# Evaluating GRACE Mass Change Time Series for the Antarctic and Greenland Ice Sheet—Methods and Results

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{7}

^{8}

^{9}

^{*}

^{†}

^{‡}

^{§}

## Abstract

**:**

## 1. Introduction

## 2. The Inter-Comparison Exercise

#### 2.1. Overview

#### 2.2. Data Sets

- GRACE monthly gravity field solutions for the period from 2003-01 to 2013-12
- Model predictions to correct GRACE solutions for glacial isostatic adjustment (GIA)
- A series of synthetic data sets to assess the algorithms’ ability to recover the true mass change

#### 2.3. Tasks

- GMB basin product: series of mass changes per basin
- GMB gridded product: series of mass-change grids (entire ice sheets)

#### 2.4. Assessment of Results

- (A)
- Visual inspection of the mass change time series
- (B)
- Comparison with independent data sets (if possible)
- (C)
- Quantification of the temporal changes
- (D)
- Quantification of the noise level
- (E)
- Comparison of the synthetic results and the underlying synthetic truth

## 3. Results

#### 3.1. Submissions

#### 3.2. The Antarctic Ice Sheet

#### 3.2.1. GRACE-Derived Mass Changes per Basin

#### 3.2.2. Synthetic Results per Basin

#### 3.2.3. GRACE-Derived Gridded Mass Changes

#### 3.3. The Greenland Ice Sheet

#### 3.3.1. GRACE-Derived Mass Changes per Basin

#### 3.3.2. Synthetic Results per Basin

#### 3.3.3. GRACE-Derived Gridded Mass Changes

## 4. Discussion and Conclusions

## Supplementary Materials

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- ESA. ESA Climate Change Initiative. 2019. Available online: http://cci.esa.int (accessed on 14 August 2019).
- Hogg, A. User Requirements Document (URD) for the Antarctic_Ice_Sheet_cci Project of ESA’s Climate Change Initiative. 2018. Version 3.0. 28 June 2018. Available online: www.esa-icesheets-antarctica-cci.org (accessed on 14 August 2019).
- Tapley, B.; Bettadpur, S.; Watkins, M.; Reigber, C. The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett.
**2004**, 31, L09607. [Google Scholar] [CrossRef] - Thorvaldsen, A. Product User Guide (PUG) for the Antarctic_Ice_Sheet_cci Project of ESA’s Climate Change Initiative, 2018. Version 1.4. 19 June 2018. Available online: www.esa-icesheets-antarctica-cci.org (accessed on 14 August 2019).
- Nagler, T. Product User Guide (PUG) for the Greenland_Ice_Sheet_cci Project of ESA’s Climate Change Initiative, 2017. Version 2.1. 19 March 2017. Available online: www.esa-icesheets-greenland-cci.org (accessed on 14 August 2019).
- Swenson, S.; Wahr, J. Methods for inferring regional surface-mass anomalies from Gravity Recovery and Climate Experiment (GRACE) measurements of time-variable gravity. J. Geophys. Res.
**2002**, 107, 2193. [Google Scholar] [CrossRef] - Swenson, S.; Wahr, J. Post-processing removal of correlated errors in GRACE data. Geophys. Res. Lett.
**2006**, 33, L08402. [Google Scholar] [CrossRef] - Kusche, J.; Schmidt, R.; Petrovic, S.; Rietbroek, R. Decorrelated GRACE time-variable gravity solutions by GFZ, and their validation using a hydrological model. J. Geod.
**2009**, 83, 903–913. [Google Scholar] [CrossRef] [Green Version] - Ewert, H.; Groh, A.; Dietrich, R. Volume and mass changes of the Greenland ice sheet inferred from ICESat and GRACE. J. Geodyn.
