Molecular Screening of Plasmodium spp. in Free-Living Ring-Tailed Coatis (Nasua nasua) and Nine-Banded Armadillos (Dasypus novemcinctus) in the Peruvian Amazon
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Samples
2.3. Ethical Review
2.4. Amplification of Plasmodium Sequences by Polymerase Chain Reaction (PCR)
2.5. Validation of Plasmodium spp. Detection
2.6. Phylogenetic Analysis
2.7. Statistical Analysis
2.8. Data Availability
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chin, A.Z.; Maluda, M.C.M.; Jelip, J.; Bin Jeffree, M.S.; Culleton, R.; Ahmed, K. Malaria Elimination in Malaysia and the Rising Threat of Plasmodium knowlesi. J. Physiol. Anthropol. 2020, 39, 36. [Google Scholar] [CrossRef]
- Kar, N.P.; Kumar, A.; Singh, O.P.; Carlton, J.M.; Nanda, N. A Review of Malaria Transmission Dynamics in Forest Ecosystems. Parasit. Vectors 2014, 7, 265. [Google Scholar] [CrossRef] [PubMed]
- Ranjha, R.; Sharma, A. Forest Malaria: The Prevailing Obstacle for Malaria Control and Elimination in India. BMJ Glob. Health 2021, 6, e005391. [Google Scholar] [CrossRef] [PubMed]
- Perkins, S.L.; Schaer, J. A Modern Menagerie of Mammalian Malaria. Trends Parasitol. 2016, 32, 772–782. [Google Scholar] [CrossRef] [PubMed]
- Gozalo, A.S.; Robinson, C.K.; Holdridge, J.; Franco Mahecha, O.L.; Elkins, W.R. Overview of Plasmodium spp. and Animal Models in Malaria Research. Comp. Med. 2024, 74, 205–230. [Google Scholar] [CrossRef]
- Voinson, M.; Nunn, C.L.; Goldberg, A. Primate Malarias as a Model for Cross-Species Parasite Transmission. eLife 2022, 11, e69628. [Google Scholar] [CrossRef]
- Sharp, P.M.; Plenderleith, L.J.; Hahn, B.H. Ape Origins of Human Malaria. Annu. Rev. Microbiol. 2020, 74, 39–63. [Google Scholar] [CrossRef]
- Plenderleith, L.J.; Liu, W.; Li, Y.; Loy, D.E.; Mollison, E.; Connell, J.; Ayouba, A.; Esteban, A.; Peeters, M.; Sanz, C.M.; et al. Zoonotic Origin of the Human Malaria Parasite Plasmodium Malariae from African Apes. Nat. Commun. 2022, 13, 1868. [Google Scholar] [CrossRef]
- Cáceres, L.; Calzada, J.E.; Gabster, A.; Young, J.; Márquez, R.; Torres, R.; Griffith, M. Social Representations of Malaria in the Guna Indigenous Population of Comarca Guna de Madungandi, Panama. Malar. J. 2017, 16, 256. [Google Scholar] [CrossRef]
- Bouafou, L.; Makanga, B.K.; Rahola, N.; Boddé, M.; Ngangué, M.F.; Daron, J.; Berger, A.; Mouillaud, T.; Makunin, A.; Korlević, P.; et al. Host Preference Patterns in Domestic and Wild Settings: Insights into Anopheles Feeding Behavior. Evol. Appl. 2024, 17, e13693. [Google Scholar] [CrossRef]
- Escalante, A.A.; Cepeda, A.S.; Pacheco, M.A. Why Plasmodium vivax and Plasmodium falciparum are so different? A tale of two clades and their species diversities. Malar. J. 2022, 21, 139. [Google Scholar] [CrossRef]
