Effect of Guanidinoacetic Acid and Zilpaterol Hydrochloride Feed Additions on Lambs’ Productive Performance, Carcass Characteristics, and Blood Chemistry
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design, Animals, Diet, and Feeding Management
2.2. Body Weight and Animal Performance
2.3. Chemical Analyses
2.4. Carcass Characteristics and Non-Meat Components
2.5. Meat Color Evaluation
2.6. Sample Collection and Analysis of Serum Biochemical Parameters
2.7. Statistical Analysis
3. Results
3.1. Animal Performance and Serum Biochemical Parameters
3.2. Carcass Characteristics, Meat Color, and Non-Meat Components
4. Discussion
4.1. Body Weight and Animal Performance
4.2. Serum Biochemical Parameters
4.3. Carcass Characteristics and Non-Meat Components
4.4. Meat Color
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ronquillo, M.G.; Hernandez, J.C.A. Antibiotic and synthetic growth promoters in animal diets: Review of impact and analytical methods. Food Control 2017, 72, 255–267. [Google Scholar] [CrossRef]
- García Hernández, Y.; García Curbelo, Y. Additives for animal feeding: The institute of animal science on its 50 years. Cuba. J. Agric. Sci. 2015, 49, 173–177. [Google Scholar]
- Dilger, R.N.; Bryant-Angeloni, K.; Payne, R.L.; Lemme, A.; Parsons, C.M. Dietary guanidino acetic acid is an efficacious replacement for arginine for young chicks. Poult. Sci. 2013, 92, 171–177. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, J.; Qiu, W.; Zhang, J.; Feng, S.; Zhou, X.; Wang, X.; Jin, L.; Long, K.; Liu, L.; et al. Guanidinoacetic acid regulates myogenic differentiation and muscle growth through MiR-133a-3p and MiR-1a-3p co-mediated Akt/MTOR/S6K signaling pathway. Int. J. Mol. Sci. 2018, 19, 2837. [Google Scholar] [CrossRef]
- Wu, H.; Xie, J.; Peng, W.; Ji, F.; Qian, J.; Shen, Q.; Hou, G. Effects of guanidinoacetic acid supplementation on liver and breast muscle fat deposition, lipid levels, and lipid metabolism-related gene expression in ducks. Front. Vet. Sci. 2024, 11, 1364815. [Google Scholar] [CrossRef]
- Ostojic, S.M.; Ratgeber, L.; Olah, A.; Betlehem, J.; Acs, P. Guanidinoacetic acid deficiency: A new entity in clinical medicine? Int. J. Med. Sci. 2020, 17, 2544–2550. [Google Scholar] [CrossRef]
- Wang, L.S.; Shi, B.M.; Shan, A.S.; Zhang, Y.Y. Effects of guanidinoacetic acid on growth performance, meat quality and antioxidation in growing-finishing pigs. J. Anim. Vet. Adv. 2012, 11, 631–636. [Google Scholar] [CrossRef]
- Li, S.Y.; Wang, C.; Wu, Z.Z.; Liu, Q.; Guo, G.; Huo, W.J.; Zhang, J.; Chen, L.; Zhang, Y.L.; Pei, C.X.; et al. Effects of guanidinoacetic acid supplementation on growth performance, nutrient digestion, rumen fermentation and blood metabolites in angus bulls. Animal 2020, 14, 2535–2542. [Google Scholar] [CrossRef]
- Sánchez-Villasana, J.; López-Aguirre, D.; Peña-Avelino, L.Y.; Zapata-Campos, C.C.; Alvarado-Ramírez, E.R.; González, D.N.T.; Salem, A.Z.M. Influence of dietary supplementation of guanidinoacetic acid on growth performance and blood chemistry profile of growing steers. J. Agric. Food Res. 2024, 18, 101327. [Google Scholar] [CrossRef]
