Microbial Fermented Liquid Supplementation Improves Nutrient Digestibility, Feed Intake, and Milk Production in Lactating Dairy Cows Fed Total Mixed Ration
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Microbial Fermented Liquid (MFL) Preparation
2.2. Animals, Diets, and Experimental Design
2.3. Data Collection and Sampling Procedures
2.4. Statistical Analysis
3. Results
3.1. Chemical Composition of Feeds
3.2. Changes in Body Weight, Intake and Apparent Digestibility
3.3. Blood Urea Nitrogen (BUN)
3.4. Milk Yield and Milk Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nocek, J.E.; Holt, M.G.; Oppy, J. Effects of supplementation with yeast culture and enzymatically hydrolyzed yeast on performance of early lactation dairy cattle. J. Dairy Sci. 2011, 94, 4046–4056. [Google Scholar] [CrossRef] [Green Version]
- McAllister, T.A.; Beauchemin, K.A.; Alazzeh, A.Y.; Baah, J.; Teather, R.M.; Stanford, K. Review: The use of direct fed microbials to mitigate pathogens and enhance production in cattle. Can. J. Anim. Sci. 2011, 91, 193–211. [Google Scholar] [CrossRef] [Green Version]
- Chaucheyras-Durand, F.; Chevaux, E.; Martin, C.; Forano, E. Use of yeast probiotics in ruminants: Effects and mechanisms of action on rumen pH, fibre degradation, and microbiota according to the diet. In Probiotic in Animals; IntechOpen: London, UK, 2012. [Google Scholar]
- Nocek, J. Bovine acidosis: Implication on laminitis. J. Dairy Sci. 1977, 80, 1005–1028. [Google Scholar] [CrossRef] [PubMed]
- Polyorach, S.; Wanapat, M.; Wachirapakorn, C.; Navanukraw, C.; Wanapat, S.; Nontaso, N. Supplementation of yeast fermented lLiquid (YFL) and coconut oil on rumen fermentation characteristics, N-balance and urinary purine derivatives in beef cattle. J. Anim. Vet. Adv. 2011, 10, 2084–2089. [Google Scholar]
- Polyorach, S.; Wanapat, M.; Cherdthong, A.; Kang, S. Rumen microorganisms, methane production, and microbial protein synthesis affected by mangosteen peel powder supplement in lactating dairy cows. Trop. Anim. Health Prod. 2016, 48, 593–601. [Google Scholar] [CrossRef]
- Nampukdee, R.; Polyorach, S.; Wanapat, M.; Kang, S.; Cherdthong, A.; Gunun, P.; Gunun, N.; Sitthigripong, R. Effects of microbial fermented liquid (MFL) supplementation on gas production kinetics and digestibility using in vitro gas production technique. Int. J. Agric. Technol. 2018, 14, 1495–1504. [Google Scholar]
- AOAC. Official Methods of Analysis, 19th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Van Keulen, J.; Young, B.A. Evaluation of acid-insoluble ash as a natural marker in ruminant digestibility studies. J. Anim. Sci. 1997, 44, 282–287. [Google Scholar] [CrossRef]
- Crocker, C.L. Rapid determination of urea nitrogen in serum or plasma without deproteinization. Amer. J. Med. Technol. 1967, 33, 361–365. [Google Scholar]
- Statistical Analysis Systems (SAS). SAS/STAT User’s Guide. In Statistical Analysis Systems Institute, 5th ed.; SAS Institute Inc.: Cary, NC, USA, 1996. [Google Scholar]
- Steel, R.G.D.; Torrie, J.H. Principles and Procedures of Statistics. A Biometrical Approach, 2nd ed.; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Kaewpila, C.; Gunun, P.; Kesorn, P.; Pholsen, S.; Higgs, D.; Cai, Y.; Cherdthong, A.; Khota, W. Improving ensiling characteristics by adding lactic acid bacteria modifies in vitro digestibility and methane production of forage-sorghum mixture silage. Sci. Rep. 2021, 11, 1968. [Google Scholar] [CrossRef]
- Cherdthong, A.; Suntara, S.; Khota, W. Lactobacillus casei TH14 and additives could modulate the quality, gas kinetics and the in vitro digestibility of ensilaged rice straw. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1690–1703. [Google Scholar] [CrossRef] [PubMed]