- Ome-Kaius, M.; Kattenberg, J.H.; Zaloumis, S.; Siba, M.; Kiniboro, B.; Jally, S.; Razook, Z.; Mantila, D.; Sui, D.; Ginny, J.; et al. Differential Impact of Malaria Control Interventions on P. falciparum and P. vivax Infections in Young Papua New Guinean Children. BMC Med. 2019, 17, 220. [Google Scholar] [CrossRef]
- Chaves, L.S.M.; Bergo, E.S.; Conn, J.E.; Laporta, G.Z.; Prist, P.R.; Sallum, M.A.M. Anthropogenic Landscape Decreases Mosquito Biodiversity and Drives Malaria Vector Proliferation in the Amazon Rainforest. PLoS ONE 2021, 16, e0245087. [Google Scholar] [CrossRef]
- de Abreu, F.V.S.; de Andreazzi, C.S.; Neves, M.S.A.S.; Meneguete, P.S.; Ribeiro, M.S.; Dias, C.M.G.; de Albuquerque Motta, M.; Barcellos, C.; Romão, A.R.; Magalhães, M.d.A.F.M.; et al. Ecological and Environmental Factors Affecting Transmission of Sylvatic Yellow Fever in the 2017–2019 Outbreak in the Atlantic Forest, Brazil. Parasit. Vectors 2022, 15, 23. [Google Scholar] [CrossRef]
- Vieira, C.J.S.P.; Gyawali, N.; Onn, M.B.; Shivas, M.A.; Shearman, D.; Darbro, J.M.; Wallau, G.L.; van den Hurk, A.F.; Frentiu, F.D.; Skinner, E.B.; et al. Mosquito Bloodmeals Can Be Used to Determine Vertebrate Diversity, Host Preference, and Pathogen Exposure in Humans and Wildlife. Sci. Rep. 2024, 14, 23203. [Google Scholar] [CrossRef] [PubMed]
- Park, A.W.; Farrell, M.J.; Schmidt, J.P.; Huang, S.; Dallas, T.A.; Pappalardo, P.; Drake, J.M.; Stephens, P.R.; Poulin, R.; Nunn, C.L.; et al. Characterizing the Phylogenetic Specialism–Generalism Spectrum of Mammal Parasites. Proc. Roy. Soc. London Ser. B Biol. Sci. 2018, 285, 20172613. [Google Scholar] [CrossRef] [PubMed]
- Mourier, T.; de Alvarenga, D.A.M.; Kaushik, A.; de Pina-Costa, A.; Douvropoulou, O.; Guan, Q.; Guzmán-Vega, F.J.; Forrester, S.; de Abreu, F.V.S.; Júnior, C.B.; et al. The Genome of the Zoonotic Malaria Parasite Plasmodium simium Reveals Adaptations to Host Switching. BMC Biol. 2021, 19, 219. [Google Scholar] [CrossRef] [PubMed]
- Bajic, M.; Ravishankar, S.; Sheth, M.; Rowe, L.A.; Pacheco, M.A.; Patel, D.S.; Batra, D.; Loparev, V.; Olsen, C.; Escalante, A.A.; et al. The First Complete Genome of the Simian Malaria Parasite Plasmodium brasilianum. Sci. Rep. 2022, 12, 19802. [Google Scholar] [CrossRef]
- Moreno, M.; Saavedra, M.P.; Bickersmith, S.A.; Prussing, C.; Michalski, A.; Tong Rios, C.; Vinetz, J.M.; Conn, J.E. Intensive Trapping of Blood-Fed Anopheles darlingi in Amazonian Peru Reveals Unexpectedly High Proportions of Avian Blood-Meals. PLoS Negl. Trop. Dis. 2017, 11, e0005337. [Google Scholar] [CrossRef]
- Valkiūnas, G.; Ilgūnas, M.; Bukauskaitė, D.; Fragner, K.; Weissenböck, H.; Atkinson, C.T.; Iezhova, T.A. Characterization of Plasmodium relictum, a Cosmopolitan Agent of Avian Malaria. Malar. J. 2018, 17, 184. [Google Scholar] [CrossRef]
- Bensch, S.; Hellgren, O.; Pérez-Tris, J. MalAvi: A Public Database of Malaria Parasites and Related Haemosporidians in Avian Hosts Based on Mitochondrial Cytochrome b Lineages. Mol. Ecol. Resour. 2009, 9, 1353–1358. [Google Scholar] [CrossRef]
