Activity of Lysozyme Against Multidrug-Resistant Salmonella Heidelberg and Salmonella Minnesota Isolated from Broilers
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Isolates
2.2. Serogroup Determination
2.3. Minimum Inhibitory Concentration
2.4. Minimum Bactericidal Concentration of Lysozyme
2.5. In Vivo Lysozyme Activity Against Intestinal Colonization by Salmonella Heidelberg in Broiler Chickens
2.6. Statistical Analysis
3. Results
3.1. Serogroup Identification
3.2. MIC
3.3. Lysozyme Microdilution Test
3.4. In Vivo Lysozyme Activity Against Intestinal Colonization by Salmonella Heidelberg in Broiler Chickens
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Galán-Relaño, Á.; Valero Díaz, A.; Huerta Lorenzo, B.; Gómez-Gascón, L.; Mena Rodríguez, M.Á.; Carrasco Jiménez, E.; Pérez Rodríguez, F.; Astorga Márquez, R.J. Salmonella and Salmonellosis: An Update on Public Health Implications and Control Strategies. Animals 2023, 13, 3666. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Lyu, N.; Li, Z.; Ma, S.; Cao, D.; Pan, Y.; Hu, Y.; Huang, H.; Gao, G.F.; et al. The temporal dynamics of antimicrobial-resistant Salmonella enterica and predominant serovars in China. Natl. Sci. Rev. 2022, 10, nwac269. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, Y.; Xu, X.; Jia, S.; Qu, M.; Pei, Y.; Qiu, S.; Zhang, J.; Liu, Y.; Ma, S.; Lyu, N.; et al. A global atlas and drivers of antimicrobial resistance in Salmonella during 1900–2023. Nat. Commun. 2025, 16, 4611. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ma, Y.; Chen, P.; Mo, Y.; Xiao, Y. WHO revised bacterial priority pathogens list to encourage global actions to combat AMR. Hlife 2024, 2, 607–610. [Google Scholar] [CrossRef]
- Alikhan, N.F.; Moreno, L.Z.; Castellanos, L.R.; Chattaway, M.A.; McLauchlin, J.; Lodge, M.; O’Grady, J.; Zamudio, R.; Doughty, E.; Petrovska, L.; et al. Dynamics of Salmonella enterica and antimicrobial resistance in the Brazilian poultry industry and global impacts on public health. PLoS Genet. 2022, 18, e1010174. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- El-Shall, N.A.; Awad, A.M.; El-Hack, M.E.A.; Naiel, M.A.E.; Othman, S.I.; Allam, A.A.; Sedeik, M.E. The Simultaneous Administration of a Probiotic or Prebiotic with Live Salmonella Vaccine Improves Growth Performance and Reduces Fecal Shedding of the Bacterium in Salmonella-Challenged Broilers. Animals 2019, 10, 70. [Google Scholar] [CrossRef]
- Souza, A.I.S.; Saraiva, M.M.S.; Casas, M.R.T.; Oliveira, G.M.; Cardozo, M.V.; Benevides, V.P.; Barbosa, F.O.; Freitas Neto, O.C.; Almeida, A.M.; Berchieri Junior, A. High Occurrence of β-Lactamase-Producing Salmonella heidelberg from Poultry Origin. PLoS ONE 2020, 15, e0230676. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, N.; Kumar, P.; Bhusan, B.; Bhattacharya, T.; Dayal, S.; Sahoo, M. Lysozyme in Livestock: A Guide to Selection for Disease Resistance: A Review. J. Anim. Sci. Adv. 2012, 2, 347–360. [Google Scholar]
- Gong, M. Efficacy of Lysozyme as an Alternative to Antibiotics for Broiler Chickens. Master’s Thesis, University of Maryland, College Park, MD, USA, 2014. [Google Scholar]
