The Activity Rhythm and Home Range Characteristics of Released Chinese Pangolins (Manis pentadactyla)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of the Release Location and the Five Pangolins
2.2. Installation of Tracking Devices
2.3. Collection of Release Data
2.3.1. GPS Data
2.3.2. Accelerometer Data
2.4. Data Analysis
3. Results
3.1. Home Range
3.2. Acceleration Activity Rhythm
4. Discussion
4.1. Home Range Characteristics
4.2. Activity Rhythm Patterns and Ecological Significance
4.3. Equipment Improvement
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RMS | Analysis of variance |
MCP | Minimum convex polygon |
KDE | Kernel density estimation |
References
- Li, X.; Zhou, J.L.; Guo, Z.F.; Guo, A.W.; Chen, F.F. The analysis on nutrition contents of ants preyed on by Manis pentadactyla, shuangbanna of China. Sichuan J. Zool. 2010, 29, 620–621. [Google Scholar]
- Gao, H.; Dou, H.; Wang, K.; Zhang, Y.; Hua, Y. Ensemble SDMs reveal the effect of environmental suitability and nature reserves on conserving Chinese pangolins in Guangdong, China. J. Nat. Conserv. 2024, 79, 126617. [Google Scholar] [CrossRef]
- Thapa, P. An overview of Chinese pangolin (Manis pentadactyla): Its general biology, status, distribution and conservation threats in Nepal. Initiation 2013, 5, 164–170. [Google Scholar] [CrossRef]
- Heath, M.E. Manis pentadactyla. Mamm. Species 1992, 414, 1–6. [Google Scholar] [CrossRef]
- Sun, N.C.M.; Sompud, J.; Pei, K.J.C. Nursing period, behavior development, and growth pattern of a newborn Formosan pangolin (Manis pentadactyla pentadactyla) in the wild. Trop. Conserv. Sci. 2018, 11, 11–16. [Google Scholar] [CrossRef]
- Yan, D.; Zeng, X.; Jia, M.; Guo, X.; Deng, S.; Tao, L.; Huang, X.; Li, B.; Huang, C.; Que, T.; et al. Successful captive breeding of a Malayan pangolin population to the third filial generation. Commun. Biol. 2021, 4, 1212–1220. [Google Scholar] [CrossRef]
- Sarrazin, F.; Barbault, R. Reintroduction: Challenges and lessons for basic ecology. Trends Ecol. Evol. 1996, 11, 474–478. [Google Scholar] [CrossRef]
- Dickie, L.A.; Bonner, J.P.; West, C.D. In situ and ex situ conservation: Blurring the boundaries between zoos and the wild. Biochem. Syst. Ecol. 2007, 29, 1075–1087. [Google Scholar]
- Li, Y.; Wang, H.; Jiang, Z.; Song, Y.; Yang, D.; Li, L. Seasonal differences of the milu’s home range at the early rewilding stage in Dongting Lake area, China. Glob. Ecol. Conserv. 2022, 35, e02057. [Google Scholar] [CrossRef]
- Lukarevskiy, V.S.; Oleynikov, A.Y.; Kolchin, S.A. Perspectives of Amur tiger (Panthera tigris altaica) conservation, a population in the Khabarovsk Krai taken as an example. Zool. Zhurnal 2024, 103, 88–106. [Google Scholar] [CrossRef]
