Outboard Onset of Ross Orogen Magmatism and Subsequent Igneous and Metamorphic Cooling Linked to Slab Rollback during Late-Stage Gondwana Assembly
Abstract
:1. Introduction
2. Geology of the Queen Maud Mountains
3. Materials and Methods
4. Results
4.1. Metasedimentary Rocks
4.2. Foliated/Pretectonic Intrusive Rocks
4.3. Unfoliated Intrusive Rocks
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilson, J.T. Did the Atlantic Close and Then Reopen? Nature 1966, 211, 676–681. [Google Scholar] [CrossRef]
- Grunow, A.M.; Hanson, R.; Wilson, T. Were Aspects of Pan-African Deformation Linked to Iapetus Opening? Geology 1996, 24, 1063–1066. [Google Scholar] [CrossRef]
- Squire, R.J.; Campbell, I.H.; Allen, C.M.; Wilson, C.J.L. Did the Transgondwanan Supermountain Trigger the Explosive Radiation of Animals on Earth? Earth Planet. Sci. Lett. 2006, 250, 116–133. [Google Scholar] [CrossRef]
- Brown, M. Metamorphic Conditions in Orogenic Belts: A Record of Secular Change. Int. Geol. Rev. 2007, 49, 193–234. [Google Scholar] [CrossRef]
- Hawkesworth, C.; Cawood, P.; Kemp, T.; Storey, C.; Dhuime, B. Geochemistry. A Matter of Preservation. Science 2009, 323, 49–50. [Google Scholar] [CrossRef] [PubMed]
- Condie, K.C.; Aster, R.C. Episodic Zircon Age Spectra of Orogenic Granitoids: The Supercontinent Connection and Continental Growth. Precambrian Res. 2010, 180, 227–236. [Google Scholar] [CrossRef]
- Ganade De Araujo, C.E.; Rubatto, D.; Hermann, J.; Cordani, U.G.; Caby, R.; Basei, M.A.S. Ediacaran 2,500-Km-Long Synchronous Deep Continental Subduction in the West Gondwana Orogen. Nat. Commun. 2014, 5, 5198. [Google Scholar] [CrossRef]
- Cawood, P.A.; Martin, E.L.; Murphy, J.B.; Pisarevsky, S.A. Gondwana’s Interlinked Peripheral Orogens. Earth Planet. Sci. Lett. 2021, 568, 117057. [Google Scholar] [CrossRef]
- Boger, S.D.; Miller, J.M. Terminal Suturing of Gondwana and the Onset of the Ross-Delamerian Orogeny: The Cause and Effect of an Early Cambrian Reconfiguration of Plate Motions. Earth Planet. Sci. Lett. 2004, 219, 35–48. [Google Scholar] [CrossRef]
- Cohen, K.M.; Finney, S.C.; Gibbard, P.L.; Fan, J.-X. The ICS International Chronostratigraphic Chart. Episodes 2013, 36, 199–204. [Google Scholar] [CrossRef]
- Paulsen, T.S.; Deering, C.; Sliwinski, J.; Bachmann, O.; Guillong, M. A Continental Arc Tempo Discovered in the Pacific-Gondwana Margin Mudpile? Geology 2016, 44, 915–918. [Google Scholar] [CrossRef]
- Domeier, M.; Torsvik, T.H. Plate Tectonics in the Late Paleozoic. Geosci. Front. 2014, 5, 303–350. [Google Scholar] [CrossRef]
- Goodge, J.W. Geological and Tectonic Evolution of the Transantarctic Mountains, from Ancient Craton to Recent Enigma. Gondwana Res. 2020, 80, 50–122. [Google Scholar] [CrossRef]
- Isbell, J.L.J.L. The Kukri Erosion Surface; a Reassessment of Its Relationship to Rocks of the Beacon Supergroup in the Central Transantarctic Mountains, Antarctica. Antarct. Sci 1999, 11, 228–238. [Google Scholar] [CrossRef]
- Stump, E. The Ross Orogen of the Transantarctic Mountains; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Mirsky, A. Geology of the Ohio Range–Liv Glacier Area; Antarctic Map Folio Series (Folio 12, Plate 16); American Geographical Society: New York, NY, USA, 1969. [Google Scholar]
- Grindley, G.W.; McDougall, I. Age and Correlation of the Nimrod Group and Other Precambrian Rock Units in the Central Transantarctic Mountains, Antarctica. N. Z. J. Geol. Geophys. 1969, 12, 391–411. [Google Scholar] [CrossRef]
- McGregor, V.R.; Wade, F.A. Geology of the Western Queen Maud Mountains; Antarctic Map Folio Series (Folio 12, Plate 15); American Geographical Society: New York, NY, USA, 1969. [Google Scholar]
