Bioacoustic Detection of Wolves Using AI (BirdNET, Cry-Wolf and BioLingual)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Introduction to Study Species
2.2. Study Area
2.3. Acoustic Data Collection
2.4. Datasets for Evaluation
- dataset 1 (26 October–7 November 2021), 188.5 h and 102 howls
- dataset 2 (22 November–5 December 2021), 203 h and 50 howls
- dataset 3 (7–20 February 2022), 203 h and 8 howls
- dataset 4 (28 September–13 October 2021), 232 h and 100 howls
2.5. Manual Annotation and Ground Truth
2.6. Automated Detection Methods
Overview of AI Systems Tested
2.7. Parameter Optimization and Alignment
2.7.1. Buffer Window Analysis for Detection Alignment
2.7.2. Confidence Threshold Selection Strategy
2.7.3. BirdNET
2.7.4. BioLingual
2.7.5. Cry-Wolf Configuration
2.7.6. Generalizability and Robustness
2.8. Performance Metrics
3. Results
3.1. Overall Performance on Datasets
3.2. Detailed Performance by AI System and Context
Impact of Environmental and Acoustic Conditions
4. Discussion
4.1. Performance of AI Detection Methods: Interpretation and Practical Implications
4.2. Broader Implications for Wolf Monitoring
4.3. Future Development Opportunities
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AI | Artificial Intelligence |
| AZCF | Aalborg Zoo Conservation Foundation |
| SM4 | Song Meter SM4 (Bioacustic recorder) |
| EU | European Union |
| FFT | Fast Fourier Transform |
| CNN | Convolutional Neural Network |
| FN | False Negative |
| FP | False Positive |
| Ff | Fundamental frequency |
| PAM | Passive Acoustic Monitoring |
| TN | True Negative |
| TP | True Positive |
References
- Sunde, P.; Olsen, K. Rumlig Adfærd Af GPS-Mærket Ulv i Skjernreviret; Fagligt notat fra DCE—Nationalt Center for Miljø og Energi; Aarhus University: Aarhus, Denmark, 2023; Available online: https://dce.au.dk/fileadmin/dce.au.dk/Udgivelser/Notater_2023/N2023_21.pdf (accessed on 11 December 2025).
- Di Bernardi, C.; Chapron, G.; Kaczensky, P.; Álvares, F.; Andrén, H.; Balys, V.; Blanco, J.; Chiriac, S.; Ćirović, D.; Drouet-Hoguet, N.; et al. Continuing recovery of wolves in Europe. PLoS Sustain. Transform. 2025, 4, e0000158. [Google Scholar] [CrossRef]
- Linnell, J.D.C.; Cretois, B. The Revival of Wolves and Other Large Predators and Its Impact on Farmers and Their Livelihood in Rural Regions of Europe; European Parliament, Policy Department for Structural and Cohesion Policies: Brussels, Belgium, 2018. [Google Scholar]
- Directorate-General for Environment (European Commission); N2K Group EEIG; Blanco, J.C.; Sundseth, K. The Situation of the Wolf (Canis lupus) in the European Union: An In-Depth Analysis; Publications Office of the European Union: Luxembourg, 2023; ISBN 978-92-68-10281-7. Available online: https://data.europa.eu/doi/10.2779/187513 (accessed on 11 December 2025).
- Ražen, N.; Kuralt, Ž.; Fležar, U.; Bartol, M.; Černe, R.; Kos, I.; Krofel, M.; Luštrik, R.; Majić Skrbinšek, A.; Potočnik, H. Citizen Science Contribution to National Wolf Population Monitoring: What Have We Learned? Eur. J. Wildl. Res. 2020, 66, 46. [Google Scholar] [CrossRef]
- Marques, T.A.; Thomas, L.; Martin, S.W.; Mellinger, D.K.; Ward, J.A.; Moretti, D.J.; Harris, D.; Tyack, P.L. Estimating Animal Population Density Using Passive Acoustics. Biol. Rev. 2013, 88, 287–309. [Google Scholar] [CrossRef] [PubMed]
- Olsen, K.; Sunde, P. Antallet af ulve i Danmark: Oktober 2012–Februar 2025; Fagligt notat fra DCE—Nationalt Center for Miljø og Energi; Aarhus University: Aarhus, Denmark, 2025; Volume 2025, 20p, Available online: https://dce.au.dk/fileadmin/dce.au.dk/Udgivelser/Notater_2025/N2025_26.pdf (accessed on 11 December 2025).