**2012**, 59–60, 111–123. [Google Scholar] [CrossRef] - Barletta, V.; Sørensen, L.; Forsberg, R. Scatter of mass changes estimates at basin scale for Greenland and Antarctica. Cryosphere
**2013**, 7, 1411–1432. [Google Scholar] [CrossRef] [Green Version] - King, M.; Bingham, R.; Moore, P.; Whitehouse, P.; Bentley, M.; Milne, G. Lower satellite-gravimetry estimates of Antarctic sea-level contribution. Nature
**2012**, 491, 586–589. [Google Scholar] [CrossRef] - Baur, O.; Kuhn, M.; Featherstone, W. GRACE-derived ice-mass variations over Greenland by accounting for leakage effects. J. Geophys. Res.
**2009**, 114, B06407. [Google Scholar] [CrossRef] - Jacob, T.; Wahr, J.; Pfeffer, W.; Swenson, S. Recent contributions of glaciers and ice caps to sea level rise. Nature
**2012**, 482, 514–518. [Google Scholar] [CrossRef] - Horwath, M.; Dietrich, R. Signal and error in mass change inferences from GRACE: The case of Antarctica. Geophys. J. Int.
**2009**, 177, 849–864. [Google Scholar] [CrossRef] - Wouters, B.; Chambers, D.; Schrama, E. GRACE observes small-scale mass loss in Greenland. Geophys. Res. Lett.
**2008**, 35, L20501. [Google Scholar] [CrossRef] - Schrama, E.; Wouters, B.; Rietbroek, R. A mascon approach to assess ice sheet and glacier mass balances and their uncertainties from GRACE data. J. Geophys. Res. Solid Earth
**2014**, 119, 6048–6066. [Google Scholar] [CrossRef] - Forsberg, R.; Sørensen, L.; Simonsen, S. Greenland and Antarctica Ice Sheet Mass Changes and Effects on Global Sea Level. Surv. Geophys.
**2017**, 38, 89–104. [Google Scholar] [CrossRef] [Green Version] - Shepherd, A.; Ivins, E.A.G.; Barletta, V.; Bentley, M.; Bettadpur, S.; Briggs, K.; Bromwich, D.; Forsberg, R.; Galin, N.; Horwath, M.; et al. A Reconciled Estimate of Ice-Sheet Mass Balance. Science
**2012**, 338, 1183–1189. [Google Scholar] [CrossRef] [PubMed] [Green Version] - The IMBIE team. Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature
**2018**, 558, 219–222. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Bettadpur, S. UTCSR Level-2 Processing Standards Document for Level-2 Product Release 0005; Technical Report; Center for Space Research, The University of Texas: Austin, TX, USA, 2012. [Google Scholar]
- Cheng, M.; Tapley, B.; Ries, J. Deceleration in the Earth’s oblateness. J. Geophys. Res. Solid Earth
**2013**, 118, 740–747. [Google Scholar] [CrossRef] - Swenson, S.; Chambers, D.; Wahr, J. Estimating geocenter variations from a combination of GRACE and ocean model output. J. Geophys. Res.
**2008**, B113, B08410. [Google Scholar] [CrossRef] - A, G.; Wahr, J.; Zhong, S. Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: An application to Glacial Isostatic Adjustment in Antarctica and Canada. Geophys. J. Int.
**2013**, 192, 557–572. [Google Scholar] [CrossRef] - Peltier, W. Global glacial isostasy and the surface of the ice-age Earth: The ICE-5G (VM2) model and GRACE. Annu. Rev. Earth Planet. Sci.
**2004**, 32, 111–149. [Google Scholar] [CrossRef] - Ivins, E.; James, T.; Wahr, J.; Schrama, E.; Landerer, F.; Simon, K. Antarctic contribution to sea level rise observed by GRACE with improved GIA correction. J. Geophys. Res. Solid Earth
**2013**, 118, 3126–3141. [Google Scholar] [CrossRef] [Green Version] - Van Wessem, J.; Reijmer, C.; Morlighem, M.; Mouginot, J.; Rignot, E.; Medley, B.; Joughin, I.; Wouters, B.; Depoorter, M.; Bamber, J.; et al. Improved representation of East Antarctic surface mass balance in a regional atmospheric climate model. J. Glac.