- Warren, G. Geology of the Terra Nova Bay-McMurdo Sound Area, Victoria Land; Antarctic Map Folio Series (Folio 12, Plate 13); American Geographical Society: New York, NY, USA, 1969. [Google Scholar]
- Davis, M.B.; Blankenship, D.D. Geology of the Scott-Reedy Glaciers Area Southern Transantarctic Mountains, Antarctica; Geological Society of America: Boulder, CO, USA, 2005. [Google Scholar] [CrossRef]
- Goodge, J.W.; Williams, I.S.; Myrow, P. Provenance of Neoproterozoic and Lower Paleozoic Siliciclastic Rocks of the Central Ross Orogen, Antarctica: Detrital Record of Rift-, Passive-, and Active-Margin Sedimentation. Geol. Soc. Am. Bull. 2004, 116, 1253–1279. [Google Scholar] [CrossRef]
- Myrow, P.M.; Pope, M.C.; Goodge, J.W.; Fischer, W.; Palmer, A.R. Depositional History of Pre-Devonian Strata and Timing of Ross Orogenic Tectonism in the Central Trananarctic Mountains, Antarctica. Bull. Geol. Soc. Am. 2002, 114, 1070–1088. [Google Scholar] [CrossRef]
- Laird, M.G.; Mansergh, G.D.; Chappell, J.M.A. Geology of the Central Nimrod Glacier Area, Antarctica. N. Z. J. Geol. Geophys. 1971, 14, 427–468. [Google Scholar] [CrossRef]
- Stump, E. Structural Relationships in the Duncan Mountains, Central Transantarctic Mountains, Antarctica. N. Z. J. Geol. Geophys. 1981, 24, 87–93. [Google Scholar] [CrossRef]
- Stump, E. The Ross Supergroup in the Queen Maud Mountains. In Antarctic Geoscience; Craddock, C., Ed.; University of Wisconsin Press: Madison, WI, USA, 1982; pp. 565–569. [Google Scholar]
- Stump, E.; Gehrels, G.; Talarico, F.; Carosi, R. Constraints from Detrital Zircon Geochronology on the Early Deformation of the Ross Orogen, Transantarctic Mountains, Antarctica, in Antarctica: A Keystone in a Changing World. In Proceedings of the 10th International Symposium on Antarctic Earth Sciences, Santa Barbara, CA, USA, 26 August–1 September 2007; Cooper, A.K., Raymond, C.R., Eds.; USGS Open-File Report 2007-1047, Extended Abstract 166; The National Academies Press: Washington, DC, USA, 2007; 3p. [Google Scholar]
- Paulsen, T.S.; Deering, C.; Sliwinski, J.; Bachmann, O.; Guillong, M. Evidence for a Spike in Mantle Carbon Outgassing during the Ediacaran Period. Nat. Geosci. 2017, 10, 930–933. [Google Scholar] [CrossRef]
- Goodge, J.W.; Myrow, P.; Williams, I.S.; Bowring, S.A. Age and Provenance of the Beardmore Group, Antarctica: Constraints on Rodinia Supercontinent Breakup. J. Geol. 2002, 110, 393–406. [Google Scholar] [CrossRef]
- Cooper, A.F.; Maas, R.; Scott, J.M.; Barber, J.W. Dating of Volcanism and Sedimentation in the Skelton Group, Transantarctic Mountains: Implications for the Rodinia- Gondwana Transition in Southern Victoria Land, Antarctica. Bull. Geol. Soc. Am. 2011, 123, 681–702. [Google Scholar] [CrossRef]
- Rowell, A.J.; Rees, M.N. Early Palaeozoic History of the Upper Beardmore Glacier Area: Implications for a Major Antarctic Structural Boundary within the Transantarctic Mountains. Antarct. Sci. 1989, 1, 249–260. [Google Scholar] [CrossRef]
- Rowell, A.J.; Gonzales, D.A.; McKenna, L.W.; Evans, K.R.; Stump, E.; van Schmus, W.R. Lower Paleozoic Rocks in the Queen Maud Mountains: Revised Ages and Significance. In The Antarctic Region: Geological Evolution and Processes; Terra Antarctica Publication: Siena, Italy, 1997; pp. 201–207. [Google Scholar]
- Wareham, C.D.; Stump, E.; Storey, B.C.; Millar, I.L.; Riley, T.R. Petrogenesis of the Cambrian Liv Group, a Bimodal Volcanic Rock Suite from the Ross Orogen, Transantarctic Mountains. Bull. Geol. Soc. Am. 2001, 113, 360–372. [Google Scholar] [CrossRef]
- Encarnación, J.; Rowell, A.J.; Grunow, A.M. A U-Pb Age for the Cambrian Taylor Formation, Antarctica: Implications for the Cambrian Time Scale. J. Geol. 1999, 107, 497–504. [Google Scholar] [CrossRef]