- Hacker, C.E.; Horback, K.M.; Miller, L.J. GPS technology as a proxy tool for determining relationships in social animals: An example with African elephants. Appl. Anim. Behav. Sci. 2015, 163, 175–182. [Google Scholar] [CrossRef]
- Beng, K.C.; Corlett, R.T. Applications of environmental DNA (eDNA) in ecology and conservation: Opportunities, challenges and prospects. Biodivers. Conserv. 2020, 29, 2089–2121. [Google Scholar] [CrossRef]
- Walton, Z.; Mattisson, J. Down a hole: Missing GPS positions reveal birth dates of an underground denning species, the red fox. Mamm. Biol. 2021, 101, 357–362. [Google Scholar] [CrossRef]
- Zhou, Y.; Hou, R.; Liu, J.; Bi, W.; Owens, J.; Zhang, Z.; Huang, F.; Luo, W.; Qi, D. Habitat utilization and spatial patterns of pre-released giant panda (Ailuropoda melanoleuca). Acta Theriol. Sin. 2021, 41, 641–648. [Google Scholar]
- Van, D.B.W.; Weerman, J.; Hof, A.R. Potential effects of GPS collars on the behaviour of two red pandas (Ailurus fulgens) in Rotterdam Zoo. PLoS ONE 2021, 16, e0252456. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gunner, R.M.; Wilson, R.P.; Holton, M.D.; Hopkins, P.; Bell, S.H.; Marks, N.J.; Bennett, N.C.; Ferreira, S.; Govender, D.; Viljoen, P.; et al. Decision rules for determining terrestrial movement and the consequences for filtering high-resolution global positioning system tracks: A case study using the African lion (Panthera leo). J. R. Soc. Interface 2022, 19, 20210692. [Google Scholar] [CrossRef]
- Rozhnov, V.V.; Naidenko, S.V.; Hernandez-Blanco, J.A.; Chistopolova, M.D.; Sorokin, P.A.; Yachmennikova, A.A.; Blidchenko, E.Y.; Kalinin, A.Y.; Kastrikin, V.A. Restoration of the Amur tiger (Panthera tigris altaica) population in the northwest of its distribution area. Biol. Bull. 2021, 48, 1401–1423. [Google Scholar] [CrossRef]
- Sun, N.C.M.; Pei, K.J.C.; Wu, L.Y. Long term monitoring of the reproductive behavior of wild Chinese pangolin (Manis pentadactyla). Sci. Rep. 2021, 11, 18116. [Google Scholar] [CrossRef]
- Sun, N.C.M.; Arora, B.; Lin, J.S.; Lin, W.C.; Chi, M.J.; Chen, C.C.; Pei, C.J.C. Mortality and morbidity in wild Taiwanese pangolin (Manis pentadactyla pentadactyla). PLoS ONE 2019, 14, e0198230. [Google Scholar] [CrossRef]
- Guo, R.P.; Gao, H.Y.; Wu, Q.M.; Dou, H.L.; Yang, J.Z.; Wang, J.X.; Sun, S.; Zhang, Y.H.; Hua, Y. Preliminary study on the effect of combined tracking technique in monitoring Chinese pangolin Manis pentadactyla. Chin. J. Zool. 2024, 59, 879–886. [Google Scholar]
- Myers, P.J.; Young, J.K. Post-release activity and habitat selection of rehabilitated black bears. Hum.-Wildl. Interact. 2018, 12, 322–337. Available online: https://www.jstor.org/stable/27316732 (accessed on 12 October 2024).