**2014**, 60, 761–770. [Google Scholar] [CrossRef] [Green Version] - Noël, B.; van de Berg, W.; van Meijgaard, E.; Kuipers Munneke, P.; van de Wal, R.; van den Broeke, M. Evaluation of the updated regional climate model RACMO2.3: Summer snowfall impact on the Greenland Ice Sheet. Cryosphere
**2015**, 9, 1831–1844. [Google Scholar] [CrossRef] - McMillan, M.; Shepherd, A.; Sundal, A.; Briggs, K.; Muir, A.; Ridout, A.; Hogg, A.; Wingham, D. Increased ice losses from Antarctica detected by CryoSat-2. Geophys. Res. Lett.
**2014**, 41, 3899–3905. [Google Scholar] [CrossRef] - Groh, A.; Ewert, H.; Fritsche, M.; Rülke, A.; Rosenau, R.; Scheinert, M.; Dietrich, R. Assessing the current evolution of the Greenland Ice Sheet by means of satellite and ground-based observations. Surv. Geophys.
**2014**, 35, 1459–1480. [Google Scholar] [CrossRef] - Gardner, A.; Moholdt, G.; Wouters, B.; Wolken, G.; Burgess, D.; Sharp, M.; Cogley, J.; Braun, C.; Labine, C. Sharply increased mass loss from glaciers and ice caps in the Canadian Arctic Archipelago. Nature
**2011**, 473, 357–360. [Google Scholar] [CrossRef] [PubMed] - Döll, P.; Kaspar, F.; Lehner, B. A global hydrological model for deriving water availability indicators: Model tuning and validation. J. Hydrol.
**2003**, 270, 105–134. [Google Scholar] [CrossRef] - Flechtner, F.; Dobslaw, H.; Fagiolini, E. AOD1B Product Description Document for Product Release 05, Rev. 4.3.; Technical Report; GFZ German Research Centre for Geosciences: Potsdam, Germany, 2015. [Google Scholar]
- Flechtner, F. AOD1B Product Description Document for Product Releases 01 to 04; Technical Report; GFZ German Research Centre for Geosciences: Potsdam, Germany, 2007. [Google Scholar]
- GFZ. Known Issues with AOD1B RL04. 2012. Available online: http://www-app2.gfz-potsdam.de/pb1/op/grace/aod_issues/issues_aod1b_rl04.html (accessed on 14 August 2019).
- Fukumori, I. A Partitioned Kalman Filter and Smoother. Mon. Weather Rev.
**2002**, 130, 1370–1383. [Google Scholar] [CrossRef] - Kim, S.B.; Lee, T.; Fukumori, I. Mechanisms Controlling the Interannual Variation of Mixed Layer Temperature Averaged over the Niño-3 Region. J. Clim.
**2007**, 20, 3822–3843. [Google Scholar] [CrossRef] - Clarke, P.; Lavallée, D.; Blewitt, G.; van Dam, T.; Wahr, J. Effect of gravitational consistency and mass conservation on seasonal surface mass loading models. Geophys. Res. Lett.
**2005**, 32, L08306. [Google Scholar] [CrossRef] - Blewitt, G. Self-consistency in reference frames, geocenter definition, and surface loading of the solid Earth. J. Geophys. Res.
**2003**, 108, 2103. [Google Scholar] [CrossRef] - Zwally, H.; Giovinetto, M.; Beckley, M.; Saba, J. Antarctic and Greenland Drainage Systems. 2012. Available online: http://icesat4.gsfc.nasa.gov/cryo_data/ant_grn_drainage_systems.php (accessed on 14 August 2019).
- Save, H.; Bettadpur, S.; Tapley, B. High resolution CSR GRACE RL05 mascons. J. Geophys. Res. Solid Earth
**2016**, 121, 7547–7569. [Google Scholar] [CrossRef] - Watkins, M.; Wiese, D.; Yuan, D.N.; Boening, C.; Landerer, F. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons: Improved Gravity Observations from GRACE. J. Geophys. Res. Solid Earth
**2015**, 120, 2648–2671. [Google Scholar] [CrossRef] - Luthcke, S.; Sabaka, T.; Loomis, B.; Arendt, A.; McCarthy, J.; Camp, J. Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution. J. Glac.
**2013**, 59, 613–631. [Google Scholar] [CrossRef] - Ray, R.; Luthcke, S. Tide model errors and GRACE gravimetry: Towards a more realistic assessment. Geophys. J. Int.
**2006**, 167, 1055–1059. [Google Scholar] [CrossRef] - Groh, A.; Horwath, M. The method of tailored sensitivity kernels for GRACE mass change estimates. In Proceedings of the EGU General Assembly, Vienna, Austria, 17–22 April 2016. [Google Scholar]
- Su, X.; Shum, C.; Guo, J.; Duan, J.; Howat, I.; Yi, Y. High resolution Greenland ice sheet inter-annual mass variations combining GRACE gravimetry and Envisat altimetry. Earth Planet. Sci. Lett.
