Mathematical Simulation of Honeycomb Weathering via Moisture Transport and Salt Deposition
Abstract
1. Introduction
2. Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, P.J. Why honeycomb weathering? Nature 1982, 298, 121–122. [Google Scholar] [CrossRef]
- Mustoe, G.E. The origin of honeycomb weathering. Geol. Soc. Am. Bull. 1982, 93, 108–115. [Google Scholar] [CrossRef]
- Groom, K.M.; Allen, C.D.; Mol, L.; Paradise, T.R.; Hall, K. Defining tafoni: Re-examining terminological ambiguity for cavernous rock decay phenomena. Prog. Phys. Geogr. 2015, 39, 775–793. [Google Scholar] [CrossRef]
- Bruthans, J.; Filippi, M.; Slavík, M.; Svobodová, E. Origin of honeycombs: Testing the hydraulic and case hardening hypotheses. Geomorphology 2018, 303, 68–83. [Google Scholar] [CrossRef]
- Filippi, M.; Bruthans, J.; Řihošek, J.; Slavík, M.; Adamovič, J.; Mašín, D. Arcades: Products of stress-controlled and discontinuity-related weathering. Earth-Sci. Rev. 2018, 180, 159–184. [Google Scholar] [CrossRef]
- Evelpidou, N.; Karkani, A.; Tzouxanioti, M.; Spyrou, E.; Petropoulos, A.; Lakidi, L. Inventory and Assessment of the Geomorphosites in Central Cyclades, Greece: The Case of Paros and Naxos Islands. Geosciences 2021, 11, 512. [Google Scholar] [CrossRef]
- Migoń, P. Sandstone geomorphology—Recent advances. Geomorphology 2021, 373, 107484. [Google Scholar] [CrossRef]
- Mustoe, G.E. Biogenic origin of coastal honeycomb weathering. Earth Surf. Process. Landf. 2010, 35, 424–434. [Google Scholar] [CrossRef]
- McBride, E.F.; Picard, M.D. Origin of honeycombs and related weathering forms in Oligocene Macigno Sandstone, Tuscan coast near Livorno, Italy. Earth Surf. Process. Landf. 2004, 29, 713–735. [Google Scholar] [CrossRef]
- Prebble, M.M. Cavernous weathering in the taylor dry Valley, Victoria Land, Antarctica. Nature 1967, 216, 1194–1195. [Google Scholar] [CrossRef]
- André, M.F.; Hall, K. Honeycomb development on Alexander Island, glacial history of George VI Sound and palaeoclimatic implications (Two Step Cliffs/Mars Oasis, W Antarctica). Geomorphology 2005, 65, 117–138. [Google Scholar] [CrossRef]
- Inkpen, R.; Hall, K. Universal shapes? Analysis of the shape of antarctic tafoni. Geosciences 2019, 9, 154. [Google Scholar] [CrossRef][Green Version]
- Strini, A.; Guglielmin, M.; Hall, K. Tafoni development in a cryotic environment: An example from Northern Victoria Land, Antarctica. Earth Surf. Process. Landf. 2008, 33, 1502–1519. [Google Scholar] [CrossRef]
- Dragovich, D. Building Stone and Its Use in Rock Weathering Studies. J. Geol. Educ. 1979, 27, 21–25. [Google Scholar] [CrossRef]
- Siedel, H. Alveolar weathering of Cretaceous building sandstones on monuments in Saxony, Germany. Geol. Soc. Spec. Publ. 2010, 333, 11–23. [Google Scholar] [CrossRef]
- Oguchi, C.T.; Yu, S. A review of theoretical salt weathering studies for stone heritage. Prog. Earth Planet. Sci. 2021, 8, 32. [Google Scholar] [CrossRef]
- Pötzl, C.; Siegesmund, S.; Dohrmann, R.; Koning, J.M.; Wedekind, W. Deterioration of volcanic tuff rocks from Armenia: Constraints on salt crystallization and hydric expansion. Environ. Earth Sci. 2018, 77, 660. [Google Scholar] [CrossRef]
- Rodriguez-Navarro, C. Evidence of honeycomb weathering on Mars. Geophys. Res. Lett. 1998, 25, 3249–3252. [Google Scholar] [CrossRef]
- Smith, P.J. Can honeycomb weathering be ET? Nature 1983, 301. [Google Scholar] [CrossRef]