- van Schmus, W.R.; McKenna, L.W.; Gonzales, D.A.; Fetter, A.H.; Rowell, A.J. U-Pb Geochronology of Parts of the Pensacola, Thiel, and Queen Maud Mountains, Antarctica. In The Antarctic Region: Geological Evolution and Processes; Terra Antarctica Publication: Siena, Italy, 1997; pp. 187–200. [Google Scholar]
- Paulsen, T.S.; Encarnación, J.; Grunow, A.M.; Stump, E.; Pecha, M.; Valencia, V.A. Correlation and Late-Stage Deformation of Liv Group Volcanics in the Ross-Delamerian Orogen, Antarctica, from New U-Pb Ages. J. Geol. 2018, 126, 307–323. [Google Scholar] [CrossRef]
- Paulsen, T.S.; Encarnación, J.; Grunow, A.; Pecha, M. Zircon U–Pb Age Constraints for a Cambrian Age for Metasedimentary Rocks at O’Brien Peak, Antarctica. N. Z. J. Geol. Geophys. 2016, 59, 592–597. [Google Scholar] [CrossRef]
- Goodge, J.W.; Myrow, P.; Phillips, D.; Fanning, C.M.; Williams, I.S. Siliciclastic Record of Rapid Denudation in Response to Convergent-Margin Orogenesis, Ross Orogen, Antarctica. Spec. Pap. Geol. Soc. Am. 2004, 378, 105–126. [Google Scholar] [CrossRef]
- Stump, E.; Gootee, B.F.; Talarico, F.; Van Schmus, W.R.; Brand, P.K.; Foland, K.A.; Fanning, C.M. Correlation of Byrd and Selborne Groups, with Implications for the Byrd Glacier Discontinuity, Central Transantarctic Mountains, Antarctica. N. Z. J. Geol. Geophys. 2004, 47, 157–171. [Google Scholar] [CrossRef]
- Murtaugh, J.G. Geology of the Wisconsin Range Batholith, Transantarctic Mountains. N. Z. J. Geol. Geophys. 1969, 12, 526–550. [Google Scholar] [CrossRef]
- Borg, S.G.; DePaolo, D.J.; Smith, B.M. Isotopic Structure and Tectonics of the Central Transantarctic Mountains. J. Geophys. Res. Solid Earth 1990, 95, 6647–6667. [Google Scholar] [CrossRef]
- McGregor, V.R. Geology of the Area Between the Axel Heiberg and Shackleton Glaciers, Queen Maud Range, Antarctica: Part I-Basement Complex, Structure, and Glacial Geology. N. Z. J. Geol. Geophys. 1965, 8, 314–343. [Google Scholar] [CrossRef]
- Borg, S.G.; DePaolo, D.J. A Tectonic Model of the Antarctic Gondwana Margin with Implications for Southeastern Australia: Isotopic and Geochemical Evidence. Tectonophysics 1991, 196, 339–358. [Google Scholar] [CrossRef]
- Borg, S.G.; DePaolo, D.J. Laurentia, Australia, and Antarctica as a Late Proterozoic Supercontinent. Constraints from Isotopic Mapping. Geology 1994, 22, 307–310. [Google Scholar] [CrossRef]
- Encarnación, J.; Grunow, A. Changing Magmatic and Tectonic Styles along the Paleo-Pacific Margin of Gondwana and the Onset of Early Paleozoic Magmatism in Antarctica. Tectonics 1996, 15, 1325–1341. [Google Scholar] [CrossRef]
- Paulsen, T.S.; Encarnación, J.; Grunow, A.M.; Valencia, V.A.; Pecha, M.; Layer, P.W.; Rasoazanamparany, C. Age and Significance of “outboard” High-Grade Metamorphics and Intrusives of the Ross Orogen, Antarctica. Gondwana Res. 2013, 24, 349–358. [Google Scholar] [CrossRef]
- Paulsen, T.; Encarnación, J.; Grunow, A.; Valencia, V.A.; Rasoazanamparany, C. Late Sinistral Shearing along Gondwana’s Paleo-Pacific Margin in the Ross Orogen, Antarctica: New Structure and Age Data from the O’Brien Peak Area. J. Geol. 2008, 116, 303–312. [Google Scholar] [CrossRef]
- Vogel, M.B.; Ireland, T.R.; Weaver, S.D. The Multistage History of the Queen Maud Batholith, La Gorce Mountains, Central Transantarctic Mountains. In Antarctica at the Close of a Millennium, Proceedings of the 8th International Symposium on Antarctic Earth Sciences, Wellington, 5–9 July 1999; Royal Society of New Zealand: Wellington, New Zealand, 2002; pp. 153–159. [Google Scholar]
- Paulsen, T.; Encarnación, J.; Grunow, A.M.; Valencia, V.A.; Pecha, M.E.; Benowitz, J.; Layer, P. New Ages from the Shackleton Glacier Area and Their Context in the Regional Tectonomagmatic Evolution of the Ross Orogen of Antarctica. Int. Geol. Rev. 2020, 63, 1596–1618. [Google Scholar] [CrossRef]
