Effects of Fungal Probiotics on Rumen Fermentation and Microbiota in Angus Cattle
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Microbial Feed Additive Preparation
2.2. Experimental Design and Animal Management
2.3. Growth Performance
2.4. Sample Collection
2.5. Apparent Nutrient Digestibility Determination
2.6. Rumen Fermentation Parameters
2.7. Microbiota Analysis in Rumen Fluid
2.8. Statistical Analysis
3. Results
3.1. Effect of CPs on the Growth Performance and Feed Efficiency of Angus Cattle
3.2. Effects of CPs on Apparent Nutrient Digestibility
3.3. Effects of CPs on Ruminal Fermentation Parameters
3.4. Effects of CPs on Bacterial Abundances at the Phylum Level
3.5. Effects of CPs on Bacterial Abundances at the Genus Level
3.6. Correlation of Bacterial Communities with Growth Performance, Apparent Nutrient Digestibility, and Fermentation Parameters
3.7. Effects of CPs on the Abundances of Ciliates
3.8. Correlation of Ciliate Communities with Growth Performance, Apparent Nutrient Digestibility, and Fermentation Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cole, N.A.; Defoor, P.J.; Galyean, M.L.; Duff, G.C.; Gleghorn, J.F. Effects of phase-feeding of crude protein on performance, carcass characteristics, serum urea nitrogen concentrations, and manure nitrogen of finishing beef steers. J. Anim. Sci. 2006, 84, 3421–3432. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Chen, Z.; Wang, F.; Lu, H.; Zhang, Y. Combined supplementation with probiotics and enzymes regulates the performance and microbiota of goats. Anim. Biosci. 2025, 10, 0134. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, P.; Zhang, X. Probiotics regulate gut microbiota: An effective method to improve immunity. Molecules 2021, 26, 6076. [Google Scholar] [CrossRef]
- Siciliano, R.A.; Reale, A.; Mazzeo, M.F.; Morandi, S.; Silvetti, T.; Brasca, M. Paraprobiotics: A new perspective for functional foods and nutraceuticals. Nutrients 2021, 13, 1225. [Google Scholar] [CrossRef]
- Wang, W.; Geng, M.; Zhu, C.; Huang, L.; Zhang, Y.; Zhang, T.; Zhao, C.; Zhang, T.; Du, X.; Wang, N. Protective effects and mechanism of a movel probiotic strain Ligilactobacillus salivarius YL20 against Cronobacter sakazakii-induced necrotizing enterocolitis in vitro and in vivo. Nutrients 2022, 14, 3827. [Google Scholar] [CrossRef]
- Ji, L.; Zhang, L.; Liu, H.; Shen, J.; Zhang, Y.; Lu, L.; Zhang, X.; Ma, X. Bacillus subtilis M6 improves intestinal barrier, antioxidant capacity and gut microbial composition in AA broiler. Front. Nutr. 2022, 9, 965310. [Google Scholar] [CrossRef]
- Wang, L.; Lv, Z.; Ning, X.; Yue, Z.; Wang, P.; Liu, C.; Jin, S.; Li, X.; Yin, Q.; Zhu, Q.; et al. The effects of compound probiotics on production performance, rumen fermentation and microbiota of Hu sheep. Front. Vet. Sci. 2024, 11, 1440432. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Liu, Y.; Li, X.; Feng, L.; Li, K. Optimization of an economical medium composition for the coculture of Clostridium butyricum and Bacillus coagulans . AMB Express 2022, 12, 19. [Google Scholar] [CrossRef]