- Schnepfleitner, H.; Sass, O.; Fruhmann, S.; Viles, H.; Goudie, A. A multi-method investigation of temperature, moisture and salt dynamics in tafoni (Tafraoute, Morocco). Earth Surf. Process. Landf. 2016, 41, 473–485. [Google Scholar] [CrossRef]
- Rodriguez-Navarro, C.; Doehne, E.; Sebastian, E. Origins of honeycomb weathering: The role of salts and wind. Bull. Geol. Soc. Am. 1999, 111, 1250–1255. [Google Scholar] [CrossRef]
- Conca, J.L.; Rossman, G.R. Case hardening of sandstone. Geology 1982, 10, 520–523. [Google Scholar] [CrossRef]
- Turkington, A.V.; Paradise, T.R. Sandstone weathering: A century of research and innovation. Geomorphology 2005, 67, 229–253. [Google Scholar] [CrossRef]
- Zwalińska, K.; Dąbski, M. Cavernous weathering forms in SW Iceland: A case study on weathering of basalts in a cold temperate maritime climate. Misc. Geogr. 2012, 16, 11–16. [Google Scholar] [CrossRef][Green Version]
- Klimchouk, A. Tafoni and honeycomb structures as indicators of ascending fluid flow and hypogene karstification. Geol. Soc. Lond. Spec. Publ. 2018, 466, 79–105. [Google Scholar] [CrossRef]
- Paradise, T.R. Tafoni and Other Rock Basins. In Treatise on Geomorphology; Academic Press: San Diego, CA, USA, 2013; Volume 4. [Google Scholar]
- Viles, H.A. Scale issues in weathering studies. Geomorphology 2001, 41, 63–72. [Google Scholar] [CrossRef]
- Bruthans, J.; Soukup, J.; Vaculikova, J.; Filippi, M.; Schweigstillova, J.; Mayo, A.L.; Masin, D.; Kletetschka, G.; Rihosek, J. Sandstone landforms shaped by negative feedback between stress and erosion. Nat. Geosci. 2014, 7, 597–601. [Google Scholar] [CrossRef]
- Řihošek, J.; Slavík, M.; Bruthans, J.; Filippi, M. Evolution of natural rock arches: A realistic small-scale experiment. Geology 2019, 47, 71–74. [Google Scholar] [CrossRef]
- Ostanin, I.; Safonov, A.; Oseledets, I. Natural Erosion of Sandstone as Shape Optimisation. Sci. Rep. 2017, 7, 17301. [Google Scholar] [CrossRef][Green Version]
- Moore, J.R.; Geimer, P.R.; Finnegan, R.; Bodtker, J. Between a beam and catenary: Influence of geometry on gravitational stresses and stability of natural rock arches. Geomorphology 2020, 364, 107244. [Google Scholar] [CrossRef]
- Safonov, A.A. Computing via natural erosion of sandstone. Int. J. Parallel Emergent Distrib. Syst. 2018, 33, 742–751. [Google Scholar] [CrossRef]
- Safonov, A.; Filippi, M.; Mašín, D.; Bruthans, J. Numerical modeling of the evolution of arcades and rock pillars. Geomorphology 2020, 365, 107260. [Google Scholar] [CrossRef]
- Huinink, H.P.; Pel, L.; Kopinga, K. Simulating the growth of tafoni. Earth Surf. Process. Landforms 2004, 29, 1225–1233. [Google Scholar] [CrossRef]
- Philip, J.R. The theory of infiltration: 1. The infiltration equation and its solution. Soil Sci. 1957, 83, 345–358. [Google Scholar] [CrossRef]
- Pel, L.; Kopinga, K.; Brocken, H. Moisture transport in porous building materials. Heron 1996, 41, 95–105. [Google Scholar]
- Landman, K.A.; Pel, L.; Kaasschieter, E.F. Analytic modelling of drying of porous materials. Math. Eng. Ind. 2001, 8, 89–122. [Google Scholar] [CrossRef][Green Version]
- Pel, L.; Landman, K.A. A Sharp Drying Front Model. Dry. Technol. 2004, 22, 637–647. [Google Scholar] [CrossRef]
- Abaqus/CAE, Simulia. Available online: https://www.3ds.com/products-services/simulia/products/abaqus/abaquscae/ (accessed on 25 May 2023).