- Felder, R.P.; Faure, G. Investigation of an Anomalous Date for Lonely Ridge Granodiorite, Nilsen Plateau, Transantarctic Mountains. Antarct. J. U.S. 1979, 14, 24. [Google Scholar]
- Faure, G.; Eastin, R.; Ray, P.T.; Mclelland, D.; Shultz, C.H. Geochronology of Igneous and Metamorphic Rocks, Central Transantarctic Mountains; Raja Rao, C.S., Ed.; Hindustan Publishing Corporation: Calcutta, India, 1979. [Google Scholar]
- Paulsen, T.S.; Encarnación, J.; Grunow, A.M. Structure and Timing of Transpressional Deformation in the Shackleton Glacier Area, Ross Orogen, Antarctica. J. Geol. Soc. Lond. 2004, 161, 1027–1038. [Google Scholar] [CrossRef]
- Grunow, A.M.; Encarnación, J. Terranes or Cambrian Polar Wander: New Data from the Scott Glacier Area, Transantarctic Montains, Antarctica. Tectonics 2000, 19, 168–181. [Google Scholar] [CrossRef]
- Grunow, A.M.; Encarnación, J.P. Cambro-Ordovician Palaeomagnetic and Geochronologic Data from Southern Victoria Land, Antarctica: Revision of the Gondwana Apparent Polar Wander Path. Geophys. J. Int. 2000, 141, 392–400. [Google Scholar] [CrossRef]
- Paulsen, T.S.; Encarnación, J.; Grunow, A.M.; Valencia, V.A.; Layer, P.W.; Pecha, M.; Stump, E.; Roeske, S.; Thao, S.; Rasoazanamparany, C. Detrital Mineral Ages from the Ross Supergroup, Antarctica: Implications for the Queen Maud Terrane and Outboard Sediment Provenance on the Gondwana Margin. Gondwana Res. 2015, 27, 377–391. [Google Scholar] [CrossRef]
- Samson, S.D.; Alexander, E.C. Calibration of the Interlaboratory 40Ar/39Ar Dating Standard, MMhb1. Chem. Geol. 1987, 66, 27–34. [Google Scholar]
- Renne, P.R. Intercalibration of Astronomical and Radioisotopic Time. Geology 1994, 22, 783–786. [Google Scholar] [CrossRef]
- York, D.; Hall, C.M.; Yanase, Y.; Hanes, J.A.; Kenyon, W.J. 40Ar/39Ar Dating of Terrestrial Minerals with a Continuous Laser. Geophys. Res. Lett. 1981, 8, 1136–1138. [Google Scholar] [CrossRef]
- Layer, P.W.; Hall, C.M.; York, D. The Derivation of 40Ar/39Ar Age Spectra of Single Grains of Hornblende and Biotite by Laser Step Heating. Geophys. Res. Lett. 1997, 14, 757–760. [Google Scholar] [CrossRef]
- Layer, P.W. Argon-40/Argon-39 Age of the El’gygytgyn Impact Event, Chukotka, Russia. Meteorit. Planet. Sci. 2000, 35, 591–599. [Google Scholar] [CrossRef]
- Benowitz, J.A.; Layer, P.W.; Vanlaningham, S. Persistent Long-Term (c. 24 Ma) Exhumation in the Eastern Alaska Range Constrained by Stacked Thermochronology. Geol. Soc. Lond. Spec. Publ. 2014, 378, 225–243. [Google Scholar] [CrossRef]
- McDougall, I.; Harrison, T.M. Geochronology and Thermochronology by the 40Ar/39Ar Method, 2nd ed.; Oxford University Press: New York, NY, USA, 1991. [Google Scholar]
- Renne, P.R.; Mundil, R.; Balco, G.; Min, K.; Ludwig, K.R. Joint Determination of 40K Decay Constants and 40Ar∗/40K for the Fish Canyon Sanidine Standard, and Improved Accuracy for 40Ar/39Ar Geochronology. Geochim. Cosmochim. Acta 2010, 74, 5349. [Google Scholar] [CrossRef]
- Stump, E. Stratigraphy of the Ross Supergroup, Central Transantarctic Mountains. In Geology of the Central Transantarctic Mountains; American Geophysical Union: Washington, DC, USA, 1986; pp. 225–274. ISBN 9781118664797. [Google Scholar]
- Burgener, J.D. Petrography of the Queen Maud Batholith, Central Transantarctic Mountains, Ross Dependency, Antarctica. Master’s Thesis, University of Wisconsin Madison, Madison, WI, USA, 1975. [Google Scholar]
- Baldwin, S.L.; Fitzgerald, P.G.; Li, B.; Miller, S.R. Thermal Evolution of the Transantarctic Mountains in the Shackleton Glacier Area. In Antarctica at the Close of a Millennium, Proceedings of the 8th International Symposium on Antarctic Earth Sciences, Wellington, 5–9 July 1999; Programme and Abstracts; Skinner, D.N.B., Ed.; Royal Society of New Zealand: Wellington, New Zealand, 1999; p. 33. [Google Scholar]