- Suntara, S.; Cherdthong, A.; Uriyapongson, S.; Wanapat. M.; Chanjula, P. Comparison effects of ruminal crabtree-negative yeasts and crabtree-positive yeasts for improving ensiled rice straw quality and ruminal digestion using in vitro gas production. J. Fungi 2020, 6, 109. [Google Scholar] [CrossRef]
- Newbold, C.J.; Rode, L.M. Dietary additives to control methanogenesis in the rumen. Int. Congr. Ser. 2006, 1293, 138–147. [Google Scholar] [CrossRef]
- Baker, L.M.; Kraft, J.; Karnezos, T.P.; Greenwood, S.L. 2022. Review: The effects of dietary yeast and yeast-derived extracts on rumen microbiota and their function. Anim. Feed Sci. Technol. 2022, 294, 115476. [Google Scholar] [CrossRef]
- Jouany, J.P.; Morgavi, D.P. Use of “natural” products as alternatives to antibiotic feed additives in ruminant production. Animal 2007, 1, 1443–1466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phesatcha, K.; Phesatcha, B.; Wanapat, M.; Cherdthong, A. The effect of yeast and roughage concentrate ratio on ruminal pH and protozoal population in Thai native beef cattle. Animals 2022, 12, 53. [Google Scholar] [CrossRef] [PubMed]
- AlZahal, O.; Dionissopoulos, L.; Laarman, A.H.; McBride, N.W.; McBride, B.W. Active dry Saccharomyces cerevisiae can alleviate the effect of subacute ruminal acidosis in lactating dairy cows. J. Dairy Sci. 2014, 97, 7751–7763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desnoyers, M.; Giger-Reverdin, S.; Bertin, G.; Duvaux-Ponter, C.; Sauvant, D. Meta-analysis of the influence of Saccharomyces cerevisiaesupplementation on ruminal parameters and milk production of ruminants. J. Dairy Sci. 2009, 92, 1620–1632. [Google Scholar] [CrossRef] [Green Version]
- Poppy, G.D.; Rabiee, A.R.; Lean, I.J.; Sanchez, W.K.; Dorton, K.L.; Morley, P.S. A meta-analysis of the effects of feeding yeast culture produced by anaerobic fermentation of Saccharomyces cerevisiae on milk production of lactating dairy cows. J. Dairy Sci. 2012, 95, 6027–6041. [Google Scholar] [CrossRef] [Green Version]
- Ferraretto, L.F.; Shaver, R.D.; Bertics, S.J. Effect of dietary supplementation with live-cell yeast at two dosages on lactation performance, ruminal fermentation, and total-tract nutrient digestibility in dairy cows. J. Dairy Sci. 2012, 95, 4017–4028. [Google Scholar] [CrossRef]
- Erasmus, L.J.; Botha, P.M.; Kistner, A. Effect of yeast culture supplement on production, rumen fermentation, and duodenal nitrogen flow in dairy cows. J. Dairy Sci. 1992, 75, 3056–3065. [Google Scholar] [CrossRef]
- So, S.; Cherdthong, A.; Wanapat, M. Effect of sugarcane bagasse as industrial by-products treated Lactobacillus casei TH14, cellulase, and molasses on feed utilization, ruminal ecology and milk production of mid-lactating Holstein Friesian cows. J. Sci. Food Agric. 2021, 101, 4481–4489. [Google Scholar] [CrossRef]
- Pridmore, R.D.; Pittet, A.C.; Praplan, F.; Cavadini. C. Hydrogen peroxide production by Lactobacillus johnsonii NCC 533 and its role in anti-Salmonella activity. FEMS Microbiol. Lett. 2008, 283, 210–215. [Google Scholar] [CrossRef] [Green Version]
- Pongsub, S.; Suntara, C.; Khota, W.; Boontiam, W.; Cherdthong, A. The chemical composition, fermentation end-product of silage, and aerobic stability of cassava pulp fermented with Lactobacillus casei TH14 and additives. Vet. Sci. 2023, 9, 617. [Google Scholar] [CrossRef]