- Safonov, A.A. 3D topology optimization of continuous fiber-reinforced structures via natural evolution method. Compos. Struct. 2019, 215, 289–297. [Google Scholar] [CrossRef]
- Safonov, A.; Chugunov, S.; Tikhonov, A.; Gusev, M.; Akhatov, I. Numerical simulation of sintering for 3D-printed ceramics via SOVS model. Ceram. Int. 2019, 45, 19027–19035. [Google Scholar] [CrossRef]
- Vedernikov, A.; Safonov, A.; Tucci, F.; Carlone, P.; Akhatov, I. Modeling spring-in of l-shaped structural profiles pultruded at different pulling speeds. Polymers 2021, 13, 2748. [Google Scholar] [CrossRef]
- Safonov, A.; Jones, J. Physarum computing and topology optimisation. Int. J. Parallel Emergent Distrib. Syst. 2017, 32, 448–465. [Google Scholar] [CrossRef]
- Moskaleva, A.; Gusev, S.; Konev, S.; Sergeichev, I.; Safonov, A.; Hernandez-Montes, E. Composite freeform shell structures: Design, construction and testing. Compos. Struct. 2023, 306, 116603. [Google Scholar] [CrossRef]
- Safonov, A.; Adamatzky, A. Computing via material topology optimisation. Appl. Math. Comput. 2018, 318, 109–120. [Google Scholar] [CrossRef][Green Version]
- Wellman, H.W.; Wilson, A.T. Salt weathering, a neglected geological erosive agent in coastal and arid environments. Nature 1965, 205, 1097–1098. [Google Scholar] [CrossRef]
- Flatt, R.J.; Caruso, F.; Sanchez, A.M.A.; Scherer, G.W. Chemo-mechanics of salt damage in stone. Nat. Commun. 2014, 5, 4823. [Google Scholar] [CrossRef][Green Version]
- Schiro, M.; Ruiz-Agudo, E.; Rodriguez-Navarro, C. Damage mechanisms of porous materials due to in-pore salt crystallization. Phys. Rev. Lett. 2012, 109, 265503. [Google Scholar] [CrossRef]
- Rijniers, L.A.; Huinink, H.P.; Pel, L.; Kopinga, K. Experimental evidence of crystallization pressure inside porous media. Phys. Rev. Lett. 2005, 94, 075503. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Flatt, R.J. Salt damage in porous materials: How high supersaturations are generated. J. Cryst. Growth 2002, 242, 435–454. [Google Scholar] [CrossRef]
- Rodriguez-Navarro, C.; Doehne, E. Salt weathering: Influence of evaporation rate, supersaturation and crystallization pattern. Earth Surf. Process. Landf. 1999, 24, 191–209. [Google Scholar] [CrossRef]
- Scherer, G.W. Stress from crystallization of salt. Cem. Concr. Res. 2004, 34, 1613–1624. [Google Scholar] [CrossRef]
- Charola, A.E. Salts in the Deterioration of Porous Materials: An Overview. J. Am. Inst. Conserv. 2000, 39, 327–343. [Google Scholar] [CrossRef]
- D’Altri, A.M.; de Miranda, S.; Beck, K.; De Kock, T.; Derluyn, H. Towards a more effective and reliable salt crystallisation test for porous building materials: Predictive modelling of sodium chloride salt distribution. Constr. Build. Mater. 2021, 304, 124436. [Google Scholar] [CrossRef]
- Gupta, S.; Huinink, H.P.; Prat, M.; Pel, L.; Kopinga, K. Paradoxical drying of a fired-clay brick due to salt crystallization. Chem. Eng. Sci. 2014, 109, 204–211. [Google Scholar] [CrossRef][Green Version]
- Gonçalves, T.D.; Brito, V.; Pel, L. Water Vapor Emission From Rigid Mesoporous Materials during the Constant Drying Rate Period. Dry. Technol. 2012, 30, 462–474. [Google Scholar] [CrossRef]
- Ketelaars, A.A.J.; Pel, L.; Coumans, W.J.; Kerkhof, P.J.A.M. Drying kinetics: A comparison of diffusion coefficients from moisture concentration profiles and drying curves. Chem. Eng. Sci. 1995, 50, 1187–1191. [Google Scholar] [CrossRef][Green Version]
- Pel, L.; Pishkari, R.; Casti, M. A simplified model for the combined wicking and evaporation of a NaCl solution in limestone. Mater. Struct. 2018, 51, 66. [Google Scholar] [CrossRef][Green Version]
- Mareš, J.; Bruthans, J.; Weiss, T.; Filippi, M. Coastal honeycombs (Tuscany, Italy): Moisture distribution, evaporation rate, tensile strength, and origin. Earth Surf. Process. Landf. 2022, 47, 1653–1667. [Google Scholar] [CrossRef]
- Slavík, M.; Bruthans, J.; Weiss, T.; Schweigstillová, J. Measurements and calculations of seasonal evaporation rate from bare sandstone surfaces: Implications for rock weathering. Earth Surf. Process. Landf. 2020, 45, 2965–2981. [Google Scholar] [CrossRef]
- Slavík, M.; Bruthans, J.; Schweigstillová, J. Evaporation rate from surfaces of various granular rocks: Comparison of measured and calculated values. Sci. Total Environ. 2023, 856, 159114. [Google Scholar] [CrossRef]