- Gaber, I.J.; Foland, K.A.; Corbato, C.E. On the Significance of Ar Release from Biotite and Amphibole during 40Ar/39Ar Vacuum Heating. Geochim. Cosmochim. Acta 1988, 52, 2457–2465. [Google Scholar] [CrossRef]
- Brownlee, S.J.; Renne, P.R. Thermal History of the Ecstall Pluton from 40Ar/39Ar Geochronology and Thermal Modeling. Geochim. Cosmochim. Acta 2010, 74, 4375–4391. [Google Scholar] [CrossRef]
- Harrison, M.T. Diffusion of 40Ar in Hornblende. Contrib. Mineral. Petrol. 1982, 78, 324–331. [Google Scholar] [CrossRef]
- Dodson, M.H. Theory of Cooling Ages. In Lectures in Isotope Geology; Jager, E., Hunziker, H.C., Eds.; Springer Science & Business Media: Berlin, Germany, 1979; pp. 194–202. [Google Scholar]
- Blanckenburg, F.V.; Villa, I.M.; Baur, H.; Morteani, G.; Steiger, R.H. Time Calibration of a P–T Path from the Tauern Window Eastern Alps: The Problem of Closure Temperature. Contrib. Mineral. Petrol. 1989, 101, 1–11. [Google Scholar] [CrossRef]
- Miller, S.R.; Fitzgerald, P.G.; Baldwin, S.L. Cenozoic Range-Front Faulting and Development of the Transantarctic Mountains near Cape Surprise, Antarctica: Thermochronologic and Geomorphologic Constraints. Tectonics 2010, 29, 1–21. [Google Scholar] [CrossRef]
- He, J.; Thomson, S.N.; Reiners, P.W.; Hemming, S.R.; Licht, K.J. Rapid Erosion of the Central Transantarctic Mountains at the Eocene-Oligocene Transition: Evidence from Skewed (U-Th)/He Date Distributions near Beardmore Glacier. Earth Planet. Sci. Lett. 2021, 567, 117009. [Google Scholar] [CrossRef]
- Vermeesch, P. On the Visualisation of Detrital Age Distributions. Chem. Geol. 2012, 312–313, 190–194. [Google Scholar] [CrossRef]
- Grunow, A.; Encarnación, J.P.; Paulsen, T.S.; Rowell, A.J. New Geologic Constraints on Basement Rocks from the Shackleton Glacier Region. Antarct. J. U.S. 1996, 31, 18–19. [Google Scholar]
- Cawood, P.A.; Hawkesworth, C.J.; Dhuime, B. Detrital Zircon Record and Tectonic Setting. Geology 2012, 40, 875–878. [Google Scholar] [CrossRef]
- Lee, C.T.A.; Bachmann, O. How Important Is the Role of Crystal Fractionation in Making Intermediate Magmas? Insights from Zr and P Systematics. Earth Planet. Sci. Lett. 2014, 393, 266–274. [Google Scholar] [CrossRef]
- Borg, S.G.; Stump, E.; Chappell, B.W.; McCulloch, M.T.; Wyborn, D.; Armstrong, R.L.; Holloway, J.R. Granitoids of Northern Victoria Land, Antarctica; Implications of Chemical and Isotopic Variations to Regional Crustal Structure and Tectonics. Am. J. Sci. 1987, 287, 127–169. [Google Scholar] [CrossRef]
- Rocchi, S.; Tonarini, S.; Armienti, P.; Innocenti, F.; Manetti, P. Geochemical and Isotopic Structure of the Early Palaeozoic Active Margin of Gondwana in Northern Victoria Land, Antarctica. Tectonophysics 1998, 284, 261–281. [Google Scholar] [CrossRef]
- Paulsen, T.S.; Encarnación, J.; Grunow, A.M.; Layer, P.W.; Watkeys, M. New Age Constraints for a Short Pulse in Ross Orogen Deformation Triggered by East-West Gondwana Suturing. Gondwana Res. 2007, 12, 417–427. [Google Scholar] [CrossRef]
- Goodge, J.W.; Dallmeyer, R.D. Contrasting Thermal Evolution within the Ross Orogen, Antarctica: Evidence from Mineral Ages. J. Geol. 1996, 104, 435–458. [Google Scholar] [CrossRef]
- Goodge, J.W.; Dallmeyer, R.D. 40Ar/39Ar Mineral Age Constraints on the Paleozoic Tectonothermal Evolution of High-Grade Basement Rocks within the Ross Orogen, Central Transantarctic Mountains. J. Geol. 1992, 100, 91–106. [Google Scholar] [CrossRef]
- Talarico, F.M.; Stump, E.; Gootee, B.F.; Foland, K.A.; Palmeri, R.; van Schmus, W.R.; Brand, P.K.; Ricci, C.A. First Evidence of a “Barrovian”-Type Metamorphic Regime in the Ross Orogen of the Byrd Glacier Area, Central Transantarctic Mountains. Antarct. Sci. 2007, 19, 451–470. [Google Scholar] [CrossRef]