- Yasuda, M. Monitoring diversity and abundance of mammals with camera traps: A case study on Mount Tsukuba, central Japan. Mammal Study 2004, 29, 37–46. [Google Scholar] [CrossRef]
- Andreychev, A.V. A new methodology for studying the activity of underground mammals. Biol. Bull. Russ. Acad Sci. 2018, 45, 937–943. [Google Scholar] [CrossRef]
- Campera, M.; Chimienti, M.; Nekaris, K.A.I. Applications of Accelerometers and Other Bio-Logging Devices in Captive and Wild Animals. Animals 2023, 13, 222. [Google Scholar] [CrossRef] [PubMed]
- Sun, N.C.M.; Pei, K.J.C.; Lin, J.S. Attaching tracking devices to pangolins: A comprehensive case study of Chinese pangolin Manis pentadactyla from southeastern Taiwan. Glob. Ecol. Conserv. 2019, 20, e00700. [Google Scholar] [CrossRef]
- Bridge, E.S.; Thorup, K.; Bowlin, M.S.; Chilson, P.B.; Diehl, R.H.; Fléron, R.W.; Hartl, P.; Kays, R.; Kelly, J.F.; Robinson, W.D.; et al. Technology on the move: Recent and forthcoming innovations for tracking migratory birds. BioScience 2011, 61, 689–698. [Google Scholar] [CrossRef]
- Urbano, F.; Cagnacci, F.; Calenge, C.; Dettki, H.; Cameron, A.; Neteler, M. Wildlife tracking data management: A new vision. Philos. Trans. R. Soc. B-Biol. Sci. 2010, 365, 2177–2185. [Google Scholar] [CrossRef]
- Laich, A.G.; Wilson, R.P.; Quintana, F.; Shepard, E.L.C. Identification of imperial cormorant Phalacrocorax atriceps behaviour using accelerometers. Endanger. Species Res. 2008, 10, 29–37. [Google Scholar] [CrossRef]
- Wilson, R.P.; Shepard, E.L.C.; Liebsch, N. Prying into the intimate details of animal lives: Use of a daily diary on animals. Endanger. Species Res. 2008, 4, 123–137. [Google Scholar] [CrossRef]
- Shang, Y.C. Methods of the animal behaviour study. Bull. Biol. 2006, 41, 18–20. [Google Scholar] [CrossRef]
- Brown, D.D.; Kays, R.; Wikelski, M.; Wilson, R.; Klimley, P. Observing the unwatchable through acceleration logging of animal behavior. Anim. Biotelemetry 2013, 1, 20. [Google Scholar] [CrossRef]
- Gray, R.J.; Le, D.V.; Nguyen, H.T.T.; Cau, L.N.; Nguyen, T.V.; Pham, T.V.; Willcox, D.; Chen, T.; Nguyen, T.V. Home ranges and activity patterns of Sunda pangolins Manis javanica (Pholidota: Manidae) in Vietnam. J. Asia-Pac. Biodivers. 2023, 16, 421–431. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.M.; Walker, S.C. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Mohr, C.O. Table of equivalent populations of North American small mammals. Am. Midl. Nat. 1947, 37, 223–249. [Google Scholar] [CrossRef]
- Worton, B.J. Kernel methods for estimating the utilization distribution in home-range studies. Ecology 1989, 70, 164–168. [Google Scholar] [CrossRef]
- Worton, B.J. Using Monte Carlo simulation to evaluate kernel-based home range estimators. J. Wildl. Manag. 1995, 59, 794–800. [Google Scholar] [CrossRef]
- Biró, Z.; Szemethy, L.; Heltai, M. Home range sizes of wildcats (Felis silvestris) and feral domestic cats (Felis silvestris f. catus) in a hilly region of hungary. Mamm. Biol. 2004, 69, 302–310. [Google Scholar] [CrossRef]
- Monterroso, P.; Brito, J.C.; Ferreras, P.; Alves, P.C. Spatial ecology of the european wildcat in a mediterranean ecosystem: Dealing with small radio-tracking datasets in species conservation. J. Zool. 2009, 279, 27–35. [Google Scholar] [CrossRef]