- Zhang, S.; Zang, C.; Pan, J.; Ma, C.; Wang, C.; Li, X.; Cai, W.; Yang, K. Effects of dietary guanidinoacetic acid on growth performance, guanidinoacetic acid absorption and creatine metabolism of lambs. PLoS ONE 2022, 17, e0264864. [Google Scholar] [CrossRef]
- Ren, G.; Hao, X.; Zhang, X.; Liu, S.; Zhang, J. Effects of guanidinoacetic acid and betaine on growth performance, energy and nitrogen metabolism, and rumen microbial protein synthesis in lambs. Anim. Feed Sci. Technol. 2022, 292, 115402. [Google Scholar] [CrossRef]
- Li, W.J.; Wu, Q.C.; Cui, Z.Y.; Jiang, Y.W.; Aisikaer, A.; Zhang, F.; Chen, H.W.; Wang, W.K.; Wang, Y.L.; Lv, L.K.; et al. Guanidine acetic acid exhibited greater growth performance in younger (13–30 kg) than in older (30–50 kg) lambs under high-concentrate feedlotting pattern. Front. Vet. Sci. 2022, 9, 954675. [Google Scholar] [CrossRef]
- Li, W.; Cui, Z.; Jiang, Y.; Aisikaer, A.; Wu, Q.; Zhang, F.; Wang, W.; Bo, Y.; Yang, H. Dietary guanidine acetic acid improves ruminal antioxidant capacity and alters rumen fermentation and microflora in rapid-growing lambs. Antioxidants 2023, 12, 772. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.-M.; Li, F.-Q.-Y.; Li, X.-Y.; Jiao, D.-R.; Liu, X.-D.; Lv, X.-Y.; Zhao, J.-X. Guanidinoacetic Acid Attenuates Adipogenesis through Regulation of miR-133a in Sheep. Animals 2023, 13, 3108. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Du, Z.; Fan, X.; Qin, L.; Liu, W.; Zhang, Y.; Ren, J.; Ye, C.; Liu, Q. Effect of Guanidinoacetic Acid on Production Performance, Serum Biochemistry, Meat Quality and Rumen Fermentation in Hu Sheep. Animals 2024, 14, 2052. [Google Scholar] [CrossRef]
- Mersmann, H.J. Overview of the effects of β-adrenergic receptor agonists on animal growth including mechanisms of action. J. Anim. Sci. 1998, 76, 160–172. [Google Scholar] [CrossRef] [PubMed]
- Vahedi, V.; Towhidi, A.; Hedayat-Evrigh, N.; Vaseghi-Dodaran, H.; Khodaei Motlagh, M.; Ponnampalam, E.N. The effects of supplementation methods and length of feeding of zilpaterol hydrochloride on meat characteristics of fattening lambs. Small Rumin. Res. 2015, 131, 107–112. [Google Scholar] [CrossRef]
- Rivera-Villegas, A.; Estrada-Angulo, A.; Castro-Pérez, B.I.; Urías-Estrada, J.D.; Ríos-Rincón, F.G.; Rodríguez-Cordero, D.; Barreras, A.; Plascencia, A.; González-Vizcarra, V.M.; Sosa-Gordillo, J.F.; et al. Comparative evaluation of supplemental zilpaterol hydrochloride sources on growth performance, dietary energetics and carcass characteristics of finishing lambs. Asian-Australas. J. Anim. Sci. 2019, 2, 209–216. [Google Scholar] [CrossRef]
- Cayetano-De-Jesus, J.A.; Rojo-Rubio, R.; Grajales-Lagunes, A.; Avendaño-Reyes, L.; Macias-Cruz, U.; Gonzalez-Del-prado, V.; Olmedo-Juárez, A.; Chay-Canul, A.; Roque-Jiménez, J.A.; Lee-Rangel, H.A. Effect of zilpaterol hydrochloride on performance and meat quality in finishing lambs. Agriculture 2020, 10, 241. [Google Scholar] [CrossRef]