**2015**, 422, 11–17. [Google Scholar] [CrossRef] - Su, X.; Shum, C.; Guo, J.; Howat, I.; Kuo, C.; Jezek, K.; Duan, J.; Yi, Y. High-Resolution Interannual Mass Anomalies of the Antarctic Ice Sheet by Combining GRACE Gravimetry and ENVISAT Altimetry. IEEE Trans. Geosci. Remote Sens.
**2018**, 56, 539–546. [Google Scholar] [CrossRef] - Ran, J.; Ditmar, P.; Klees, R.; Farahani, H. Statistically optimal estimation of Greenland Ice Sheet mass variations from GRACE monthly solutions using an improved mascon approach. J. Geod.
**2018**, 92, 299–319. [Google Scholar] [CrossRef] - Ran, J.; Ditmar, P.; Klees, R. Optimal mascon geometry in estimating mass anomalies within Greenland from GRACE. Geophys. J. Int.
**2018**, 214, 2133–2150. [Google Scholar] [CrossRef] - Ditmar, P.; Tangdamrongsub, N.; Ran, J.; Klees, R. Estimation and reduction of random noise in mass anomaly time-series from satellite gravity data by minimization of month-to-month year-to-year double differences. J. Geodyn.
**2018**, 119, 9–22. [Google Scholar] [CrossRef] - Boening, C.; Lebsock, M.; Landerer, F.; Stephens, G. Snowfall-driven mass change on the East Antarctic ice sheet. Geophys. Res. Lett.
**2012**, 39, L21501. [Google Scholar] [CrossRef] - Blazquez, A.; Meyssignac, B.; Lemoine, J.; Berthier, E.; Ribes, A.; Cazenave, A. Exploring the uncertainty in GRACE estimates of the mass redistributions at the Earth surface: Implications for the global water and sea level budgets. Geophys. J. Int.
**2018**, 215, 415–430. [Google Scholar] [CrossRef] - Ran, J.; Vizcaino, M.; Ditmar, P.; van den Broeke, M.; Moon, T.; Steger, C.; Enderlin, E.; Wouters, B.; Noel, B.; Reijmer, C.; et al. Seasonal mass variations show timing and magnitude of meltwater storage in the Greenland Ice Sheet. Cryosphere
**2018**, 12, 2981–2999. [Google Scholar] [CrossRef] [Green Version] - Horwath, M.; Legrésy, B.; Rémy, F.; Blarel, F.; Lemoine, J.M. Consistent patterns of Antarctic ice sheet interannual variations from ENVISAT radar altimetry and GRACE satellite gravimetry. Geophys. J. Int.
**2012**, 189, 863–876. [Google Scholar] [CrossRef] [Green Version] - Mémin, A.; Flament, T.; Alizier, B.; Watson, C.; Rémy, F. Interannual variation of the Antarctic Ice Sheet from a combined analysis of satellite gravimetry and altimetry data. Earth Planet. Sci. Lett.
**2015**, 422, 150–156. [Google Scholar] [CrossRef] - Mémin, A.; Flament, T.; Rémy, F.; Llubes, M. Snow- and ice-height change in Antarctica from satellite gravimetry and altimetry data. Earth Planet. Sci. Lett.
**2014**, 404, 344–353. [Google Scholar] [CrossRef] - Schrama, E.; Wouters, B.; Vermeersen, B. Present Day Regional Mass Loss of Greenland Observed with Satellite Gravimetry. Surv. Geophys.
**2011**, 32, 377–385. [Google Scholar] [CrossRef] [Green Version] - Flechtner, F.; Neumayer, K.H.; Dahle, C.; Dobslaw, H.; Fagiolini, E.; Raimondo, J.C.; Güntner, A. What Can be Expected from the GRACE-FO Laser Ranging Interferometer for Earth Science Applications? Surv. Geophys.
**2016**, 37, 453–470. [Google Scholar] [CrossRef]