- González-Olvera, M.; Hernandez-Colina, A.; Pérez, J.G.; Ulloa, G.M.; Montero, S.; Maguiña, J.L.; Lescano, A.G.; Santolalla, M.L.; Baylis, M.; Mayor, P. Haemosporidians from a Neglected Group of Terrestrial Wild Birds in the Peruvian Amazonia. Ecohealth 2022, 19, 402–416. [Google Scholar] [CrossRef]
- Mayor, P.; Pérez-Peña, P.; Bowler, M.; Puertas, P.E.; Kirkland, M.; Bodmer, R. Effects of Selective Logging on Large Mammal Populations in a Remote Indigenous Territory in the Northern Peruvian Amazon. Ecol. Soc. 2015, 20, art36. [Google Scholar] [CrossRef]
- Bodmer, R.; Mayor, P.; Antunez, M.; Fang, T.; Chota, K.; Yuyarima, T.A.; Flores, S.; Cosgrove, B.; López, N.; Pizuri, O.; et al. Wild Meat Species, Climate Change, and Indigenous Amazonians. J. Ethnobiol. 2020, 40, 218–233. [Google Scholar] [CrossRef]
- Duszynski, D.W.; Kvičerová, J.; Seville, R.S. Eimeriidae in the Caniformia Family Procyonidae. In The Biology and Identification of the Coccidia (Apicomplexa) of Carnivores of the World; Academic Press: New York, NY, USA, 2018; pp. 79–90. [Google Scholar]
- Fulton, T.L.; Strobeck, C. Novel Phylogeny of the Raccoon Family (Procyonidae: Carnivora) Based on Nuclear and Mitochondrial DNA Evidence. Mol. Phylogenet. Evol. 2007, 43, 1171–1177. [Google Scholar] [CrossRef] [PubMed]
- Perles, L.; de Macedo, G.C.; Barreto, W.T.G.; Francisco, G.V.; Herrera, H.M.; Barros-Battesti, D.M.; Machado, R.Z.; André, M.R. Longitudinal Dynamics and Health Impact of Hepatozoon procyonis (Apicomplexa: Hepatozoidae) on Naturally Infected Ring-Tailed Coatis Nasua nasua (Carnivora: Procyonidae) from Midwestern Brazil. Ticks Tick Borne Dis. 2022, 13, 101982. [Google Scholar] [CrossRef] [PubMed]
- da Silva, M.R.L.; Fornazari, F.; Martins, T.F.; Hippólito, A.G.; Rolim, L.S.; Bisca, J.M.; Teixeira, C.R.; O’Dwyer, L.H. A Survey of Hemoparasites and Ectoparasites in Nasua nasua Linnaeus, 1766 with a Redescription of Hepatozoon procyonis Richards, 1961 Based on Morphological and Molecular Data. Parasitol. Res. 2018, 117, 2159–2169. [Google Scholar] [CrossRef]
- Emmons, L.; Helgen, K. Nasua nasua. The IUCN Red List of Threatened Species 2016, e.T41684A45216227. Available online: https://www.iucnredlist.org/species/41684/45216227 (accessed on 25 July 2025).
- Feijó, A.; Vilela, J.F.; Cheng, J.; Schetino, M.A.A.; Coimbra, R.T.F.; Bonvicino, C.R.; Santos, F.R.; Patterson, B.D.; Cordeiro-Estrela, P. Phylogeny and Molecular Species Delimitation of Long-Nosed Armadillos (Dasypus: Cingulata) Supports Morphology-Based Taxonomy. Zool. J. Linn. Soc. 2019, 186, 813–825. [Google Scholar] [CrossRef]
- Loughry, J.; Mcdonough, C.; Abba, A.M. Dasypus Novemcinctus: IUCN Red List of Threatened Species 2013, e.T6290A47440785. Available online: https://www.iucnredlist.org/species/6290/47440785 (accessed on 25 July 2025).