- Robles, J.C.; Sánchez-Perez, J.N.; Portillo-Loera, J.J.; Contreras-Andrade, I.; Figueroa-Saavedra, F.; Mejía-Delgadillo, M.A.; Molina-Gámez, G.; Dávila Ramos, H. Effect of supplementing zilpaterol hydrochloride during different periods on energetics, growth performance, carcass traits and fatty acid profile in meat of finishing lambs. Vet. Méx. OA 2024, 11, 1–14. [Google Scholar] [CrossRef]
- López-Baca, M.Á.; Contreras, M.; González-Ríos, H.; Macías-Cruz, U.; Torrentera, N.; Valenzuela-Melendres, M.; Muhlia-Almazán, A.; Soto-Navarro, S.; Avendaño-Reyes, L. Growth, carcass characteristics, cut yields and meat quality of lambs finished with zilpaterol hydrochloride and steroid implant. Meat Sci. 2019, 158, 107890. [Google Scholar] [CrossRef] [PubMed]
- Carrillo-Muro, O.; Rivera-Villegas, A.; Hernandez-Briano, P.; Lopez-Carlos, M.A.; Plascencia, A. Effects of duration of calcium propionate supplementation in lambs finished with supplemental zilpaterol hydrochloride: Productive performance, carcass characteristics, and meat quality. Animals 2023, 13, 3113. [Google Scholar] [CrossRef]
- National Research Council (NRC). Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; The National Academies Press: Washington, DC, USA, 2007. [Google Scholar]
- Association of Official Agricultural Chemists (AOAC). Official Methods of Analysis of AOAC International, 20th ed.; Association of Official Agricultural Chemists: Rockville, MD, USA, 2016. [Google Scholar]
- Van Soest, P.V.; Robertson, J.; Lewis, B. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Sultana, N.; Hossain, S.; Chowdhury, S.; Hassan, M.; Ershaduzzaman, M. Effects of age on intake, growth, nutrient utilization and carcass characteristics of castrated native sheep. Bangladesh Vet. 2010, 27, 62–73. [Google Scholar] [CrossRef]
- Meat Standards Australia, Sheep-Meat (Brochure). Available online: https://www.mla.com.au/marketing-beef-and-lamb/meat-standards-australia/msa-sheepmeat/ (accessed on 15 November 2024).
- Cassens, R.G.; Demeyer, D.; Eikelenboom, G.; Honikel, K.O.; Johansson, G.; Nielsen, T.; Renerre, M.; Richardson, I.; Sakata, R. Recommendation of Reference Method for Assessment of Meat Color. In Proceedings of the 41st International Congress of Meat Science and Technology, San Antonio, TX, USA, 20–25 August 1995. [Google Scholar]
- Clark, V.L. SAS/STAT 9.1 ® User’s Guide; SAS Publishing: Hojai, India, 2004; ISBN 1590472438. [Google Scholar]
- Liu, Y.J.; Chen, J.Z.; Wang, D.H.; Wu, M.J.; Zheng, C.; Wu, Z.Z.; Wang, C.; Liu, Q.; Zhang, J.; Guo, G.; et al. Effects of guanidinoacetic acid and coated folic acid supplementation on growth performance, nutrient digestion and hepatic gene expression in angus bulls. Br. J. Nutr. 2021, 126, 510–517. [Google Scholar] [CrossRef]
- Majdeddin, M.; Braun, U.; Lemme, A.; Golian, A.; Kermanshahi, H.; De Smet, S.; Michiels, J. Guanidinoacetic acid supplementation improves feed conversion in broilers subjected to heat stress associated with muscle creatine loading and arginine sparing. Poult. Sci. 2020, 99, 4442–4453. [Google Scholar] [CrossRef]
- Zhu, Z.; Gu, C.; Hu, S.; Li, B.; Zeng, X.; Yin, J. Dietary Guanidinoacetic acid supplementation improved carcass characteristics, meat quality and muscle fibre traits in growing–finishing gilts. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1454–1461. [Google Scholar] [CrossRef]