- Wall, J.; Wittemyer, G.; Klinkenberg, B.; LeMay, V.; Blake, S.; Strindberg, S.; Henley, M.; Vollrath, F.; Maisels, F.; Ferwerda, J.; et al. Human footprint and protected areas shape elephant range across Africa. Curr. Biol. 2021, 31, 2437–2445. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Lee, W.S. Animal home range estimators—A review and a case study. Korean J. Environ. Ecol. 2022, 36, 202–216. [Google Scholar] [CrossRef]
- Davies, A.B.; Parr, C.L.; Eggleton, P. A global review of termite sampling methods. Insectes Sociaux 2021, 68, 3–14. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, W.; Mahmood, A.; Wu, S.; Li, J.; Xu, N. Observations of Chinese pangolins (Manis pentadactyla) in mainland China. Glob. Ecol. Conserv. 2021, 26, e01460. [Google Scholar] [CrossRef]
- Zhang, F.H.; Chen, Y.L.; Tang, X.R.; Xi, F.; Cen, P.; Pan, Z.M.; Ye, W.X.; Wu, S.B. Predicting the distribution and characteristics of Chinese pangolin habitat in China: Implications for conservation. Glob. Ecol. Conserv. 2024, 51, e02907. [Google Scholar] [CrossRef]
- Sandri, T.; Okell, C.; Nixon, S.; Matthews, N.; Omengo, F.; Mathenge, J.; Ndambuki, S.; Challender, D.W.S.; Cain, B. Three spatially separate records confirm the presence of and provide a range extension for the giant pangolin Smutsia gigantea in Kenya. Oryx 2023, 57, 714–717. [Google Scholar] [CrossRef]
- Yan, H.; An, F.; Liu, Q.; Chi, Q.; Wang, K.; Xu, X.; Kuang, Y.; Zhang, Z.; Hua, Y. Energy budgets of captive Chinese pangolins (Manis pentadactyla). Conserv. Physiol. 2023, 11, coad049. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Batson, W.G.; Gordon, I.J.; Fletcher, D.B.; Portas, T.J.; Manning, A.D. The effect of pre-release captivity on the stress physiology of a reintroduced population of wild eastern bettongs. J. Zool. 2017, 303, 311–319. [Google Scholar] [CrossRef]
- Zhou, W.; Zhan, P.; Zeng, M.; Chen, T.; Zhang, X.; Yang, G.; Guo, Y. Effects of ant bioturbation and foraging activities on soil mechanical properties and stability. Glob. Ecol. Conserv. 2023, 46, e02575. [Google Scholar] [CrossRef]
- Price-Rees, S.J.; Shine, R. A backpack method for attaching GPS transmitters to bluetongue lizards (Tiliqua, Scincidae). Herpetol. Conserv. Biol. 2011, 6, 142–148. Available online: http://www.herpconbio.org/Volume_6/Issue_1/Price-Rees_Shine_2011.pdf (accessed on 27 October 2024).
Individual | Release Location | Coordinate | Release Altitude/m |
---|---|---|---|
MP01 | Jinhua City, Zhejiang, China | E 11*.*3°, N 2*.*2° | 191 |
MP02 | Lishui City, Zhejiang, China | E 12*.*2°, N 2*.*8° | 362 |
MP03 | Yuyao City, Zhejiang, China | E 12*.*2°, N 2*.*8° | 659 |
MP04 | Lishui City, Zhejiang, China | E 11*.*6°, N 2*.*1° | 229 |
MP05 | Lishui City, Zhejiang, China | E 11*.*9°, N2*.*1° | 608 |
Individual | Sex | Weight/kg | Body Length/cm | Tail Length/cm |
---|---|---|---|---|
MP01 | ♂ | 2.09 | 58.0 | 21.5 |
MP02 | ♂ | 1.71 | 56.0 | 22.0 |
MP03 | ♂ | 2.85 | 58.0 | 22.0 |
MP04 | ♂ | 2.26 | 57.0 | 18.0 |
MP05 | ♂ | 2.99 | 64.0 | 24.0 |
Individual | Release Time | Final Positioning Time | Monitoring Duration/d | Location Points |
---|---|---|---|---|
MP01 | 14 June 2023 | 8 August 2023 | 55 | 165 |
MP02 | 16 August 2023 | 10 September 2023 | 25 | 57 |
MP03 | 20 September 2023 | 9 November 2023 | 27 | 24 |