- Wildlife Acoustics. Jeff Reed Cry Wolf Project: Bioacoustics & Carnivores in Yellowstone National Park; Video; YouTube. 2025. Available online: https://www.youtube.com/watch?v=CHlCdhrxVrk (accessed on 23 December 2025).
- Teixeira, D.; Maron, M.; van Rensburg, B.J. Bioacoustic monitoring of animal vocal behavior for conservation. Conserv. Sci. Pract. 2019, 1, e72. [Google Scholar] [CrossRef]
- Kershenbaum, A.; Owens, J.L.; Waller, S. Tracking cryptic animals using acoustic multilateration: A system for long-range wolf detection. J. Acoust. Soc. Am. 2019, 145, 1619–1628. [Google Scholar] [CrossRef]
- Palacios, V.; López-Bao, J.V.; Llaneza, L.; Fernández, C.; Font, E. Decoding Group Vocalizations: The Acoustic Energy Distribution of Chorus Howls Is Useful to Determine Wolf Reproduction. PLoS ONE 2016, 11, e0153858. [Google Scholar] [CrossRef]
- McIntyre, R.R.; Theberge, J.B.; Theberge, M.T.; Smith, D.W. Behavioral and ecological implications of seasonal variation in the frequency of daytime howling by Yellowstone wolves. J. Mammal. 2017, 98, 827–834. [Google Scholar] [CrossRef]
- Linhart, P.; Mahamoud-Issa, M.; Stowell, D.; Blumstein, D.T. The potential for acoustic individual identification in mammals. Mamm. Biol. 2022, 102, 667–683. [Google Scholar] [CrossRef]
- Larsen, H.L.; Pertoldi, C.; Madsen, N.; Randi, E.; Stronen, A.V.; Root-Gutteridge, H.; Pagh, S. Bioacoustic Detection of Wolves: Identifying Subspecies and Individuals by Howls. Animals 2022, 12, 631. [Google Scholar] [CrossRef]
- Stähli, O.; Ost, T.; Studer, T. Development of an AI-based bioacoustic wolf monitoring system. Int. FLAIRS Conf. Proc. 2022, 35, 3. [Google Scholar] [CrossRef]
- Pérez-Granados, C. BirdNET: Applications, performance, pitfalls and future opportunities. Ibis 2023, 165, 1068–1075. [Google Scholar] [CrossRef]
- van Merriënboer, B.; Hamer, J.; Dumoulin, V.; Triantafillou, E.; Denton, T. Birds, Bats and beyond: Evaluating Generalization in Bioacoustics Models. Front. Bird. Sci. 2024, 3, 1369756. [Google Scholar] [CrossRef]
- Cauzinille, J.; Favre, B.; Marxer, R.; Rey, A. Applying Machine Learning to Primate Bioacoustics: Review and Perspectives. Am. J. Primatol. 2024, 86, e23666. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, M.J.; Bedoya, C.L.; López, J.D.; Daza, J.M.; Isaza, C. Acoustic Animal Identification Using Unsupervised Learning. Methods Ecol. Evol. 2023, 14, 1500–1514. [Google Scholar] [CrossRef]
- Sossover, D.; Burrows, K.; Kahl, S.; Wood, C.M. Using the BirdNET Algorithm to Identify Wolves, Coyotes, and Potentially Their Interactions in a Large Audio Dataset. Mammal Res. 2024, 69, 159–165. [Google Scholar] [CrossRef]
- Wood, C.M.; Klinck, H.; Gustafson, M.; Keane, J.J.; Sawyer, S.C.; Gutiérrez, R.J.; Peery, M.Z. Using the Ecological Significance of Animal Vocalizations to Improve Inference in Acoustic Monitoring Programs. Conserv. Biol. 2021, 35, 336–345. [Google Scholar] [CrossRef]