**Figure 1.**Drainage basins of the AIS (left) and the GIS (right) based on the basin definitions of Zwally et al. [39]. The inset illustrates basin aggregations for the AIS: Antarctic Peninsula (AP), East Antarctica (EAIS) and West Antarctica (WAIS).

**Figure 2.**Procedure for quantifying the noise level in mass change time series. (

**a**) Original mass change time series of the AIS (black) and the fitted linear, periodic (1 yr, 1/2 yr, 161/365.25 yr) and quadratic model (red). (

**b**) Mass change residuals (black), i.e., original mass change minus fitted model. Red line: Low-pass filtered residuals using a Gaussian average ($\sigma =2.17$ months). (

**c**) High-pass filtered residual, i.e., residuals minus low-pass filtered residuals. The noise assessment is based on the standard deviation of this time series.

**Figure 3.**GRACE-derived mass change time series for (

**a**) the entire Antarctic Ice Sheet (AIS), (

**b**) West Antarctica (WAIS), (

**c**) East Antarctica (EAIS), (

**d**) the Antarctic Peninsula (AP) as well as the drainage basins (

**e**) AIS06 (part of Dronning Maud Land) and (

**f**) AIS21 (part of the Amundsen Sea Sector). Figure 1 gives an overview of all drainage basins. The colour coding indicates the results from different groups (Table 3).

**Figure 4.**Temporal changes in ice mass for all AIS basins and aggregations, derived using a consistent linear, periodic (1 yr, 1/2 yr, 161/365.25 yr) and quadratic model for all time series: (

**a**) linear trend, (

**b**) acceleration, (

**c**) seasonal amplitude, (

**d**) 161-day period, including the formal errors from the least squares adjustment.

**Figure 5.**Noise level, given in terms of the scaled standard deviation of the noise time series, for all AIS basins and aggregations, derived from (

**a**) the mass change time series and (

**b**) the time series of the average surface density change. Grey bars indicate the ratio between the basin areas and the entire AIS area.

**Figure 6.**Differences between mass change estimates derived from different synthetic data sets and the corresponding true mass change for (

**a**) the AIS as well as drainage basins (

**b**) AIS21 and (

**c**) AIS24. True (non-zero) mass changes are indicated by numbers at the top margin (unit: gigatons). (

**d**) RMS of the differences for all drainage basins (AIS01–AIS24, AIS27, AIS28).

**Figure 7.**Linear trends derived from the gridded mass changes, using a consistent linear, periodic (1 yr, 1/2 yr, 161/365.25 yr) and quadratic model, and interpolated to the prescribed regular polar-stereographic grid. Panels (