- Karatas, T.; Bruthans, J.; Filippi, M.; Mazancová, A.; Weiss, T.; Mareš, J. Depth distribution and chemistry of salts as factors controlling tafoni and honeycombs development. Geomorphology 2022, 414, 108374. [Google Scholar] [CrossRef]
- Weiss, T.; Mareš, J.; Slavík, M.; Bruthans, J. A microdestructive method using dye-coated-probe to visualize capillary, diffusion and evaporation zones in porous materials. Sci. Total Environ. 2020, 704, 135339. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.B.G.; Robinson, D.A. Weathering of sandstone by the combined action of frost and salt. Earth Surf. Process. Landf. 1981, 6, 1–9. [Google Scholar] [CrossRef]
- McGreevy, J.P. Thermal properties as controls on rock surface temperature maxima, and possible implications for rock weathering. Earth Surf. Process. Landf. 1985, 10, 125–136. [Google Scholar] [CrossRef]
- Filho, F.F.M.; Morillas, H.; Derluyn, H.; Maguregui, M.; Grégoire, D. In-situ versus laboratory characterization of historical site in marine environment using X-ray fluorescence and Raman spectroscopy. Microchem. J. 2019, 147, 905–913. [Google Scholar] [CrossRef]
- D’Altri, A.M.; de Miranda, S. Environmentally-induced loss of performance in FRP strengthening systems bonded to full-scale masonry structures. Constr. Build. Mater. 2020, 249, 118757. [Google Scholar] [CrossRef]
- Fei, C.; Mao, S.; Yan, J.; Alert, R.; Stone, H.A.; Bassler, B.L.; Wingreen, N.S.; Košmrlj, A. Nonuniform growth and surface friction determine bacterial biofilm morphology on soft substrates. Proc. Natl. Acad. Sci. USA 2020, 117, 7622–7632. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wakano, J.Y.; Maenosono, S.; Komoto, A.; Eiha, N.; Yamaguchi, Y. Self-Organized Pattern Formation of a Bacteria Colony Modeled by a Reaction Diffusion System and Nucleation Theory. Phys. Rev. Lett. 2003, 90, 258102. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mimura, M.; Sakaguchi, H.; Matsushita, M. Reaction-diffusion modelling of bacterial colony patterns. Phys. A Stat. Mech. Its Appl. 2000, 282, 283–303. [Google Scholar] [CrossRef]
- Hildebrand, M. Diatoms, biomineralization processes, and genomics. Chem. Rev. 2008, 108, 4855–4874. [Google Scholar] [CrossRef]
- Cox, E.J.; Willis, L.; Bentley, K. Integrated simulation with experimentation is a powerful tool for understanding diatom valve morphogenesis. Biosystems 2012, 109, 450–459. [Google Scholar] [CrossRef]
- Pasek, M.A.; Hurst, M. A Fossilized Energy Distribution of Lightning. Sci. Rep. 2016, 6, 30586. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Libbrecht, K.G. The physics of snow crystals. Rep. Prog. Phys. 2005, 68, 855. [Google Scholar] [CrossRef][Green Version]
Symbol | Value | Unit |
---|---|---|
0.01 | - | |
9.14 × 10−4 | - | |
6.36 × 10−4 | mm s−1 | |
0.61 | - | |
1.0 | - | |
0.61 | - | |
0 | ||
5.41 | mm s−2 | |
0.1 | mm s−2 | |
0.0003 | mm s−2 | |
0.01 | mm s−2 |
Landform Shapes | |
---|---|
0.115 | No erosion |
0.110 | Flat surface |
0.109 | Formation of single isolated lip (honeycombs) |
0.108 | Formation of several isolated lips (honeycombs) |
0.106 | Increase in number and thickness of lips (honeycombs) |
0.100 | Further increase in lips thickness merging of several adjacent lips (honeycombs) |
0.060 | Formation of deep isolated pit (tafoni) |
0.030 | No erosion |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Safonov, A.; Minchenkov, K. Mathematical Simulation of Honeycomb Weathering via Moisture Transport and Salt Deposition. Geosciences 2023, 13, 161. https://doi.org/10.3390/geosciences13060161
Safonov A, Minchenkov K. Mathematical Simulation of Honeycomb Weathering via Moisture Transport and Salt Deposition. Geosciences. 2023; 13(6):161. https://doi.org/10.3390/geosciences13060161
Chicago/Turabian StyleSafonov, Alexander, and Kirill Minchenkov. 2023. "Mathematical Simulation of Honeycomb Weathering via Moisture Transport and Salt Deposition" Geosciences 13, no. 6: 161. https://doi.org/10.3390/geosciences13060161
APA StyleSafonov, A., & Minchenkov, K. (2023). Mathematical Simulation of Honeycomb Weathering via Moisture Transport and Salt Deposition. Geosciences, 13(6), 161. https://doi.org/10.3390/geosciences13060161