- Souto, W.M.S.; Barboza, R.R.D.; Fernandes-Ferreira, H.; Júnior, A.J.C.M.; Monteiro, J.M.; Abi-chacra, É.d.A.; Alves, R.R.N. Zootherapeutic Uses of Wildmeat and Associated Products in the Semiarid Region of Brazil: General Aspects and Challenges for Conservation. J. Ethnobiol. Ethnomed. 2018, 14, 60. [Google Scholar] [CrossRef]
- Kluyber, D.; Desbiez, A.L.J.; Attias, N.; Massocato, G.F.; Gennari, S.M.; Soares, H.S.; Bagagli, E.; Bosco, S.M.G.; Garcés, H.G.; Ferreira, J.d.S.; et al. Zoonotic Parasites Infecting Free-living Armadillos from Brazil. Transbound. Emerg. Dis. 2021, 68, 1639–1651. [Google Scholar] [CrossRef]
- Moraes, M.F.D.; da Silva, M.X.; Tebaldi, J.H.; Hoppe, E.G.L. Parasitological Assessment of Wild Ring-Tailed Coatis (Nasua nasua) from the Brazilian Atlantic Rainforest. Int. J. Parasitol. Parasites Wildl. 2019, 9, 154–158. [Google Scholar] [CrossRef]
- Perles, L.; Moraes, M.F.; Xavier da Silva, M.; Vieira, R.F.C.; Machado, R.Z.; Lux Hoppe, E.G.; André, M.R. Co-Infection by Multiple Vector-Borne Agents in Wild Ring-Tailed Coatis (Nasua nasua) from Iguaçu National Park, Southern Brazil. Sci. Rep. 2023, 13, 1828. [Google Scholar] [CrossRef]
- Ulloa, G.M.; Greenwood, A.D.; Cornejo, O.E.; Monteiro, F.O.B.; Scofield, A.; Santolalla Robles, M.L.; Lescano, A.G.; Mayor, P. Phylogenetic Congruence of Plasmodium spp. and Wild Ungulate Hosts in the Peruvian Amazon. Infect. Genet. Evol. 2024, 118, 105554. [Google Scholar] [CrossRef] [PubMed]
- Bernárdez-Rodriguez, G.F.; Bowler, M.; Braga-Pereira, F.; McNaughton, M.; Mayor, P. Conservation Education Promotes Positive Short- and Medium-Term Changes in Perceptions and Attitudes towards a Threatened Primate Species. Ethnobiol. Conserv. 2021, 10, 31. [Google Scholar] [CrossRef]
- Guggisberg, A.M.; Sayler, K.A.; Wisely, S.M.; Odom John, A.R. Natural History of Plasmodium odocoilei Malaria Infection in Farmed White-Tailed Deer. mSphere 2018, 3, e00067-18. [Google Scholar] [CrossRef] [PubMed]
- Martinsen, E.S.; McInerney, N.; Brightman, H.; Ferebee, K.; Walsh, T.; McShea, W.J.; Forrester, T.D.; Ware, L.; Joyner, P.H.; Perkins, S.L.; et al. Hidden in Plain Sight: Cryptic and Endemic Malaria Parasites in North American White-Tailed Deer (Odocoileus virginianus). Sci. Adv. 2016, 2, e1501486. [Google Scholar] [CrossRef]
- Isozumi, R.; Fukui, M.; Kaneko, A.; Chan, C.W.; Kawamoto, F.; Kimura, M. Improved Detection of Malaria Cases in Island Settings of Vanuatu and Kenya by PCR That Targets the Plasmodium Mitochondrial Cytochrome c Oxidase III (Cox3) Gene. Parasitol. Int. 2015, 64, 304–308. [Google Scholar] [CrossRef]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the Sensitivity of Progressive Multiple Sequence Alignment through Sequence Weighting, Position-Specific Gap Penalties and Weight Matrix Choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An Integrated and Extendable Desktop Software Platform for the Organization and Analysis of Sequence Data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef]