**a**–

**c**) show results from different groups (Table 3). Grid cells in grey lie outside of the original grid domains.

**Figure 8.**Noise level, given in terms of the scaled standard deviation of the noise time series, estimated from the gridded mass changes. Panels (

**a**–

**c**) show results from different groups (Table 3). Grid cells in grey lie outside of the original grid domains.

**Figure 9.**GRACE-derived mass change time series for (

**a**) the entire Greenland Ice Sheet (GIS) as well as the drainage basins (

**b**) GIS01 (North Greenland), (

**c**) GIS03 (East Greenland) and (

**d**) GIS04 (South-east Greenland). Figure 1 gives an overview of all drainage basins. The colour coding indicates the results from different groups (Table 3).

**Figure 10.**Temporal changes in ice mass for all GIS basins and aggregations, derived using a consistent linear, periodic (1 yr, 1/2 yr, 161/365.25 yr) and quadratic model for all time series: (

**a**) linear trend, (

**b**) acceleration, (

**c**) seasonal amplitude, (

**d**) 161-day period, including the formal errors from the least squares adjustment.

**Figure 11.**Noise level, given in terms of the scaled standard deviation of the noise time series, for all GIS basins and the entire GIS, derived from (

**a**) the mass change time series and (

**b**) the time series of the average surface density change. Grey bars indicate the ratio between the basin areas and the entire GIS area.

**Figure 12.**Differences between mass change estimates derived from different synthetic data sets and the corresponding true mass change for (

**a**) the GIS as well as drainage basins (

**b**) GIS01 and (

**c**) GIS04. True (non-zero) mass changes are indicated by numbers at the top margin (unit: gigatons). (

**d**) RMS of the differences for all drainage basins (GIS01–GIS08).

**Figure 13.**Linear trends derived from the gridded mass changes, using a consistent linear, periodic (1 yr, 1/2 yr, 161/365.25 yr) and quadratic model, and interpolated to the prescribed regular polar-stereographic grid. Panels (

**a**–

**c**) show results from different groups (Table 3). Grid cells in grey lie outside of the original grid domains.

**Figure 14.**Noise level, given in terms of the scaled standard deviation of the noise time series, estimated from the gridded mass changes. Panels (

**a**–

**c**) show results from different groups (Table 3). Grid cells in grey lie outside of the original grid domains.

**Figure 15.**Comparison of GRACE-derived mass change time series for (

**a**) the AIS, (

**b**) the Antarctic Peninsula, (

**c**) East Antarctica and (

**d**) West Antarctica from three participants (faint colours) with a time series based on radar altimetry (RA) and a multi-sensor time series from IMBIE-2 [19].

**Figure 16.**Comparison of GRACE-derived mass change time series for (

**a**) the GIS, (

**b**) AIS, (

**c**) East Antarctica and (

**d**) West Antarctica from the participants (faint colours) with alternative results (bold colours), namely, the updated time series from Schrama et al. [16] and time series extracted from the mascon products provided by CSR, JPL and GSFC. The alternative results are shifted along the y-axis to increase readability.

**Table 1.**Individual synthetic data sets utilised to quantify signal leakage. For data sets extracted from perennial model time series the selected epochs are indicated.

Data Set ID | Description |
---|---|

01–06 | Six data sets of modelled spatial variability in Antarctic surface mass balance (SMB) |

Epochs: 1980-01, 1986-10, 1996-01, 2004-08, 2009-02, 2014-08 | |

07 | Spatial pattern of the mean annual AIS mass change as observed by satellite altimetry |

08–13 | Six data sets of modelled spatial variability in Greenland SMB |

Epochs: 1960-05, 1970-10, 1980-05, 1990-10, 2000-05, 2010-10 | |

14 | Spatial pattern of the mean annual GIS mass change as observed by satellite altimetry |

15 | Spatially uniform mean annual ice mass change over the Canadian Arctic Archipelago |