- Takigami, Y.; Watanabe, T. 40Ar-39Ar Geochronological Studies of Granitic Rocks from South Victoria Land, Antarctica. In Proceedings of the NIPR Symposium on Antarctic Geosciences, Tokyo, Japan, 26–27 October 1995; National Institute of Polar Research: Tokyo, Japan, 1995; Volume 8, pp. 160–168. [Google Scholar]
- Allibone, A.; Wysoczanski, R. Initiation of Magmatism during the Cambro-Ordovician Ross Orogeny in Southern Victoria Land, Antarctica. Geol. Soc. Am. Bull. 2002, 114, 1007–1018. [Google Scholar] [CrossRef]
- Cook, Y.A.; Craw, D. Amalgamation of Disparate Crustal Fragments in the Walcott Bay-Foster Glacier Area, South Victoria Land, Antarctica. N. Z. J. Geol. Geophys. 2001, 44, 403–416. [Google Scholar] [CrossRef]
- Cooper, A.F.; Worley, B.A.; Armstrong, R.A.; Price, R.C. Synorogenic Alkaline and Carbonatitic Magmatism in the Transantarctic Mountains of South Victoria Land, Antarctica. In The Antarctic Region: Geological Evolution and Processes; Ricci, C.A., Ed.; Terra Antartica Publications: Siena, Italy, 1997; pp. 191–202. [Google Scholar]
- Cottle, J.M.; Cooper, A.F. Geology, Geochemistry, and Geochronology of an A-type Granite in the Mulock Glacier Area, Southern Victoria Land, Antarctica. N. Z. J. Geol. Geophys. 2006, 49, 191–202. [Google Scholar] [CrossRef]
- Cottle, J.M.; Cooper, A.F. The Fontaine Pluton: An Early Ross Orogeny Calc-Alkaline Gabbro from Southern Victoria Land, Antarctica. N. Z. J. Geol. Geophys. 2006, 49, 177–189. [Google Scholar] [CrossRef]
- Cox, S.C.; Parkinson, D.L.; Allibone, A.H.; Cooper, A.F. Isotopic Character of Cambro-Ordovician Plutonism, Southern Victoria Land, Antarctica. N. Z. J. Geol. Geophys. 2000, 43, 501–520. [Google Scholar] [CrossRef]
- Goodge, J.W.; Walker, N.W.; Hansen, V.L. Neoproterozoic-Cambrian Basement-Involved Orogenesis within the Antarctic Margin of Gondwana. Geology 1993, 21, 37–40. [Google Scholar] [CrossRef]
- Hagen-Peter, G.; Cottle, J.M. Synchronous Alkaline and Subalkaline Magmatism during the Late Neoproterozoic—Early Paleozoic Ross Orogeny, Antarctica: Insights into Magmatic Sources and Processes within a Continental Arc. Lithos 2016, 262, 677–698. [Google Scholar] [CrossRef]
- Martin, A.P.; Cooper, A.F.; Price, R.C.; Turnbull, R.E.; Roberts, N.M.W. The Petrology, Geochronology and Significance of Granite Harbour Intrusive Complex Xenoliths and Outcrop Sampled in Western McMurdo Sound, Southern Victoria Land, Antarctica. N. Z. J. Geol. Geophys. 2015, 58, 33–51. [Google Scholar] [CrossRef]
- Mellish, S.D.; Cooper, A.F.; Walker, N.W. Panorama Pluton: A Composite Gabbro-Monzodiorite Early Ross Orogeny Intrusion in Southern Victoria Land, Antarctica. In Antarctica at the Close of a Millennium, The Royal Society of New Zealand Bulletin 35; Gamble, J.A., Skinner, D.N.B., Henrys, S., Eds.; Royal Society of New Zealand: Wellington, New Zealand, 2002; pp. 125–141. [Google Scholar]
- Read, S.E. Koettlitz Glacier Alkaline Province: Late Neoproterozoic Extensional Magmatism in Southern Victoria Land, Antarctica. Ph.D. Thesis, University of Otago, Otago, New Zealand, 2010. [Google Scholar]
- Read, S.E.; Cooper, A.F.; Walker, N.W. Geochemistry and U-Pb Geochronology of the Neoproterozoic-Cambrian Koettlitz Glacier Alkaline Province, Royal Society Range, Transantarctic Mountains, Antarctica. In Antarctica at the Close of a Millennium, Royal Society of New Zealand Bulletin 35; Gamble, J.A., Skinner, D.N.B., Henrys, S., Eds.; Royal Society of New Zealand: Wellington, New Zealand, 2002; pp. 143–151. [Google Scholar]
- Rowell, A.; Rees, M.; Duebendorfer, E. An Active Neoproterozoic Margin: Evidence from the Skelton Glacier Area, Transantarctic Mountains. J. Geol. Soc. Lond. 1993, 150, 677–682. [Google Scholar] [CrossRef]