- Huelsenbeck, J.P.; Ronquist, F. MRBAYES: Bayesian Inference of Phylogenetic Trees. Bioinformatics 2001, 17, 754–755. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Muehlenbein, M.P.; Pacheco, M.A.; Taylor, J.E.; Prall, S.P.; Ambu, L.; Nathan, S.; Alsisto, S.; Ramirez, D.; Escalante, A.A. Accelerated Diversification of Nonhuman Primate Malarias in Southeast Asia: Adaptive Radiation or Geographic Speciation? Mol. Biol. Evol. 2015, 32, 422–439. [Google Scholar] [CrossRef] [PubMed]
- Prugnolle, F.; Rougeron, V.; Becquart, P.; Berry, A.; Makanga, B.; Rahola, N.; Arnathau, C.; Ngoubangoye, B.; Menard, S.; Willaume, E.; et al. Diversity, Host Switching and Evolution of Plasmodium vivax Infecting African Great Apes. Proc. Natl. Acad. Sci. USA 2013, 110, 8123–8128. [Google Scholar] [CrossRef]
- Janko, M.M.; Recalde-Coronel, G.C.; Damasceno, C.P.; Salmón-Mulanovich, G.; Barbieri, A.F.; Lescano, A.G.; Zaitchik, B.F.; Pan, W.K. The Impact of Sustained Malaria Control in the Loreto Region of Peru: A Retrospective, Observational, Spatially-Varying Interrupted Time Series Analysis of the PAMAFRO Program. Lancet Reg. Health Am. 2023, 20, 100477. [Google Scholar] [CrossRef]
- Rosas-Aguirre, A.; Gamboa, D.; Manrique, P.; Conn, J.E.; Moreno, M.; Lescano, A.G.; Sanchez, J.F.; Rodriguez, H.; Silva, H.; Llanos-Cuentas, A.; et al. Epidemiology of Plasmodium vivax Malaria in Peru. Am. J. Trop. Med. Hyg. 2016, 95, 133–144. [Google Scholar] [CrossRef]
- Ferreira, M.U.; Gamboa, D.; Torres, K.; Rodriguez-Ferrucci, H.; Soto-Calle, V.E.; Pardo, K.; Fontoura, P.S.; Tomko, S.S.; Gazzinelli, R.T.; Conn, J.E.; et al. Evidence-Based Malaria Control and Elimination in the Amazon: Input from the International Center of Excellence in Malaria Research Network in Peru and Brazil. Am. J. Trop. Med. Hyg. 2022, 107, 160–167. [Google Scholar] [CrossRef]
- Silva, T.R.M.; Barros, F.N.L.; Bahia, M.; Sampaio Junior, F.D.; Santos, S.S.F.; Inoue, L.S.; Gonçalves, T.S.; Chiesorin Neto, L.; Faria, D.C.L.O.; Tochetto, C.; et al. Plasmodium vivax and Plasmodium falciparum Infection in Neotropical Primates in the Western Amazon, Brazil. Zoonoses Public Health 2019, 66, 798–804. [Google Scholar] [CrossRef]
- Grigg, M.J.; Snounou, G. Plasmodium simium: A Brazilian Focus of Anthropozoonotic Vivax Malaria? Lancet Glob. Health 2017, 5, e961–e962. [Google Scholar] [CrossRef]
- Chaves, B.A.; de Alvarenga, D.A.M.; Pereira, M.d.O.C.; Gordo, M.; Da Silva, E.L.; Costa, E.R.; Medeiros, A.S.d.M.; Pedrosa, I.J.M.; Brito, D.; Lima, M.T.; et al. Is Zoonotic Plasmodium vivax Malaria an Obstacle for Disease Elimination? Malar. J. 2022, 21, 343. [Google Scholar] [CrossRef] [PubMed]
- Lalremruata, A.; Magris, M.; Vivas-Martínez, S.; Koehler, M.; Esen, M.; Kempaiah, P.; Jeyaraj, S.; Perkins, D.J.; Mordmüller, B.; Metzger, W.G. Natural Infection of Plasmodium brasilianum in Humans: Man and Monkey Share Quartan Malaria Parasites in the Venezuelan Amazon. EBioMedicine 2015, 2, 1186–1192. [Google Scholar] [CrossRef] [PubMed]
- Templeton, T.J.; Martinsen, E.; Kaewthamasorn, M.; Kaneko, O. The Rediscovery of Malaria Parasites of Ungulates. Parasitol. 2016, 143, 1501–1508. [Google Scholar] [CrossRef]