- Li, Z.; Liang, H.; Xin, J.; Xu, L.; Li, M.; Yu, H.; Zhang, W.; Ge, Y.; Li, Y.; Qu, M. Effects of dietary guanidinoacetic acid on the feed efficiency, blood measures, and meat quality of Jinjiang bulls. Front. Vet. Sci. 2021, 8, 684295. [Google Scholar] [CrossRef] [PubMed]
- Córdova-Noboa, H.; Oviedo-Rondón, E.O.; Sarsour, A.H.; Barnes, J.; Sapcota, D.; López, D.; Gross, L.; Rademacher-Heilshorn, M.; Braun, U. Effect of guanidinoacetic acid supplementation on live performance, meat quality, pectoral myopathies and blood parameters of male broilers fed corn-based diets with or without poultry by-products. Poult. Sci. 2018, 7, 2494–2505. [Google Scholar] [CrossRef]
- Kaneko, J.J. Clinical Biochemistry of Domestic Animals; Academic Press: San Diego, CA, USA, 2008; pp. 873–904. [Google Scholar]
- Castillo-González, A.R.; Burrola-Barraza, M.E.; Domínguez-Viveros, J.; Chávez-Martínez, A. Microorganismos y fermentación ruminal. Arch. Med. Vet. 2014, 3, 349–361. [Google Scholar] [CrossRef]
- Ostojic, S.M. Advanced physiological roles of guanidinoacetic acid. Eur. J. Nutr. 2015, 54, 1211–1215. [Google Scholar] [CrossRef] [PubMed]
- Costa, C.F.; Brichi, A.L.C.; Millen, D.D.; Goulart, R.S.; Pereira, I.C.; Estevam, D.D.; Perdigão, A.; Martins, C.L.; Arrigoni, M.D.B. Feedlot performance, carcass characteristics and meat quality of nellore bulls and steers fed zilpaterol hydrochloride. Livest. Sci. 2019, 227, 166–174. [Google Scholar] [CrossRef]
- Masoumi, R.; Afsharirad, A.-R.; Mirzaei-Alamouti, H.; Vahedi, V.; Green, M.; Aliyari, D. Does fat-tail docking and zilpaterol hydrochloride (zh) supplementation affect feedlot performance and carcass characteristics of finishing lambs? Small Rumin. Res. 2021, 205, 106548. [Google Scholar] [CrossRef]
- Avendaño-Reyes, L.; Torres-Rodríguez, V.; Meraz-Murillo, F.J.; Pérez-Linares, C.; Figueroa-Saavedra, F.; Robinson, P.H. Effects of two β-adrenergic agonists on finishing performance, carcass characteristics, and meat quality of feedlot steers. J. Anim. Sci. 2006, 84, 3259–3265. [Google Scholar] [CrossRef]
- Lean, I.J.; Thompson, J.M.; Dunshea, F.R. A meta-analysis of zilpaterol and ractopamine effects on feedlot performance, carcass traits and shear strength of meat in cattle. PLoS ONE 2014, 9, e115904. [Google Scholar] [CrossRef]
- Montgomery, J.L.; Krehbiel, C.R.; Cranston, J.J.; Yates, D.A.; Hutcheson, J.P.; Nichols, W.T.; Streeter, M.N.; Bechtol, D.T.; Johnson, E.; TerHune, T.; et al. Dietary zilpaterol hydrochloride. i. feedlot performance and carcass traits of steers and heifers. J. Anim. Sci. 2009, 87, 1374–1383. [Google Scholar] [CrossRef] [PubMed]
- Ríos-Rincón, F.G.; Barreras-Serrano, A.; Estrada-Angulo, A.; Obregón, J.F.; Plascencia-Jorquera, A.; Portillo-Loera, J.J.; Zinn, R.A. Effect of level of dietary zilpaterol hydrochloride (β 2-agonist) on performance, carcass characteristics and visceral organ mass in hairy lambs fed all-concentrate diets. J. Appl. Anim. Res. 2010, 38, 33–38. [Google Scholar] [CrossRef]