- Stump, E.; Gootee, B.; Talarico, F. Tectonic Model for Development of the Byrd Glacier Discontinuity and Surrounding Regions of the Transantarctic Mountains during the Neoproterozoic-Early Paleozoic. In Antarctica: Contributions to Global Earth Sciences; Futterer, D., Damaske, D., Kleinschmidt, G., Miller, H., Tessensohn, F., Eds.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2006; pp. 181–190. [Google Scholar]
- Wysoczanski, R.J.; Allibone, A.H. Age, Correlation, and Provenance of the Neoproterozoic Skelton Group, Antarctica: Grenville Age Detritus on the Margin of East Antarctica. J. Geol. 2004, 112, 401–4156. [Google Scholar] [CrossRef]
- Goodge, J.W.; Fanning, C.M.; Norman, M.D.; Bennett, V.C. Temporal, Isotopic and Spatial Relations of Early Paleozoic Gondwana-Margin Arc Magmatism, Central Transantarctic Mountains, Antarctica. J. Petrol. 2012, 53, 2027–2065. [Google Scholar] [CrossRef]
- Hagen-Peter, G.; Cottle, J.M.; Tulloch, A.J.; Cox, S.C. Mixing between Enriched Lithospheric Mantle and Crustal Components in a Short-Lived Subduction-Related Magma System, Dry Valleys Area, Antarctica: Insights from U-Pb Geochronology, Hf Isotopes, and Whole-Rock Geochemistry. Lithosphere 2015, 7, 174–188. [Google Scholar] [CrossRef]
- Hagen-Peter, G.; Cottle, J.M.; Smit, M.; Cooper, A.F. Coupled Garnet Lu-Hf and Monazite U-Pb Geochronology Constrain Early Convergent Margin Dynamics in the Ross Orogen, Antarctica. J. Metamorph. Geol. 2016, 34, 293–319. [Google Scholar] [CrossRef]
- Paulsen, T.S.; Deering, C.; Sliwinski, J.; Bachmann, O.; Guillong, M. Detrital Zircon Ages from the Ross Supergroup, North Victoria Land, Antarctica: Implications for the Tectonostratigraphic Evolution of the Pacific-Gondwana Margin. Gondwana Res. 2016, 35, 79–96. [Google Scholar] [CrossRef]
- Yi, S.B.; Lee, M.J.; Lee, J.I.; Kim, H. Timing and Metamorphic Evolution of the Ross Orogeny in and around the Mountaineer Range, Northern Victoria Land, Antarctica. Minerals 2020, 10, 908. [Google Scholar] [CrossRef]
- Welke, B.; Licht, K.; Hennessy, A.; Hemmin, S.; Davis, E.P.; Kassab, C. Applications of Detrital Geochronology and Thermochronology from Glacial Deposits to the Paleozoic and Mesozoic Thermal History of the Ross Embayment, Antarctica Bethany. Geochem. Geophys. Geosyst. 2016, 17, 2762–2780. [Google Scholar] [CrossRef]
- Palmer, E.F.; Licht, K.J.; Swope, R.J.; Hemming, S.R. Nunatak Moraines as a Repository of What Lies beneath the East Antarctic Ice Sheet. Spec. Pap. Geol. Soc. Am. 2012, 487, 97–104. [Google Scholar] [CrossRef]
- Glen, R.A.; Cooper, R.A. Evolution of the East Gondwana Convergent Margin in Antarctica, Southern Australia and New Zealand from the Neoproterozoic to Latest Devonian. Earth Sci. Rev. 2021, 220, 103687. [Google Scholar] [CrossRef]
- Stump, E.; Smit, J.H.; Self, S. Timing of Events during the Late Proterozoic Beardmore Orogeny, Antarctica: Geological Evidence from the La Gorce Mountains. Geol. Soc. Am. Bull. 1986, 97, 953–965. [Google Scholar] [CrossRef]
- Brown, D.A.; Hand, M.; Morrissey, L.J.; Goodge, J.W. Cambrian Eclogite-Facies Metamorphism in the Central Transantarctic Mountains, East Antarctica: Extending the Record of Early Palaeozoic High-Pressure Metamorphism along the Eastern Gondwanan Margin. Lithos 2020, 366–367, 105571. [Google Scholar] [CrossRef]
- Talarico, F.M.; Findlay, R.H. Metamorphic Evolution of the Koettlitz Group in the Koettlitz-Ferrar Glaciers Region (Southern Victoria Land, Antarctica). Terra Antart. 2005, 12, 3–23. [Google Scholar]
- Collins, W.J. Hot Orogens, Tectonic Switching, and Creation of Continental Crust. Geology 2002, 30, 535–538. [Google Scholar] [CrossRef]
- Jarrard, R.D. Relations among Subduction Parameters. Rev. Geophys. 1986, 24, 217–284. [Google Scholar] [CrossRef]