MP04 | 19 October 2023 | 6 November 2023 | 21 | 30 |
MP05 | 3 April 2024 | 14 June 2024 | 72 | 141 |
Variable | Data Source | Description/Calculation Method | Statistical Method |
---|---|---|---|
Movement volume | GPS | Number of position changes exceeding 5 m in 2 h intervals | Linear mixed-effects model (LMM); REML estimation |
Home range (total area) | GPS | 99% Minimum convex polygon (MCP) calculated using all GPS positions | MCP method using “adehabitatHR” package in R |
Core activity area | GPS | 50% Kernel density estimation (KDE) using Href bandwidth | KDE method with “getverticeshr” in “rgeos” package |
Activity altitude | GPS | Elevation data extracted from GPS records | Descriptive statistics (mean ± SD) |
Activity counts | Accelerometer | Number of step events exceeding 0.15 G threshold in X/Y/Z axes | Repeated measures LMM; REML estimation |
Peak activity period | Accelerometer | Aggregated step counts across 2 h time windows between 18:00 and 8:00 | Tukey HSD post hoc test following LMM |
Device-derived survival inference | GPS + Accelerometer | Continuous data stream without >24 h inactivity indicates survival | Observational inference based on sustained data transmission |
Model | Individual | Area/hm2 | Perimeter/km |
---|---|---|---|
MCP (99%) | MP01 | 1576.8 | 18.33 |
MP02 | 36.91 | 2.49 | |
MP03 | 240.36 | 10.35 | |
MP04 | 5.58 | 1.02 | |
MP05 | 2027.39 | 20.93 | |
KDE (50%) | MP01 | 1270.26 | 21.36 |
MP02 | 19.35 | 2.19 | |
MP03 | 57.07 | 10.84 | |
MP04 | 3.46 | 0.67 | |
MP05 | 1117.32 | 35.13 |
Time | Activity Counts | ||||
---|---|---|---|---|---|
MP01 | MP02 | MP03 | MP04 | MP05 | |
18:00 | 541 ± 507 ab | 284 ± 105 c | 0 | 199 ± 90 b | 0 |
20:00 | 1334 ± 135 ab | 1824 ± 337 ab | 1326 ± 466 abc | 1820 ± 338 ab | 1524 ± 253 ab |
22:00 | 2321 ± 163 a | 2349 ± 380 a | 2968 ± 612 ab | 2263 ± 527 ab | 2446 ± 227 ab |
0:00 | 2301 ± 199 a | 1798 ± 280 ab | 2666 ± 726 ab | 2953 ± 51 ab | 2274 ± 225 ab |
2:00 | 2338 ± 261 a | 1952 ± 340 ab | 3588 ± 161 a | 3519 ± 168 a | 2814 ± 238 a |
4:00 | 2078 ± 350 a | 1655 ± 255 ab | 2896 ± 83 ab | 2478 ± 48 ab | 2150 ± 505 ab |
6:00 | 43 ± 31 b | 693 ± 144 bc | 708 ± 238 bc | 795 ± 283 ab | 382 ± 98 b |
8:00 | 17 ± 10 b | 258 ± 118 c | 279 ± 129 c | 267 ± 172 b | 169 ± 55 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.; Shen, Z.; Zhang, X.; Cheng, H.; Xie, C.; Zheng, R. The Activity Rhythm and Home Range Characteristics of Released Chinese Pangolins (Manis pentadactyla). Animals 2025, 15, 1658. https://doi.org/10.3390/ani15111658
Huang H, Shen Z, Zhang X, Cheng H, Xie C, Zheng R. The Activity Rhythm and Home Range Characteristics of Released Chinese Pangolins (Manis pentadactyla). Animals. 2025; 15(11):1658. https://doi.org/10.3390/ani15111658
Chicago/Turabian StyleHuang, Haochen, Zhenhui Shen, Xinhao Zhang, Hongyi Cheng, Chungang Xie, and Rongquan Zheng. 2025. "The Activity Rhythm and Home Range Characteristics of Released Chinese Pangolins (Manis pentadactyla)" Animals 15, no. 11: 1658. https://doi.org/10.3390/ani15111658
APA StyleHuang, H., Shen, Z., Zhang, X., Cheng, H., Xie, C., & Zheng, R. (2025). The Activity Rhythm and Home Range Characteristics of Released Chinese Pangolins (Manis pentadactyla). Animals, 15(11), 1658. https://doi.org/10.3390/ani15111658