- Lopez-Carlos, M.A.; Ramirez, R.G.; Aguilera-Soto, J.I.; Plascencia, A.; Rodriguez, H.; Arechiga, C.F.; Rincon, R.M.; Medina-Flores, C.A.; Gutierrez-Bañuelos, H. Effect of two beta adrenergic agonists and feeding duration on feedlot performance and carcass characteristics of finishing lambs. Livest. Sci. 2011, 138, 251–258. [Google Scholar] [CrossRef]
- Macías-Cruz, U.; Álvarez-Valenzuela, F.D.; Torrentera-Olivera, N.G.; Velázquez-Morales, J.V.; Correa-Calderón, A.; Robinson, P.H.; Avendaño-Reyes, L. Effect of zilpaterol hydrochloride on feedlot performance and carcass characteristics of ewe lambs during heat-stress conditions. Anim. Prod. Sci. 2010, 50, 983–989. [Google Scholar] [CrossRef]
- Avendaño-Reyes, L.; Macías-Cruz, U.; Álvarez-Valenzuela, F.D.; Águila-Tepato, E.; Torrentera-Olivera, N.G.; Soto-Navarro, S.A. Effects of zilpaterol hydrochloride on growth performance, carcass characteristics, and wholesale cut yield of hair-breed ewe lambs consuming feedlot diets under moderate environmental conditions. J. Anim. Sci. 2011, 89, 4188–4194. [Google Scholar] [CrossRef]
- Hughes, J.M.; Clarke, F.M.; Purslow, P.P.; Warner, R.D. Meat color is determined not only by chromatic heme pigments but also by the physical structure and achromatic light scattering properties of the muscle. Compr. Rev. Food Sci. Food Saf. 2019, 19, 44–63. [Google Scholar] [CrossRef] [PubMed]
Ingredients | % DM |
---|---|
Soybean | 14.5 |
Corn, ground grain | 10 |
Sorghum, ground grain | 39 |
Sorghum, whole grain | 10 |
Alfalfa, hay | 11 |
Sorghum, hay | 7.5 |
Molasses | 5 |
Minerals | 2.5 |
CaCO3 | 0.5 |
Total | 100 |
Nutrients | |
Crude protein | 15.2 |
Neutral detergent fiber | 20.98 |
Acid detergent fiber | 12.13 |
Ash | 4.42 |
Ether extract | 2.61 |
Metabolizable energy (Mcal/kg DM) | 2.78 |
Items 1 | Treatments 2 | SEM | p-Value 3 | ||||
---|---|---|---|---|---|---|---|
CON | ZLH | GAA | T | C1 | C2 | ||
Initial BW, kg | 15.72 | 16.31 | 16.88 | 1.047 | 0.7363 | 0.5272 | 0.6533 |
Final BW, kg | 29.45 | 30.91 | 30.97 | 1.365 | 0.6757 | 0.3818 | 0.9745 |
TWG, kg | 13.71 | 14.70 | 14.11 | 0.711 | 0.6213 | 0.4351 | 0.5657 |
ADG g/day | 240.50 | 257.75 | 247.62 | 12.535 | 0.6265 | 0.4362 | 0.5740 |
FI, g/day | 1017.87 | 1057.25 | 1052.12 | 68.924 | 0.9084 | 0.6672 | 0.9586 |
FCR, kg/kg | 4.24 | 4.09 | 4.30 | 0.2578 | 0.8491 | 0.8958 | 0.5823 |
FE, g/kg | 212.63 | 256.54 | 246.53 | 26.190 | 0.4746 | 0.2386 | 0.7896 |
GLU mg/dL | 59.78 b | 62.33 ab | 70.26 a | 2.471 | 0.0007 | 0.0032 | 0.5022 |
CHO, mg/dL | 46.48 | 45.34 | 45.78 | 2.190 | 0.8930 | 0.9601 | 0.7119 |
TGL, mg/dL | 18.33 | 17.36 | 15.43 | 1.238 | 0.1966 | 0.1140 | 0.5809 |
BIL, mg/dL | 0.3012 | 0.266 | 0.243 | 0.020 | 0.1779 | 0.1103 | 0.2347 |
CREA, mg/dL | 1.21 b | 1.25 ab | 1.34 a | 0.039 | 0.0365 | 0.0271 | 0.4040 |
BUN, mg/dL | 19.08 | 19.65 | 20.66 | 0.748 | 0.1456 | 0.1623 | 0.5892 |
Items 1 | Treatments 2 | SEM | p-Value 3 | ||||
---|---|---|---|---|---|---|---|
CON | ZLH | GAA | T | C1 | C2 | ||
Carcass characteristics | |||||||
Final BW, kg | 30.63 | 31.62 | 31.82 | 1.480 | 0.8350 | 0.5641 | 0.9245 |
HCW, kg | 15.66 | 16.38 | 16.49 | 0.780 | 0.7303 | 0.4444 | 0.9214 |