- Barth, A.P.; Wooden, J.L.; Jacobson, C.E.; Economos, R.C. Detrital Zircon as a Proxy for Tracking the Magmatic Arc System: The California Arc Example. Geology 2013, 41, 223–226. [Google Scholar] [CrossRef]
- Ducea, M.N.; Saleeby, J.B.; Bergantz, G. The Architecture, Chemistry, and Evolution of Continental Magmatic Arcs. Annu. Rev. Earth Planet. Sci. 2015, 43, 299–331. [Google Scholar] [CrossRef]
- Nelson, D.A.; Cottle, J.M. Long-Term Geochemical and Geodynamic Segmentation of the Paleo-Pacific Margin of Gondwana: Insight from the Antarctic and Adjacent Sectors. Tectonics 2017, 36, 3229–3247. [Google Scholar] [CrossRef]
- Squire, R.J.; Wilson, C.J.L. Interaction between Collisional Orogenesis and Convergent-Margin Processes: Evolution of the Cambrian Proto-Pacific Margin of East Gondwana. J. Geol. Soc. 2005, 162, 749–761. [Google Scholar] [CrossRef]
- Armstrong, R.; De Wit, M.J.; Reid, D.; York, D.; Zartman, R. Cape Town’s Table Mountain Rapid Pan African Uplift of Its Basement Rocks. J. Afr. Earth Sci. 1998, 27, 10–11. [Google Scholar]
- Duebendorfer, E.M.; Rees, M.N. Evidence for Cambrian Deformation in the Ellsworth-Whitmore Mountains Terrane, Antarctica: Stratigraphic and Tectonic Implications. Geology 1998, 26, 55–58. [Google Scholar] [CrossRef]
- Curtis, M.L. Tectonic History of the Ellsworth Mountains, West Antarctica: Reconciling a Gondwana Enigma. Geol. Soc. Am. Bull. 2001, 113, 939–958. [Google Scholar] [CrossRef]
- Millar, I.L.; Storey, B.C. Early Palaeozoic Rather than Neoproterozoic Volcanism and Rifting within the Transantarctic Mountains. J. Geol. Soc. Lond. 1995, 152, 417–420. [Google Scholar] [CrossRef]
- Curtis, M.L.; Millar, I.L.; Storey, B.C.; Fanning, M. Structural and Geochronological Constraints of Early Ross Orogenic Deformation in the Pensacola Mountains, Antarctica. Bull. Geol. Soc. Am. 2004, 116, 619–636. [Google Scholar] [CrossRef]
- Foster, D.A.; Gray, D.R.; Spaggiari, C. Timing of Subduction and Exhumation along the Cambrian East Gondwana Margin, and the Formation of Paleozoic Backarc Basins. Geol. Soc. Am. Bull. 2005, 117, 105–116. [Google Scholar] [CrossRef]
- Rowell, A.J.; van Schmus, W.R.; Storey, B.C.; Fetter, A.H.; Evans, K.R. Latest Neoproterozoic to Mid-Cambrian Age for the Main Deformation Phases of the Transantarctic Mountains: New Stratigraphic and Isotopic Constraints from the Pensacola Mountains, Antarctica. J. Geol. Soc. Lond. 2001, 158, 295–308. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paulsen, T.; Encarnación, J.; Grunow, A.; Benowitz, J.; Layer, P.; Deering, C.; Sliwinski, J. Outboard Onset of Ross Orogen Magmatism and Subsequent Igneous and Metamorphic Cooling Linked to Slab Rollback during Late-Stage Gondwana Assembly. Geosciences 2023, 13, 126. https://doi.org/10.3390/geosciences13040126
Paulsen T, Encarnación J, Grunow A, Benowitz J, Layer P, Deering C, Sliwinski J. Outboard Onset of Ross Orogen Magmatism and Subsequent Igneous and Metamorphic Cooling Linked to Slab Rollback during Late-Stage Gondwana Assembly. Geosciences. 2023; 13(4):126. https://doi.org/10.3390/geosciences13040126
Chicago/Turabian StylePaulsen, Timothy, John Encarnación, Anne Grunow, Jeffrey Benowitz, Paul Layer, Chad Deering, and Jakub Sliwinski. 2023. "Outboard Onset of Ross Orogen Magmatism and Subsequent Igneous and Metamorphic Cooling Linked to Slab Rollback during Late-Stage Gondwana Assembly" Geosciences 13, no. 4: 126. https://doi.org/10.3390/geosciences13040126
APA StylePaulsen, T., Encarnación, J., Grunow, A., Benowitz, J., Layer, P., Deering, C., & Sliwinski, J. (2023). Outboard Onset of Ross Orogen Magmatism and Subsequent Igneous and Metamorphic Cooling Linked to Slab Rollback during Late-Stage Gondwana Assembly. Geosciences, 13(4), 126. https://doi.org/10.3390/geosciences13040126