- Shruthi, B.; Deepa, N.; Somashekaraiah, R.; Adithi, G.; Divyashree, S.; Sreenivasa, M.Y. Exploring biotechnological and functional characteristics of probiotic yeasts: A review. Biotechnol. Rep. 2022, 34, e00716. [Google Scholar] [CrossRef]
- Hymes-Fecht, U.C.; Casper, D.P. Adaptation and withdrawal of feeding dried Aspergillus oryzae fermentation product to dairy cattle and goats on in vitro NDF digestibility of selected forage sources. Transl. Anim. Sci. 2021, 5, txab051. [Google Scholar] [CrossRef] [PubMed]
- Ban, Y.; Guan, L.L. Implication and challenges of direct-fed microbial supplementation to improve ruminant production and health. J. Anim. Sci. Biotechnol. 2021, 12, 109. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Zhang, D.; Du, R.; Li, F.; Li, F.; Ran, T. Supplementation of Aspergillus oryzae culture improved the feed dry matter digestibility and the energy supply of total volatile fatty acid concentrations in the rumen of Hu sheep. Front. Nutr. 2022, 9, 847156. [Google Scholar] [CrossRef]
- Bonilla Loaiza, A.M.; Rodríguez-Jasso, R.M.; Belmares, R.; López-Badillo, C.M.; Araújo, R.G.; Aguilar, C.N.; Chávez, M.L.; Aguilar, M.A.; Ruiz, H.A. Fungal proteins from sargassum spp. using solid-state fermentation as a green bioprocess strategy. Molecules 2022, 27, 3887. [Google Scholar] [CrossRef]
- Nsereko, V.L.; Morgavi, D.P.; Rode, L.M.; Beauchemin, K.A.; Mcallister, T.A. Effects of fungal enzyme preparations on hydrolysis and subsequent degradation of alfalfa hay ber by mixed rumen microorganisms in vitro. Anim. Feed. Sci. Tech. 2001, 88, 153–170. [Google Scholar] [CrossRef]
- Moreira, L.R.; Ferreira, G.V.; Santos, S.S.; Ribeiro, A.P.; Siqueira, F.G.; Filho, E.X. The hydrolysis of agro-industrial residues by holocellulose-degrading enzymes. Braz. J. Microbiol. 2012, 43, 498–505. [Google Scholar]
- Yang, W.Z.; Beauchemin, K.A.; Rode, L.M. Effects of an enzyme feed additive on extent of digestion and milk production of lactating dairy cows. J. Dairy Sci. 1999, 82, 391–403. [Google Scholar] [CrossRef]
- Huang, W.; Chang, J.; Wang, P.; Liu, C.; Yin, Q.; Zhu, Q.; Lu, F.; Gao, T. Effect of the combined compound probiotics with mycotoxin-degradation enzyme on detoxifying aflatoxin B(1) and zearalenone. J. Toxicol. Sci. 2018, 43, 377–385. [Google Scholar]
- AOAC. Official Methods of Analysis, 14th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1999. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Van Keulen, J.; Young, B.A. Evaluation of acid-insoluble ash as a natural marker in ruminant digestibility studies. J. Anim. Sci. 1977, 44, 282–287. [Google Scholar] [CrossRef]
- Broderick, G.A.; Kang, J.H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Bokulich, N.A.; Kaehler, B.D.; Rideout, J.R.; Dillon, M.; Bolyen, E.; Knight, R.; Huttley, G.A.; Gregory Caporaso, J. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 2018, 6, 90. [Google Scholar] [CrossRef]