- Marti-Domken, B.; Sanchez, V.P.; Monzón, A. Pack Members Shape the Acoustic Structure of a Wolf Chorus. Acta Ethol. 2022, 25, 79–87. [Google Scholar] [CrossRef]
- Wood, C.M.; Kahl, S.; Barnes, S.; Van Horne, R.; Brown, C. Passive Acoustic Surveys and the BirdNET Algorithm Reveal Detailed Spatiotemporal Variation in the Vocal Activity of Two Anurans. Bioacoustics 2023, 32, 532–543. [Google Scholar] [CrossRef]
- Wood, C.M.; Kahl, S. Guidelines for Appropriate Use of BirdNET Scores and Other Detector Outputs. J. Ornithol. 2024, 165, 777–782. [Google Scholar] [CrossRef]
- Zaccaroni, M.; Passilongo, D.; Buccianti, A.; Dessì-Fulgheri, F.; Facchini, C.; Gazzola, A.; Maggini, I.; Apollonio, M. Group Specific Vocal Signature in Free-Ranging Wolf Packs. Ethol. Ecol. Evol. 2012, 24, 322–331. [Google Scholar] [CrossRef]
- Russo, C.; Cecchi, F.; Zaccaroni, M.; Facchini, C.; Bongi, P. Acoustic Analysis of Wolf Howls Recorded in Apennine Areas with Different Vegetation Covers. Ethol. Ecol. Evol. 2020, 32, 433–444. [Google Scholar] [CrossRef]
- Papin, M.; Pichenot, J.; Guérold, F.; Germain, E. Acoustic Localization at Large Scales: A Promising Method for Grey Wolf Monitoring. Front. Zool. 2018, 15, 11. [Google Scholar] [CrossRef]
- Passilongo, D.; Marchetto, M.; Apollonio, M. Singing in a Wolf Chorus: Structure and Complexity of a Multicomponent Acoustic Behaviour. Hystrix It. J. Mammal. 2017, 28, 180–185. [Google Scholar] [CrossRef]
- Palacios, V.; Font, E.; García, E.J.; Svensson, L.; Llaneza, L.; Frank, J.; López-Bao, J.V. Reliability of Human Estimates of the Presence of Pups and the Number of Wolves Vocalizing in Chorus Howls: Implications for Decision-Making Processes. Eur. J. Wildl. Res. 2017, 63, 59. [Google Scholar] [CrossRef]
- Sunde, P.; Kjeldgaard, S.A.; Mortensen, R.M.; Olsen, K. Human Avoidance, Selection for Darkness and Prey Activity Explain Wolf Diel Activity in a Highly Cultivated Landscape. Wildl. Biol. 2024, 2024, e01251. [Google Scholar] [CrossRef]
- Theberge, J.B.; Theberge, M.T. Triggers and Consequences of Wolf (Canis lupus) Howling in Yellowstone National Park and Connection to Communication Theory. Can. J. Zool. 2022, 100, 799–809. [Google Scholar] [CrossRef]
- Harrington, F.H.; Mech, L.D. Howling at Two Minnesota Wolf Pack Summer Homesites. Can. J. Zool. 1978, 56, 2024–2028. [Google Scholar] [CrossRef]
- Papin, M.; Aznar, M.; Germain, E.; Guérold, F.; Pichenot, J. Using Acoustic Indices to Estimate Wolf Pack Size. Ecol. Indic. 2019, 103, 202–211. [Google Scholar] [CrossRef]


| Metric | Definition |
|---|---|
| Precision | Proportion of positive detections that are actual wolf howls (TP/(TP + FP)) |
| Recall | Proportion of actual wolf howls correctly detected by AI method (TP/(TP + FN)). |
| F1-score | Harmonic mean of precision and recall (2 × (Precision × Recall)/(Precision + Recall)). |
| Detections | Total number of instances a candidate wolf howl is identified, regardless of its accuracy (TP + FP). |