- Templeton, T.J.; Asada, M.; Jiratanh, M.; Ishikawa, S.A.; Tiawsirisup, S.; Sivakumar, T.; Namangala, B.; Takeda, M.; Mohkaew, K.; Ngamjituea, S.; et al. Ungulate Malaria Parasites. Sci. Rep. 2016, 6, 23230. [Google Scholar] [CrossRef]
- Fuehrer, H.-P.; Noedl, H. Recent Advances in Detection of Plasmodium ovale: Implications of Separation into the Two Species Plasmodium ovale wallikeri and Plasmodium ovale curtisi. J. Clin. Microbiol. 2014, 52, 387–391. [Google Scholar] [CrossRef]
- Echeverry, D.F.; Deason, N.A.; Davidson, J.; Makuru, V.; Xiao, H.; Niedbalski, J.; Kern, M.; Russell, T.L.; Burkot, T.R.; Collins, F.H.; et al. Human Malaria Diagnosis Using a Single-Step Direct-PCR Based on the Plasmodium Cytochrome Oxidase III Gene. Malar. J. 2016, 15, 128. [Google Scholar] [CrossRef]
- Ciloglu, A.; Ellis, V.A.; Duc, M.; Downing, P.A.; Inci, A.; Bensch, S. Evolution of Vector Transmitted Parasites by Host Switching Revealed through Sequencing of Haemoproteus Parasite Mitochondrial Genomes. Mol. Phylogenet. Evol. 2020, 153, 106947. [Google Scholar] [CrossRef] [PubMed]
- Fuehrer, H.-P.; Campino, S.; Sutherland, C.J. The Primate Malaria Parasites Plasmodium malariae, Plasmodium brasilianum and Plasmodium ovale spp.: Genomic Insights into Distribution, Dispersal and Host Transitions. Malar. J. 2022, 21, 138. [Google Scholar] [CrossRef]
- Brasil, P.; Zalis, M.G.; de Pina-Costa, A.; Siqueira, A.M.; Júnior, C.B.; Silva, S.; Areas, A.L.L.; Pelajo-Machado, M.; de Alvarenga, D.A.M.; da Silva Santelli, A.C.F.; et al. Outbreak of Human Malaria Caused by Plasmodium simium in the Atlantic Forest in Rio de Janeiro: A Molecular Epidemiological Investigation. Lancet Glob. Health 2017, 5, e1038–e1046. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro de Castro Duarte, A.M.; Fernandes, L.N.; Silva, F.S.; Sicchi, I.L.; Mucci, L.F.; Curado, I.; Fernandes, A.; Medeiros-Sousa, A.R.; Ceretti-Junior, W.; Marrelli, M.T.; et al. Complexity of Malaria Transmission Dynamics in the Brazilian Atlantic Forest. Curr. Res. Parasitol. Vector Borne Dis. 2021, 1, 100032. [Google Scholar] [CrossRef]
- Galen, S.C.; Borner, J.; Martinsen, E.S.; Schaer, J.; Austin, C.C.; West, C.J.; Perkins, S.L. The Polyphyly of Plasmodium: Comprehensive Phylogenetic Analyses of the Malaria Parasites (Order Haemosporida) Reveal Widespread Taxonomic Conflict. R Soc. Open Sci. 2018, 5, 171780. [Google Scholar] [CrossRef] [PubMed]
- Martinsen, E.S.; Paperna, I.; Schall, J.J. Morphological versus Molecular Identification of Avian Haemosporidia: An Exploration of Three Species Concepts. Parasitology 2006, 133, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Nada Raja, T.; Hu, T.H.; Zainudin, R.; Lee, K.S.; Perkins, S.L.; Singh, B. Malaria Parasites of Long-Tailed Macaques in Sarawak, Malaysian Borneo: A Novel Species and Demographic and Evolutionary Histories. BMC Evol. Biol. 2018, 18, 49. [Google Scholar] [CrossRef] [PubMed]