- DeSantis, T.Z.; Hugenholtz, P.; Larsen, N.; Rojas, M.; Brodie, E.L.; Keller, K.; Huber, T.; Dalevi, D.; Hu, P.; Andersen, G.L. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 2006, 72, 5069–5072. [Google Scholar] [CrossRef]
- Zhang, R.; Zhou, M.; Tu, Y.; Zhang, N.F.; Deng, K.D.; Ma, T.; Diao, Q.Y. Effect of oral administration of probiotics on growth performance, apparent nutrient digestibility and stress-related indicators in Holstein calves. J. Anim. Physiol. Anim. Nutr. 2016, 100, 33–38. [Google Scholar] [CrossRef]
- Wang, H.; Yu, Z.; Gao, Z.; Li, Q.; Qiu, X.; Wu, F.; Guan, T.; Cao, B.; Su, H. Effects of compound probiotics on growth performance, rumen fermentation, blood parameters, and health status of neonatal Holstein calves. J. Dairy Sci. 2022, 105, 2190–2200. [Google Scholar] [CrossRef] [PubMed]
- Podversich, F.; Tarnonsky, F.; Bollatti, J.M.; Silva, G.M.; Schulmeister, T.M.; Martinez, J.J.V.; Heredia, D.; Ipharraguerre, I.R.; Bargo, F.; Gonella-Diaza, A.; et al. Effects of Aspergillus oryzae prebiotic on animal performance, nutrients digestibility, and feeding behavior of backgrounding beef heifers fed with either a sorghum silage- or a byproducts-based diet. J. Anim. Sci. 2023, 101, skac312. [Google Scholar] [CrossRef] [PubMed]
- Tricarico, J.M.; Abney, M.D.; Galyean, M.L.; Rivera, J.D.; Hanson, K.C.; McLeod, K.R.; Harmon, D.L. Effects of a dietary Aspergillus oryzae extract containing alpha-amylase activity on performance and carcass characteristics of finishing beef cattle. J. Anim. Sci. 2007, 85, 802–811. [Google Scholar] [CrossRef]
- Tiihonen, K.; Ouwehand, A.C.; Rautonen, N. Human intestinal microbiota and healthy ageing. Ageing Res. Rev. 2010, 9, 107–116. [Google Scholar] [CrossRef]
- Wallace, T.C.; Marzorati, M.; Spence, L.; Weaver, C.M.; Williamson, P.S. New Frontiers in fibers: Innovative and emerging research on the gut microbiome and bone health. J. Am. Coll. Nutr. 2017, 36, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Franck, A. Prebiotics stimulate calcium absorption: A review. Milchwissenschaft 2005, 57, 530–532. [Google Scholar]
- Zhang, H.; Sun, K.; Fu, T.; Zhang, L.; Lian, H.; Li, G.; Gao, T. Effects of feeding Aspergillus oryzae on intestinal and fecal methane emissions, and performance of simmental crossbred steers. Trop. Anim. Health Prod. 2025, 57, 356. [Google Scholar] [CrossRef]
- Romero, J.J.; Zarate, M.A.; Adesogan, A.T. Effect of the dose of exogenous fibrolytic enzyme preparations on preingestive fiber hydrolysis, ruminal fermentation, and in vitro digestibility of bermudagrass haylage. J. Dairy Sci. 2015, 98, 406–417. [Google Scholar] [CrossRef]
- Várhidi, Z.; Máté, M.; Ózsvári, L. The use of probiotics in nutrition and herd health management in large Hungarian dairy cattle farms. Front. Vet. Sci. 2022, 9, 957935. [Google Scholar] [CrossRef]