- Losso, J.N.; Nakai, S.; Charter, E.A. Lysozyme. In Natural Food Antimicrobial Systems; Naidu, A.S., Ed.; CRC Press: New York, NY, USA, 2000; pp. 185–210. [Google Scholar]
- Ellison, R.T., 3rd; Giehl, T.J. Killing of Gram-Negative Bacteria by Lactoferrin and Lysozyme. J. Clin. Investig. 1991, 88, 1080–1091. [Google Scholar] [CrossRef]
- Alvarez, J.; Sota, M.; Vivanco, A.B.; Perales, I.; Cisterna, R.; Rementeria, A.; Garaizar, J. Development of a Multiplex PCR Technique for Detection and Epidemiological Typing of Salmonella in Human Clinical Samples. J. Clin. Microbiol. 2004, 42, 1734–1738. [Google Scholar] [CrossRef]
- Salmonella Subcommittee of the Nomenclature Committee of the International Society for Microbiology. The Genus Salmonella Lignières, 1900. J. Hyg. 1934, 34, 333–350. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality Assessment Tool for Genome Assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef]
- Pornsukarom, S.; Van Vliet, A.H.M.; Thakur, S. Whole Genome Sequencing Analysis of Multiple Salmonella Serovars Provides Insights into Phylogenetic Relatedness, Antimicrobial Resistance, and Virulence Markers across Humans, Food Animals and Agricultural Environmental Sources. BMC Genom. 2018, 19, 801. [Google Scholar] [CrossRef] [PubMed]
- Sahl, J.W.; Lemmer, D.; Travis, J.; Schupp, J.M.; Gillece, J.D.; Aziz, M.; Driebe, E.M.; Drees, K.P.; Hicks, N.D.; Williamson, C.H.D.; et al. NASP: An Accurate, Rapid Method for the Identification of SNPs in WGS Datasets That Supports Flexible Input and Output Formats. Microb. Genom. 2016, 2, e000074. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 33rd ed.; CLSI supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2023. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). VET01 Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 7th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2024. [Google Scholar]
- National Committee for Clinical Laboratory Standards–NCCLS. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals: Approved Standard-Third Edition; M31-A3; National Committee for Clinical Laboratory Standards: Wayne, PA, USA, 2008. [Google Scholar]
- Schwarz, S.; Silley, P.; Simjee, S.; Woodford, N.; van Duijkeren, E.; Johnson, A.P.; Gaastra, W. Editorial: Assessing the antimicrobial susceptibility of bacteria obtained from animals. J. Antimicrob. Chemother. 2010, 65, 601–604. [Google Scholar] [CrossRef]
- São Paulo (Estado). Portaria SDA nº 126, de 3 de Novembro de 1995. Normas de Credenciamento e Monitoramento de Laboratórios de Diagnóstico das Salmoneloses Aviárias; Defesa Agropecuária: São Paulo, Brazil, 1995. Available online: https://www.defesa.agricultura.sp.gov.br/legislacoes/portaria-sda-126-de-03-11-1995,372.html (accessed on 26 August 2025).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.r-project.org/ (accessed on 14 December 2022).
- Brunner, E.; Domhof, S.; Langer, F. Non-parametric Analysis of Longitudinal Data in Factorial Experiments; Wiley: New York, NY, USA, 2002. [Google Scholar]
- Noguchi, K.; Gel, Y.R.; Brunner, E.; Konietschke, F. nparLD: An R Software Package for the Non-Parametric Analysis of Longitudinal Data in Factorial Experiments. J. Stat. Softw. 2012, 50, 1–23. Available online: http://www.jstatsoft.org/v50/i12/ (accessed on 15 December 2025). [CrossRef]