|
Positive detections | Total number of individual audio segments containing a candidate wolf howl after meeting or exceeding the established confidence threshold. |
| Dataset | Metric | BirdNET | Cry-Wolf | Biolingual |
|---|---|---|---|---|
| 1 | Precision | 6.6% (76/1154) | 2.5% (67/2678) | 0.8% (36/4409) |
| Recall |
74.5% (76/102) |
65.7% (67/102) |
35.3% (36/102) | |
| F1-Score | 0.121 | 0.048 | 0.016 | |
| 2 | Precision | 3.2% (33/1022) | 0.7% (30/4569) | 0.5% (31/5808) |
| Recall |
66% (33/50) |
60% (30/50) |
62% (31/50) | |
| F1-Score | 0.062 | 0.013 | 0.011 | |
| 3 | Precision | 0.4% (6/1341) | 0 (0/3278) | 0.2% (4/2113) |
| Recall |
75% (6/8) |
0% (0/8) |
50% (6/8) | |
| F1-Score | 0.009 | 0 | 0.004 | |
| 4 | Precision | 0.3% (89/25,460) | 0.3% (58/19,798) | 0.5% (89/17,924) |
| Recall |
89% (89/100) |
58% (58/100) |
89% (89/100) | |
| F1-Score | 0.007 | 0.006 | 0.01 |
| Metric | BirdNET | Cry-Wolf | BioLingual |
|---|---|---|---|
| Precision | 0.007 (204/28,977) | 0.005 (160/30,254) | 0.005 (155/30,323) |
| Recall | 78.5% (204/260) | 59.6% (155/260) | 61.5% (160/260) |
| F1-Score | 0.014 | 0.01 | 0.01 |
| Note Type | Occurrences | BirdNET (Detected/Total) | Cry-Wolf (Detected/Total) | BioLingual (Detected/Total) |
|---|---|---|---|---|
| No label | 32 | 28/32 (87.5%) | 18/32 (56.3%) | 15/32 (46.9%) |
| Rain | 8 | 7/8 (87.5%) | 6/8 (75.0%) | 2/8 (25.0%) |
| Red deer | 9 | 8/9 (88.9%) | 7/9 (77.8%) | 7/9 (77.8%) |
| Unclear | 5 | 4/5 (80.0%) | 2/5 (40.0%) | 3/5 (60.0%) |
| Total | 54 | 47/54 (87.0%) | 33/54 (61.1%) | 27/54 (50.0%) |
| Model | Recall (%) | Precision | False Positives | Strengths |
|---|---|---|---|---|
| BirdNET | 78.5 | 0.007 | 28,773 | 87.5% during rain; 88.9% with deer rutting calls; 80% on unclear howls |
| Cry-Wolf | 59.6 | 0.005 | 30,168 | 75% during rain; 77.8% with red deer sounds |
| BioLingual | 61.5 | 0.005 | 30,094 | Matched BirdNET’s 89% recall on Dataset 4; 77.8% with red deer; 60% on unclear howls; detected 50% where Cry-Wolf had 0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Jacobsen, J.H.; Orlando, P.; Jensen, L.Ø.; Pagh, S.; Pertoldi, C. Bioacoustic Detection of Wolves Using AI (BirdNET, Cry-Wolf and BioLingual). Animals 2026, 16, 175. https://doi.org/10.3390/ani16020175
Jacobsen JH, Orlando P, Jensen LØ, Pagh S, Pertoldi C. Bioacoustic Detection of Wolves Using AI (BirdNET, Cry-Wolf and BioLingual). Animals. 2026; 16(2):175. https://doi.org/10.3390/ani16020175
Chicago/Turabian StyleJacobsen, Johanne Holm, Pietro Orlando, Line Østergaard Jensen, Sussie Pagh, and Cino Pertoldi. 2026. "Bioacoustic Detection of Wolves Using AI (BirdNET, Cry-Wolf and BioLingual)" Animals 16, no. 2: 175. https://doi.org/10.3390/ani16020175
APA StyleJacobsen, J. H., Orlando, P., Jensen, L. Ø., Pagh, S., & Pertoldi, C. (2026). Bioacoustic Detection of Wolves Using AI (BirdNET, Cry-Wolf and BioLingual). Animals, 16(2), 175. https://doi.org/10.3390/ani16020175