- Kazemi, M.; Valizadeh, R. Can alhaji maurorum as a halophyte plant be ensiled with molasses and Saccharomyces cerevisiae well? AMB Express 2023, 13, 28. [Google Scholar] [CrossRef]
- Muck, R.E.; Nadeau, E.M.G.; McAllister, T.A.; Contreras-Govea, F.E.; Santos, M.C.; Kung, L., Jr. Silage review: Recent advances and future uses of silage additives. J. Dairy Sci. 2018, 101, 3980–4000. [Google Scholar] [CrossRef]
- Abid, K.; Jabri, J.; Yaich, H.; Malek, A.; Rekhis, J.; Kamoun, M. In vitro study on the effects of exogenic fibrolytic enzymes produced from Trichoderma longibrachiatum on ruminal degradation of olive mill waste. Arch. Anim. Breed. 2022, 65, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Yoon, I.K.; Stern, M.D. Effects of Saccharomyces cerevisiae and Aspergillus oryzae cultures on ruminal fermentation in dairy cows. J. Dairy Sci. 1996, 79, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Yu, Z.; Wang, B. Perilla frutescens leaf alters the rumen microbial community of lactating dairy cows. Microorganisms 2019, 7, 562. [Google Scholar] [CrossRef] [PubMed]
- Meale, S.J.; Li, S.; Azevedo, P.; Derakhshani, H.; Plaizier, J.C.; Khafipour, E.; Steele, M.A. Development of ruminal and fecal microbiomes are affected by weaning but not weaning strategy in dairy calves. Front. Microbiol. 2016, 7, 582. [Google Scholar] [CrossRef]
- Liu, J.; Bai, Y.; Liu, F.; Kohn, R.A.; Tadesse, D.A.; Sarria, S.; Li, R.W.; Song, J. Rumen microbial predictors for short-chain fatty acid levels and the grass-fed regimen in Angus cattle. Animals 2022, 12, 2995. [Google Scholar] [CrossRef]
- Guo, Y.; Fan, Z.; Li, M.; Xie, H.; Peng, L.; Yang, C. Effects of sodium nitrate and coated methionine on lactation performance, rumen fermentation characteristics, amino acid metabolism, and microbial communities in lactating buffaloes. Microorganisms 2023, 11, 675. [Google Scholar] [CrossRef]
- Couch, C.E.; Stagaman, K.; Spaan, R.S.; Combrink, H.J.; Sharpton, T.J.; Beechler, B.R.; Jolles, A.E. Diet and gut microbiome enterotype are associated at the population level in African buffalo. Nat. Commun. 2021, 12, 2267. [Google Scholar] [CrossRef]
- Mao, S.; Huo, W.; Zhu, W. Use of pyrosequencing to characterize the microbiota in the ileum of goats fed with increasing proportion of dietary grain. Curr. Microbiol. 2013, 67, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Lau, S.K.P.; Teng, J.L.L.; Chiu, T.H.; Chan, E.; Tsang, A.K.L.; Panagiotou, G.; Zhai, S.L.; Woo, P.C.Y. Differential microbial communities of omnivorous and herbivorous cattle in southern China. Comput. Struct. Biotechnol. J. 2018, 16, 54–60. [Google Scholar] [CrossRef]
- Ning, Y.; Qi, J.; Dobbins, M.T.; Liang, X.; Wang, J.; Chen, S.; Ma, J.; Jiang, G. Comparative analysis of microbial community structure and function in the gut of wild and captive amur tiger. Front. Microbiol. 2020, 11, 1665. [Google Scholar] [CrossRef] [PubMed]