- Browne, A.J.; Chipeta, M.G.; Fell, F.J.; Haines-Woodhouse, G.; Hamadani, B.H.K.; Kumaran, E.A.; Aguilar, G.R.; McManigal, B.; Andrews, J.R.; Ashley, E.A.; et al. Estimating the subnational prevalence of antimicrobial resistant Salmonella enterica serovars Typhi and Paratyphi A infections in 75 endemic countries, 1990–2019: A modelling study. Lancet Glob. Health 2024, 12, e406–e418. [Google Scholar] [CrossRef]
- Saidenberg, A.B.S.; Franco, L.S.; Reple, J.N.; Hounmanou, Y.M.G.; Casas, M.R.T.; Cardoso, B.; Esposito, F.; Lincopan, N.; Dalsgaard, A.; Stegger, M.; et al. Salmonella Heidelberg and Salmonella Minnesota in Brazilian broilers: Genomic characterization of third-generation cephalosporin and fluoroquinolone-resistant strains. Appl. Microbiol. Int. 2023, 15, 119–128. [Google Scholar] [CrossRef]
- Gast, R.K.; Porter, R.E., Jr. Salmonella Infections. In Diseases of Poultry, 14th ed.; Swayne, D.E., Boulianne, M., Logue, C.M., McDougald, L.R., Nair, V., Suarez, D.L., Wit, S., Grimes, T., Johnson, D., et al., Eds.; Wiley-Blackwell: Oxford, UK, 2020; Chapter 16. [Google Scholar] [CrossRef]
- Castro-Vargas, R.E.; Herrera-Sánchez, M.P.; Rodríguez-Hernández, R.; Rondón-Barragán, I.S. Antibiotic resistance in Salmonella spp. isolated from poultry: A global overview. Vet. World 2020, 13, 2070–2084. [Google Scholar] [CrossRef] [PubMed]
- Tellez, G.; Pixley, C.; Wolfenden, R.E.; Layton, S.L.; Hargis, B.M. Probiotics/direct fed microbials for Salmonella control in poultry. Food Res. Int. 2012, 45, 628–633. [Google Scholar] [CrossRef]
- Campos, J.; Mourão, J.; Silveira, L.; Saraiva, M.; Correia, C.B.; Maçãs, A.P.; Antunes, P. Imported poultry meat as a source of extended-spectrum cephalosporin-resistant CMY-2-producing Salmonella Heidelberg and Salmonella Minnesota in the European Union, 2014–2015. Int. J. Antimicrob. Agents 2018, 51, 151–154. [Google Scholar] [CrossRef]
- Perin, A.P.; Martins, B.T.F.; Barreiros, M.A.B.; Yamatogi, R.S.; Nero, L.A.; Dos Santos Bersot, L. Occurrence, quantification, pulse types, and antimicrobial susceptibility of Salmonella sp. isolated from chicken meat in the state of Paraná, Brazil. Braz. J. Microbiol. 2020, 51, 335–345. [Google Scholar] [CrossRef]
- Borges, K.A.; Cisco, I.C.; Furian, T.Q.; Tedesco, D.C.; Rodrigues, L.B.; do Nascimento, V.P.; dos Santos, L.R. Detection and quantification of Campylobacter spp. in Brazilian poultry processing plants. J. Infect. Dev. Ctries. 2020, 14, 109–113. [Google Scholar] [CrossRef]
- Monte, D.F.; Lincopan, N.; Berman, H.; Cerdeira, L.; Keelara, S.; Thakur, S.; Landgraf, M. Genomic features of high-priority Salmonella enterica serovars circulating in the food production chain, Brazil, 2000–2016. Sci. Rep. 2019, 9, 11058. [Google Scholar] [CrossRef]
- Sabo, S.S.; Mendes, A.M.; Araújo, E.D.; Muradian, L.B.A.; Makiyama, E.N.; Leblanc, J.G.; Borelli, P.; Fock, R.A.; Knöbl, T.; Oliveira, R.P.S. Bioprospecting of probiotics with antimicrobial activities against Salmonella heidelberg and that produce B-complex vitamins as potential supplements in poultry nutrition. Sci. Rep. 2020, 10, 7235. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.G.S. Clonagem, Expressão e Caracterização de Lisozima de Anopheles darlingi em Pichia pastoris. Ph.D. Thesis, Universidade Federal do Amazonas, Amazonas, Brazil, 2019. [Google Scholar]