CCW, kg | 15.13 | 16.00 | 15.85 | 0.720 | 0.6721 | 0.3818 | 0.8860 |
D, % | 51.10 | 51.86 | 51.77 | 0.680 | 0.7226 | 0.4120 | 0.9283 |
CL, % | 3.33 | 2.32 | 3.73 | 0.980 | 0.5938 | 0.8007 | 0.3350 |
Neck, % of CCW | 8.41 | 8.85 | 9.89 | 0.669 | 0.3225 | 0.2719 | 0.3011 |
Leg, % of CCW | 23.53 | 23.73 | 24.00 | 0.672 | 0.8828 | 0.6917 | 0.7772 |
Rib and flank, % of CCW | 23.52 | 21.20 | 20.80 | 0.620 | 0.3619 | 0.2106 | 0.5132 |
Loin, % of CCW | 23.90 | 25.09 | 23.94 | 0.449 | 0.1591 | 0.2940 | 0.1027 |
Forequarter and shoulder, % of CCW | 19.91 a | 17.79 b | 19.18 ab | 0.444 | 0.0233 | 0.0281 | 0.0536 |
Carcass length, cm | 62.75 | 64.75 | 65.75 | 1.920 | 0.5520 | 0.3146 | 0.7207 |
Thorax depth, cm | 17.12 | 15.63 | 17.25 | 0.994 | 0.4683 | 0.5863 | 0.2778 |
Leg perimeter, cm | 38.25 | 39.25 | 41.00 | 1.370 | 0.3945 | 0.2925 | 0.3897 |
Leg length, cm | 44.25 | 45.25 | 44.25 | 1.870 | 0.9102 | 0.8323 | 0.7145 |
pH at 24 h | 5.77 | 5.68 | 5.71 | 0.084 | 0.7456 | 0.4723 | 0.8387 |
NMC | |||||||
NMC, % BW | 48.30 | 47.52 | 47.95 | 0.880 | 0.8232 | 0.6095 | 0.7394 |
Blood, % of BW | 4.30 | 4.56 | 4.35 | 0.269 | 0.7692 | 0.6431 | 0.5909 |
Liver, % of BW | 2.34 | 2.12 | 2.18 | 0.129 | 0.6666 | 0.3971 | 0.8140 |
Skin, % of BW | 9.19 | 8.93 | 9.89 | 0.599 | 0.5239 | 0.7666 | 0.2842 |
Items 1 | Treatments 2 | SEM | p-Value 3 | ||||
---|---|---|---|---|---|---|---|
CON | ZLH | GAA | T | C1 | C2 | ||
L* | 44.14 | 42.22 | 40.79 | 1.403 | 0.2865 | 0.1586 | 0.4898 |
a* | 16.61 | 16.35 | 16.24 | 0.476 | 0.8545 | 0.6025 | 0.8694 |
b* | 7.71 | 6.43 | 5.60 | 0.705 | 0.1588 | 0.0812 | 0.4278 |
C | 18.37 | 17.58 | 0.66 | 0.605 | 0.4090 | 0.2159 | 0.6607 |
H | 24.62 | 21.52 | 19.08 | 1.875 | 0.1670 | 0.0923 | 0.3809 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Aguirre, D.; Hernández-Meléndez, J.; Vázquez-Armijo, J.F.; Peña-Avelino, L.Y.; Alva-Pérez, J. Effect of Guanidinoacetic Acid and Zilpaterol Hydrochloride Feed Additions on Lambs’ Productive Performance, Carcass Characteristics, and Blood Chemistry. Animals 2025, 15, 1692. https://doi.org/10.3390/ani15121692
López-Aguirre D, Hernández-Meléndez J, Vázquez-Armijo JF, Peña-Avelino LY, Alva-Pérez J. Effect of Guanidinoacetic Acid and Zilpaterol Hydrochloride Feed Additions on Lambs’ Productive Performance, Carcass Characteristics, and Blood Chemistry. Animals. 2025; 15(12):1692. https://doi.org/10.3390/ani15121692
Chicago/Turabian StyleLópez-Aguirre, Daniel, Javier Hernández-Meléndez, José F. Vázquez-Armijo, Luz Y. Peña-Avelino, and Jorge Alva-Pérez. 2025. "Effect of Guanidinoacetic Acid and Zilpaterol Hydrochloride Feed Additions on Lambs’ Productive Performance, Carcass Characteristics, and Blood Chemistry" Animals 15, no. 12: 1692. https://doi.org/10.3390/ani15121692
APA StyleLópez-Aguirre, D., Hernández-Meléndez, J., Vázquez-Armijo, J. F., Peña-Avelino, L. Y., & Alva-Pérez, J. (2025). Effect of Guanidinoacetic Acid and Zilpaterol Hydrochloride Feed Additions on Lambs’ Productive Performance, Carcass Characteristics, and Blood Chemistry. Animals, 15(12), 1692. https://doi.org/10.3390/ani15121692