- Yi, S.; Dai, D.; Wu, H.; Chai, S.; Liu, S.; Meng, Q.; Zhou, Z. Dietary concentrate-to-forage ratio affects rumen bacterial community composition and metabolome of Yaks. Front. Nutr. 2022, 9, 927206. [Google Scholar] [CrossRef]
- Henke, M.T.; Kenny, D.J.; Cassilly, C.D.; Vlamakis, H.; Xavier, R.J.; Clardy, J. Ruminococcus gnavus, a member of the human gut microbiome associated with crohn’s disease, produces an inflammatory polysaccharide. Proc. Natl. Acad. Sci. USA 2019, 116, 12672–12677. [Google Scholar] [CrossRef]
- Ai, S.Q.; Zhao, Y.Q.; Sun, Z.Y.; Gao, Y.M.; Yan, L.; Tang, Z.H.; Wang, W.D. Change of bacterial community structure during cel-lulose degradation by the microbial consortium. Chin. J. Biotechnol. 2018, 34, 1794–1808. [Google Scholar]
- Bandarupalli, V.V.K.; St-Pierre, B. Identification of a candidate starch utilizing strain of Prevotella albensis from bovine rumen. Microorganisms 2020, 8, 2005. [Google Scholar] [CrossRef] [PubMed]
- Firkins, J.L.; Yu, Z.; Park, T.; Plank, J.E. Extending burk dehority’s perspectives on the role of ciliate protozoa in the rumen. Front. Microbiol. 2020, 11, 123. [Google Scholar] [CrossRef]
- Mizrahi, I.; Wallace, R.J.; Moraïs, S. The rumen microbiome: Balancing food security and environmental impacts. Nat. Rev. Microbiol. 2021, 19, 553–566. [Google Scholar] [CrossRef]
- Abrar, A.; Watanabe, H.; Kitamura, T.; Kondo, M.; Ban-Tokuda, T.; Matsui, H. Diversity and fluctuation in ciliate protozoan population in the rumen of cattle. Anim. Sci. J. 2016, 87, 1188–1192. [Google Scholar] [CrossRef]
- Williams, P.P.; Davis, R.E.; Doetsch, R.N.; Gutierrez, J. Physiological studies of the rumen protozoan Ophryoscolex caudatus eberlein. Appl. Microbiol. 1961, 9, 405–409. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Shen, Y.; Ma, H.; Li, Y.; Lambo, M.T.; Dai, B.; Shen, W.; Qu, Y.; Zhang, Y. Silibinin reduces in vitro methane production by regulating the rumen microbiome and metabolites. Front. Microbiol. 2023, 14, 1225643. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.G.; Withers, S.E. Effect of ciliate protozoa on the activity of polysaccharide-degrading enzymes and fibre breakdown in the rumen ecosystem. J. Appl. Bacteriol. 1991, 70, 144–155. [Google Scholar] [CrossRef] [PubMed]
TMR Composition | Content (%) | Nutrient Levels | Content (%) |
---|---|---|---|
Corn meal | 15.00 | Dry matter | 89.12 |
Wheat bran | 3.00 | Crude protein | 9.90 |
DDGS 1 | 2.00 | Ether extract | 2.05 |
Soybean meal | 2.00 | Neutral detergent fiber | 55.56 |
Cottonseed meal | 2.00 | Acid detergent fiber | 22.74 |
Rice straw | 18.50 | Calcium | 0.55 |
Alfalfa | 18.50 | Total phosphorus | 0.26 |
Corn silage | 37.00 | Net energy/(MJ/kg) | 9.56 |
Limestone | 0.30 | ||
CaHPO4 | 0.20 | ||
NaCl | 0.25 | ||
NaHCO3 | 0.25 | ||
Premix 2 | 1.00 | ||
Total | 100.00 |
Items | Control Group | Test Group 1 | Test Group 2 | Test Group 3 | p-Value |
---|---|---|---|---|---|
ADFI (kg/d) | 8.56 ± 0.28 | 8.60 ± 0.07 | 8.57 ± 0.33 | 8.85 ± 0.21 | 0.267 |
ADG (kg/d) | 0.94 ± 0.07 | 0.97 ± 0.12 | 0.93 ± 0.13 | 1.03 ± 0.02 | 0.469 |