- Davidson, P.M.; Sofos, J.N.; Branen, A.L. Antimicrobials in Food, 3rd ed.; Food Science and Technology: Boca Raton, FL, USA, 2005. [Google Scholar]
- Herbert, S.; Bera, A.; Nerz, C.; Kraus, D.; Peschel, A.; Goerke, C.; Meehl, M.; Cheung, A.; Götz, F. Molecular basis of resistance to muramidase and cationic antimicrobial peptide activity of lysozyme in staphylococci. PLoS Pathog. 2007, 3, e102. [Google Scholar] [CrossRef] [PubMed]
- Rouchon, C.N.; Weinstein, A.J.; Hutchison, C.A.; Zubair-Nizami, Z.B.; Kohler, P.L.; Frank, K.L. Disruption of the tagF orthologue in the epa locus variable region of Enterococcus faecalis causes cell surface changes and suppresses an eep-dependent lysozyme resistance phenotype. J. Bacteriol. 2022, 204, e00247-22. [Google Scholar] [CrossRef]
- Gogry, F.A.; Siddiqui, M.T.; Sultan, I.; Husain, F.M.; Al-Kheraif, A.A.; Ali, A.; Haq, Q.M.R. Colistin interaction and surface changes associated with mcr-1 conferred plasmid mediated resistance in E. coli and A. veronii strains. Pharmaceutics 2022, 14, 295. [Google Scholar] [CrossRef]
- El-Saadony, M.T.; Salem, H.M.; El-Tahan, A.M.; El-Mageed, T.A.A.; Soliman, S.M.; Khafaga, A.F.; Swelum, A.A.; Ahmed, A.E.; Alshammari, F.A.; El-Hack, M.E.A. The control of poultry salmonellosis using organic agents: An updated overview. Poult. Sci. 2022, 101, 101716. [Google Scholar] [CrossRef]
- Hofer, E.; Da Silva Filho, S.J.; Dos Reis, E.M.F. Prevalência de sorovares de Salmonella isolados de aves no Brasil. Pesqui. Vet. Bras. 1997, 17, 55–62. [Google Scholar] [CrossRef]
- Fonseca, B.B.; Beletti, M.E.; Silva, M.S.; Silva, P.L.; Duarte, I.N.; Roossi, D.A. Microbiota of the cecum, ileum morphometry, pH of the crop and performance of broiler chickens supplemented with probiotics. Rev. Bras. Zootec. 2010, 19, 1756–1760. [Google Scholar] [CrossRef]
- Danzeisen, J.L.; Kim, H.B.; Isaacson, R.E.; Tu, Z.J.; Johnson, T.J. Modulations of the chicken cecal microbiome and metagenome in response to anticoccidial and growth promoter treatment. PLoS ONE 2011, 6, e27949. [Google Scholar] [CrossRef]
- Mohd Shaufi, M.A.; Sieo, A.C.C.; Chong, C.W.; Gan, H.M.; Ho, Y.W. Deciphering chicken gut microbial dynamics based on high-throughput 16S rRNA metagenomics analyses. Gut Pathog. 2015, 7, 4. [Google Scholar] [CrossRef]
- Apajalahti, J. Comparative gut microflora, metabolic challenges, and potential opportunities. In Biology of Growing Animals; Elsevier: Amsterdam, The Netherlands, 2005; Volume 3, pp. 444–453. [Google Scholar]
- Fanelli, M.J.; Sadler, W.W.; Franti, C.E.; Brownell, J.R. Localization of Salmonellae within the intestinal tract of chickens. Avian Dis. 1971, 15, 366–375. [Google Scholar] [CrossRef]
- Ribeiro, A.R.; Kellermann, A.; Santos, L.R.; Nascimento, V.P. Antimicrobial resistance in Salmonella Enteritidis isolated from clinical and environmental broiler chickens and breeder broilers. Arq. Bras. Med. Vet. Zootec. 2008, 60. [Google Scholar] [CrossRef]