16–21 | Six data sets simulating residual global oceanic mass variations (e.g., due to errors in the GRACE de-aliasing products) |

Epochs: 2002-09, 2005-03, 2006-09, 2009-03, 2010-09, 2013-03 | |

22–27 | Six data sets of modelled mass changes in global continental hydrology (excluding AIS and GIS) |

Epochs: 2004-03, 2005-09, 2007-01, 2009-01, 2010-12, 2011-10 |

**Table 2.**Spatial coverage of the results contributed by five groups, derived from GRACE data and synthetic input data. Basin-scale products comprise all prescribed basins and the entire ice sheet (Figure 1).

ID | RI1 | RI2 | FM1 | MC1 | MC2/MC3 |
---|---|---|---|---|---|

Results from GRACE data | |||||

Basin mass changes | AIS, GIS | AIS, GIS | AIS, GIS | AIS, GIS | GIS |

Grids | AIS, GIS | AIS, GIS | None | AIS, GIS | None |

Results from synthetic input data | |||||

Basin mass changes | AIS, GIS | None | AIS, GIS | AIS, GIS | None |

Grids | AIS, GIS | None | None | None | None |

**Table 3.**Selected details on the data sets and the processing strategy used by each participating group.

ID | RI1 | RI2 | FM1 | MC1 | MC2/MC3 |
---|---|---|---|---|---|

Software specifications | |||||

Software | Matlab code | C code | Fortran code | Fortran code | Fortran code, Matlab code, UNIX scripts |

Data used | |||||

GRACE data | CSR RL05 [20] | CSR RL05 [20] | CSR RL05 [20] | CSR RL05 [20] | CSR RL05 [20] |

Period | 2003-02– 2013-12 | 2003-01– 2013-12 | 2003-01– 2013-12 | 2003-01– 2013-12 | 2003-01– 2013-12 |

${l}_{\mathrm{max}}$ | 96 (used: 90) | 60 | 60 | 60 | 96 |

Degree 1 | [22] | [22] | [22] | [22] | [22] |

C${}_{2,0}$ | [21] | [21] | [21] | [21] | [21] |

GIA | [23,25] | [23,25] | [23,25] | [23,25] | [23,25] |

Methods applied | |||||

Methods for mass changes per basin | Regional integration with tailored integration kernels [44] | Regional integration [45,46] | Forward modelling [15] | Mascon [17] | Mascon [47,48,49] |

Filtering | Empirical GRACE error variance and covariance model | 300 km Gaussian | 150 km/250 km Gaussian | DDK [8] | None |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Groh, A.; Horwath, M.; Horvath, A.; Meister, R.; Sørensen, L.S.; Barletta, V.R.; Forsberg, R.; Wouters, B.; Ditmar, P.; Ran, J.;
et al. Evaluating GRACE Mass Change Time Series for the Antarctic and Greenland Ice Sheet—Methods and Results. *Geosciences* **2019**, *9*, 415.
https://doi.org/10.3390/geosciences9100415

**AMA Style**

Groh A, Horwath M, Horvath A, Meister R, Sørensen LS, Barletta VR, Forsberg R, Wouters B, Ditmar P, Ran J,
et al. Evaluating GRACE Mass Change Time Series for the Antarctic and Greenland Ice Sheet—Methods and Results. *Geosciences*. 2019; 9(10):415.
https://doi.org/10.3390/geosciences9100415

**Chicago/Turabian Style**

Groh, Andreas, Martin Horwath, Alexander Horvath, Rakia Meister, Louise Sandberg Sørensen, Valentina R. Barletta, René Forsberg, Bert Wouters, Pavel Ditmar, Jiangjun Ran,
and et al. 2019. "Evaluating GRACE Mass Change Time Series for the Antarctic and Greenland Ice Sheet—Methods and Results" *Geosciences* 9, no. 10: 415.
https://doi.org/10.3390/geosciences9100415