FCR | 9.19 ± 0.92 | 8.96 ± 1.14 | 9.35 ± 1.62 | 8.61 ± 0.10 | 0.698 |
Items | Control Group | Test Group 1 | Test Group 2 | Test Group 3 | p-Value |
---|---|---|---|---|---|
DM (%) | 77.22 ± 1.15 | 76.25 ± 1.30 | 76.27 ± 2.15 | 77.87 ± 1.38 | 0.40 |
EE (%) | 74.92 ± 1.18 b | 66.36 ± 3.17 c | 73.09 ± 2.08 b | 81.12 ± 1.57 a | <0.01 |
CP (%) | 76.66 ± 1.07 | 77.06 ± 1.02 | 76.09 ± 2.20 | 78.34 ± 0.93 | 0.19 |
Ca (%) | 51.16 ± 3.43 ab | 50.16 ± 1.78 b | 47.46 ± 5.47 b | 55.90 ± 2.01 a | 0.03 |
P (%) | 68.48 ± 2.52 | 68.10 ± 2.19 | 67.51 ± 2.36 | 69.95 ± 1.20 | 0.44 |
NDF (%) | 86.02 ± 1.30 b | 87.82 ± 0.86 a | 85.79 ± 0.76 b | 87.39 ± 1.31 ab | 0.05 |
ADF (%) | 73.06 ± 3.57 b | 76.98 ± 0.80 ab | 74.07 ± 2.99 b | 79.86 ± 1.78 a | 0.01 |
Hemicellulose (%) | 95.18 ± 0.36 b | 95.46 ± 0.90 ab | 96.48 ± 0.99 a | 95.88 ± 0.12 ab | 0.05 |
Cellulose (%) | 80.99 ± 2.46 | 83.26 ± 0.43 | 82.00 ± 1.53 | 84.16 ± 2.68 | 0.17 |
Items | Control Group | Test Group 1 | Test Group 2 | Test Group 3 | p-Value |
---|---|---|---|---|---|
pH | 8.19 ± 0.32 | 7.91 ± 0.13 | 8.24 ± 0.09 | 8.30 ± 0.29 | 0.13 |
NH3-N (mg/dL) | 7.60 ± 1.60 | 5.85 ± 1.62 | 5.24 ± 1.81 | 6.10 ± 2.19 | 0.34 |
Acetic (mg/mL) | 2.01 ± 0.65 | 1.80 ± 0.40 | 1.92 ± 0.28 | 2.56 ± 0.30 | 0.12 |
Propionic (mg/mL) | 0.18 ± 0.14 ab | 0.13 ± 0.07 b | 0.15 ± 0.05 b | 0.34 ± 0.14 a | 0.04 |
Isobutyric (mg/mL) | 0.08 ± 0.05 | 0.08 ± 0.04 | 0.04 ± 0.01 | 0.07 ± 0.03 | 0.25 |
Butyric (mg/mL) | 0.12 ± 0.12 ab | 0.06 ± 0.04 b | 0.06 ± 0.01 b | 0.20 ± 0.08 a | 0.05 |
Total VFA/(mg/mL) | 2.40 ± 0.92 ab | 2.07 ± 0.53 b | 2.16 ± 0.33 b | 3.17 ± 0.49 a | 0.06 |
Cellulase activity (U/mL) | 1.77 ± 0.86 | 2.34 ± 1.77 | 2.34 ± 2.17 | 3.65 ± 0.21 | 0.46 |
Amylase activity (U/mL) | 0.11 ± 0.03 | 0.13 ± 0.09 | 0.12 ± 0.07 | 0.06 ± 0.02 | 0.42 |
Protease activity (U/mL) | 3.24 ± 1.92 | 4.36 ± 0.28 | 3.80 ± 1.07 | 5.21 ± 1.25 | 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Li, M.; Liu, C.; Li, X.; Wang, P.; Chang, J.; Jin, S.; Yin, Q.; Zhu, Q.; Dang, X.; et al. Effects of Fungal Probiotics on Rumen Fermentation and Microbiota in Angus Cattle. Animals 2025, 15, 2746. https://doi.org/10.3390/ani15182746
Wang L, Li M, Liu C, Li X, Wang P, Chang J, Jin S, Yin Q, Zhu Q, Dang X, et al. Effects of Fungal Probiotics on Rumen Fermentation and Microbiota in Angus Cattle. Animals. 2025; 15(18):2746. https://doi.org/10.3390/ani15182746
Chicago/Turabian StyleWang, Lijun, Maolong Li, Chaoqi Liu, Xinxin Li, Ping Wang, Juan Chang, Sanjun Jin, Qingqiang Yin, Qun Zhu, Xiaowei Dang, and et al. 2025. "Effects of Fungal Probiotics on Rumen Fermentation and Microbiota in Angus Cattle" Animals 15, no. 18: 2746. https://doi.org/10.3390/ani15182746
APA StyleWang, L., Li, M., Liu, C., Li, X., Wang, P., Chang, J., Jin, S., Yin, Q., Zhu, Q., Dang, X., & Lu, F. (2025). Effects of Fungal Probiotics on Rumen Fermentation and Microbiota in Angus Cattle. Animals, 15(18), 2746. https://doi.org/10.3390/ani15182746