- Pan, D.; Yu, Z. Intestinal microbiome of poultry and its interaction with host and diet. Gut Microbes 2014, 5, 108–119. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Guo, Y.; Wang, Z.; Yuan, J. Exogenous lysozyme influences Clostridium perfringens colonization and intestinal barrier function in broiler chickens. Avian Pathol. 2010, 39, 17–24. [Google Scholar] [CrossRef]
| Antibiotic | Numbers of Isolates/MIC µg/mL | CIM 50% µg/mL | CIM 90% µg/mL | % Resistance | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | ||||
| Nalidixic acid | 16 | 0 | 0 | 27 | 1 | 64 | 64 | 63.6% | ||||||||||
| Amoxicilin with clavulanate | 11 | 0 | 0 | 6 | 1 | 1 | 0 | 25 | 64 | 64 | 56.8% | |||||||
| Ampicilin | 9 | 2 | 0 | 0 | 0 | 0 | 33 | 64 | 64 | 75.0% | ||||||||
| Azythromycin | 6 | 12 | 15 | 10 | 1 | 16 | 32 | 25.0% | ||||||||||
| Ceftiofur | 10 | 0 | 1 | 16 | 0 | 17 | 2 | 8 | 36.6% | |||||||||
| Ciprofloxacin | 16 | 0 | 0 | 2 | 20 | 3 | 2 | 1 | 1 | 2 | 59.0% | |||||||
| Cloranfenicol | 12 | 26 | 4 | 0 | 2 | 8 | 16 | 4.5% | ||||||||||
| Colistin | 36 | 6 | 1 | 1 | 0 | 1 | 2 | 4.5% | ||||||||||
| Fosfomycin | 39 | 2 | 0 | 3 | 0 | 0 | 0 | 8 | 16 | 0% | ||||||||
| Florfenicol | 0 | 4 | 0 | 38 | 2 | 0 | 4 | 4 | 0% | |||||||||
| Gentamicin | 35 | 0 | 0 | 0 | 1 | 5 | 3 | 0 | 0.5 | 16 | 18.1% | |||||||
| Marbofloxacin | 16 | 0 | 1 | 16 | 8 | 2 | 1 | 0 | 0.5 | 1 | 2.2% | |||||||
| Meropenem | 44 | 0 | 0 | 0 | 0 | 0 | 0.25 | 0.25 | 0% | |||||||||
| Neomycin | 0 | 0 | 0 | 0 | 29 | 3 | 12 | 4 | 16 | 34.0% | ||||||||
| Oxytetracycline | 1 | 1 | 0 | 0 | 42 | 32 | 32 | 95.4% | ||||||||||
| Sulfametoxazole with trimetoprim | 44 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0% | |||||||||
| Sulfonamides | 1 | 0 | 43 | 1024 | 1024 | 97.7% | ||||||||||||
- Resistant strains are shown in red.
| Farm | Number of Isolates/MBC ppm | MBC 50% | MBC 90% | |||||||
|---|---|---|---|---|---|---|---|---|---|---|
| ≤15 | 31 | 62 | 125 | 250 | 500 | 1000 | >2000 | |||
| 1—S. Heidelberg | 7 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 15 | 15 |
| 2—S. Heidelberg | 6 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 15 | 15 |
| 3—S. Heidelberg | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15 | 15 |
| 4—S. Minnesota | 14 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 15 | 15 |
| Total | 38 | 1 | 0 | 0 | 2 | 0 | 1 | 2 | ||
| (86.3%) | (2.2%) | (0%) | (0%) | (4.5%) | (0%) | (2.2%) | (4.5%) | |||
| Bird Age (Days) | T1—Unchallenged Negative Control | T2—Positive Control Challenged | T3—Treatment Group |
|---|---|---|---|
| 2 | 0/12 (0%) | 5/12 (41.66%) | 2/12 (16.6%) |
| 5 | 0/12 (0%) | 8/12 (66.66%) | 4/12 (33.33%) |
| 7 | 0/12 (0%) | 7/12 (58.33%) | 4/12 (33.33%) |
| 14 | 0/12 (0%) | 8/12 (66.66%) | 7/12 (58.33%) |
| 18 | 0/12 (0%) | 7/12 (58.33%) | 3/12 (25%) |
| 21 | 0/12 (0%) | 14/22 (63.63%) | 6/23 (26.08%) |
| Bird Age (Days) | Isolation | N | Positive Control % (IC95%) | N | Treatment % (IC95%) | p-Value |
|---|---|---|---|---|---|---|
| 2 | Negative | 7 | 41.18 (20.68–64.41) | 10 | 58.82 (35.59–79.32) | 0.369 |
| Positive | 5 | 71.43 (35.23–93.53) | 2 | 28.57 (6.47–64.77) | ||
| 5 | Negative | 4 | 33.33 (12.45–61.24) | 8 | 66.67 (38.76–87.55) | 0.221 |
| Positive | 8 | 66.67 (38.76–87.55) | 4 | 33.33 (12.45–61.24) | ||