- Raja, T.N.; Hu, T.H.; Kadir, K.A.; Mohamad, D.S.A.; Rosli, N.; Wong, L.L.; Hii, K.C.; Simon Divis, P.C.; Singh, B. Naturally Acquired Human Plasmodium cynomolgi and P. knowlesi Infections, Malaysian Borneo. Emerg. Infect. Dis. 2020, 26, 1801–1809. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Vishnudas, C.K.; Ramakrishnan, U.; Robin, V.V.; Dharmarajan, G. Geographical and Host Species Barriers Differentially Affect Generalist and Specialist Parasite Community Structure in a Tropical Sky-Island Archipelago. Proc. Roy. Soc. London Ser. B Biol. Sci. 2019, 286, 20190439. [Google Scholar] [CrossRef]
- Kilpatrick, A.M.; Randolph, S.E. Drivers, Dynamics, and Control of Emerging Vector-Borne Zoonotic Diseases. Lancet 2012, 380, 1946–1955. [Google Scholar] [CrossRef]
- Jacob, M.; Medeiros Souza, A.; Martins de Carvalho, A.; Alves de Vasconcelos Neto, C.F.; Tregidgo, D.; Hunter, D.; De Oliveira Pereira, F.; Ros Brull, G.; Kunhlein, H.V.; Guedes da Silva, L.J.; et al. Food Biodiversity as an Opportunity to Address the Challenge of Improving Human Diets and Food Security. Ethnobiol. Conserv. 2023, 12, 5. [Google Scholar] [CrossRef]
- Menajovsky, M.F.; Espunyes, J.; Ulloa, G.; Calderon, M.; Diestra, A.; Malaga, E.; Muñoz, C.; Montero, S.; Lescano, A.G.; Santolalla, M.L.; et al. Toxoplasma gondii in a Remote Subsistence Hunting-Based Indigenous Community of the Peruvian Amazon. Trop. Med. Infect. Dis. 2024, 9, 98. [Google Scholar] [CrossRef] [PubMed]
Host | N | cytb nPCR Positive (Round 1) | cytb nPCR Plasmodium (Round 2) | cox3 nPCR Validated | Confirmed Species |
---|---|---|---|---|---|
Nasua nasua | 43 | 2 (4.7%) | 2 (4.7%) | 1/4 | P. malariae-like |
Dasypus novemcinctus | 66 | 2 (3.0%) | 0 | 0/4 | None |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ulloa, G.M.; Greenwood, A.D.; Cornejo, O.E.; Monteiro, F.O.B.; Santolalla, M.L.; Mayor, P. Molecular Screening of Plasmodium spp. in Free-Living Ring-Tailed Coatis (Nasua nasua) and Nine-Banded Armadillos (Dasypus novemcinctus) in the Peruvian Amazon. Animals 2025, 15, 2413. https://doi.org/10.3390/ani15162413
Ulloa GM, Greenwood AD, Cornejo OE, Monteiro FOB, Santolalla ML, Mayor P. Molecular Screening of Plasmodium spp. in Free-Living Ring-Tailed Coatis (Nasua nasua) and Nine-Banded Armadillos (Dasypus novemcinctus) in the Peruvian Amazon. Animals. 2025; 15(16):2413. https://doi.org/10.3390/ani15162413
Chicago/Turabian StyleUlloa, Gabriela M., Alex D. Greenwood, Omar E. Cornejo, Frederico Ozanan Barros Monteiro, Meddly L. Santolalla, and Pedro Mayor. 2025. "Molecular Screening of Plasmodium spp. in Free-Living Ring-Tailed Coatis (Nasua nasua) and Nine-Banded Armadillos (Dasypus novemcinctus) in the Peruvian Amazon" Animals 15, no. 16: 2413. https://doi.org/10.3390/ani15162413
APA StyleUlloa, G. M., Greenwood, A. D., Cornejo, O. E., Monteiro, F. O. B., Santolalla, M. L., & Mayor, P. (2025). Molecular Screening of Plasmodium spp. in Free-Living Ring-Tailed Coatis (Nasua nasua) and Nine-Banded Armadillos (Dasypus novemcinctus) in the Peruvian Amazon. Animals, 15(16), 2413. https://doi.org/10.3390/ani15162413