://doi.org/10.3390/geosciences9080333
Sollecito F, Vitone C, Miccoli D, Plötze M, Puzrin AM, Cotecchia F. Marine Sediments from a Contaminated Site: Geotechnical Properties and Chemo-Mechanical Coupling Processes. Geosciences. 2019; 9(8):333. https://doi.org/10.3390/geosciences9080333
Chicago/Turabian StyleSollecito, Francesca, Claudia Vitone, Daniela Miccoli, Michael Plötze, Alexander M. Puzrin, and Federica Cotecchia. 2019. "Marine Sediments from a Contaminated Site: Geotechnical Properties and Chemo-Mechanical Coupling Processes" Geosciences 9, no. 8: 333. https://doi.org/10.3390/geosciences9080333
APA StyleSollecito, F., Vitone, C., Miccoli, D., Plötze, M., Puzrin, A. M., & Cotecchia, F. (2019). Marine Sediments from a Contaminated Site: Geotechnical Properties and Chemo-Mechanical Coupling Processes. Geosciences, 9(8), 333. https://doi.org/10.3390/geosciences9080333