| 7 | Negative | 5 | 38.46 (16.47–65) | 8 | 61.54 (35–83.53) | 0.413 |
| Positive | 7 | 63.64 (34.8–86.27) | 4 | 36.36 (13.73–65.2) | ||
| 14 | Negative | 4 | 44.44 (17.3–74.59) | 5 | 55.56 (25.41–82.7) | 1.000 |
| Positive | 8 | 53.33 (29.39–76.12) | 7 | 46.67 (23.88–70.61) | ||
| 18 | Negative | 5 | 35.71 (15.15–61.55) | 9 | 64.29 (38.45–84.85) | 0.214 |
| Positive | 7 | 70 (39.42–90.73) | 3 | 30 (9.27–60.58) | ||
| 21 | Negative | 8 | 32 (16.44–51.46) | 17 | 68 (48.54–83.56) | 0.025 |
| Positive | 14 | 70 (48.28–86.39) | 6 | 30 (13.61–51.72) |
| ANOVA-like Analysis | p-Value |
|---|---|
| Group | <0.001 |
| Positive control–Negative control | 0.000 |
| Positive control–Treatment | 0.008 |
| Negative control–Treatment | 0.000 |
| Time | 0.196 |
| Positive control–Negative control | 0.743 |
| Positive control–Treatment | 0.196 |
| Negative control–Treatment | 0.203 |
| Group–Time | 0.728 |
| Positive control–Negative control | 0.743 |
| Positive control–Treatment | 0.878 |
| Negative control–Treatment | 0.203 |
| Ingluvium | Cecum | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Bird | Positive Control | Treatment | Positive Control | Treatment | ||||||||
| 1 | 1 × 103 | 1 × 103 | 1 × 102 | - | - | - | 3 × 106 | 2 × 105 | 1 × 106 | - | 2 × 104 | |
| 2 | 1 × 103 | 1 × 102 | 1 × 102 | - | - | - | 1.5 × 105 | 1.4 × 105 | 1 × 105 | - | 1 × 105 | - |
| 3 | 3 × 102 | 1 × 103 | - | - | - | - | 1.6 × 105 | 9 × 104 | - | 2 × 104 | - | - |
| 4 | 1 × 105 | 1 × 102 | - | - | - | - | 2 × 105 | 3 × 104 | - | - | - | - |
| 5 | 4 × 102 | - | - | - | - | - | 3.6 × 105 | 1 × 105 | - | - | 3 × 105 | - |
| 6 | - | - | - | - | - | - | 1.1 × 103 | 1 × 105 | - | - | - | - |
| 7 | - | - | - | - | - | - | - | - | - | 1 × 105 | 1 × 105 | - |
| 8 | * | - | * | - | - | - | - | - | - | * | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Franco, L.S.; Cunha, M.P.V.; Nishio, C.M.; Kato, R.K.; Barbosa, F.B.; Gomes, V.T.M.; Casas, M.R.T.; Moreno, A.M.; Knöbl, T. Activity of Lysozyme Against Multidrug-Resistant Salmonella Heidelberg and Salmonella Minnesota Isolated from Broilers. Animals 2026, 16, 19. https://doi.org/10.3390/ani16010019
Franco LS, Cunha MPV, Nishio CM, Kato RK, Barbosa FB, Gomes VTM, Casas MRT, Moreno AM, Knöbl T. Activity of Lysozyme Against Multidrug-Resistant Salmonella Heidelberg and Salmonella Minnesota Isolated from Broilers. Animals. 2026; 16(1):19. https://doi.org/10.3390/ani16010019
Chicago/Turabian StyleFranco, Leticia Soares, Marcos Paulo Vieira Cunha, Carina Megumi Nishio, Reinaldo Kanji Kato, Fernanda Borges Barbosa, Vasco Túlio Moura Gomes, Monique Ribeiro Tiba Casas, Andrea Micke Moreno, and Terezinha Knöbl. 2026. "Activity of Lysozyme Against Multidrug-Resistant Salmonella Heidelberg and Salmonella Minnesota Isolated from Broilers" Animals 16, no. 1: 19. https://doi.org/10.3390/ani16010019
APA StyleFranco, L. S., Cunha, M. P. V., Nishio, C. M., Kato, R. K., Barbosa, F. B., Gomes, V. T. M., Casas, M. R. T., Moreno, A. M., & Knöbl, T. (2026). Activity of Lysozyme Against Multidrug-Resistant Salmonella Heidelberg and Salmonella Minnesota Isolated from Broilers. Animals, 16(1), 19. https://doi.org/10.3390/ani16010019