- Norrapoke, T.; Wanapat, M.; Wanapat, S. Effects of protein level and mangosteen peel pellets (Mago-pel) in concentrate diets on rumen fermentation and milk production in lactating dairy crossbreds. Asian-Australas. J. Anim. Sci. 2012, 25, 971–979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jouany, J.P. Optimizing rumen functions in the close-up transition period and early lactation to drive dry matter intake and energy balance in cows. Anim. Reprod. Sci. 2006, 96, 250–264. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Wang, C.; Huang, Y.X.; Dong, K.H.; Yang, W.Z.; Wang, H. Effects of lanthanum on rumen fermentation, urinary excretion of purine derivatives and digestibility in steers. Anim. Feed Sci. Technol. 2007, 142, 121–132. [Google Scholar] [CrossRef]
- Muruz, H.; Gül, M. Effects of live yeast on the rumen fermentation parameters and milk performance of Simmental dairy cows during the hot season. Turk. J. Vet. Anim. Sci. 2020, 44, 249–257. [Google Scholar] [CrossRef]
- Polyorach, S.; Wanapat, M.; Poungchompu, O.; Cherdthong, A.; Gunun, P.; Gunun, N.; Kang, S. Effect of fermentation using different microorganism on nutritional value of fresh and dry cassava root. Asian J. Anim. Vet. Adv. 2018, 13, 128–135. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Huang, W.; Huang, Q.; Kwok, L.; Sun, Z.; Ma, H.; Zhao, F.; Lee, Y.K.; Zhang, H. The effects of probiotics administration on the milk production, milk components and fecal bacteria microbiota of dairy cows. Sci. Bull. 2017, 62, 767–774. [Google Scholar] [CrossRef] [Green Version]
- Szilagyi, A.; Ishayek, N. Lactose intolerance, dairy avoidance, and treatment options. Nutrients 2018, 10, 1994. [Google Scholar] [CrossRef] [Green Version]
- Weiss, W.P.; Wyatt, D.J.; Mckelvey, T.R. Effect of feeding propionibacteria on milk production by early lactation dairy cows. J. Dairy Sci. 2008, 91, 646–652. [Google Scholar] [CrossRef] [Green Version]
- Jonker, S.J.; Kohn, R.A.; Erdman, R.A. Using milk urea nitrogen to predict nitrogen excretion and utilization efficiency in lactating dairy cows. J. Dairy Sci. 1998, 81, 2681–2692. [Google Scholar] [CrossRef] [Green Version]
- Wattiaux, M.A.; Karg, K.L. Protein level for alfalfa and corn silage-based diets: II Nitrogen balance and manure characteristics. J. Dairy Sci. 2004, 87, 3492–3502. [Google Scholar] [CrossRef] [Green Version]
- Nousiainen, J.; Shingfield, K.J.; Huntanen, P. Evaluation of milk urea nitrogen as a diagnostic of protein feeding. J. Dairy Sci. 2004, 87, 386–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polyorach, S.; Wanapat, M.; Phesatcha, K.; Kang, S. Effect of different levels of mangosteen peel powder supplement on the performance of dairy cows fed concentrate containing yeast fermented cassava chip protein. Trop. Anim. Health Prod. 2015, 47, 1473–1480. [Google Scholar] [CrossRef] [PubMed]
- Dias, J.; Marcondes, M.I.; de Souza, S.M.; Cardoso da Mata, E.; Silva,, B.; Fontes Noronha, M.; Tassinari Resende, R. Bacterial community dynamics across the gastrointestinal tracts of dairy calves during preweaning development. Appl. Environ. Microbiol. 2018, 84, e02675-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stein, D.R.; Allen, D.T.; Perry, E.B.; Bruner, J.C.; Gates, K.W.; Rehberger, T.G.; Mertz, K.; Jones, D.; Spicer, L.J. Effects of feeding Propionibacterium to dairy cows on milk yield, milk components, and reproduction. J. Dairy Sci. 2006, 89, 111–125. [Google Scholar] [CrossRef]
- Polyorach, S.; Wanapat, M.; Cherdthong, A. Influence of yeast fermented cassava chip protein (YEFECAP) and roughage to concentrate ratio on ruminal fermentation and microorganisms using in vitro gas production technique. Asian-Australas. J. Anim. Sci. 2014, 27, 36–45. [Google Scholar] [CrossRef] [Green Version]
Item | TMR | MFL | Rice Straw |
---|---|---|---|
Ingredient, % of DM | |||
Rice straw | 40.0 | ||
Cassava chip | 39.6 | ||
Rice bran | 5.0 | ||
Soybean meal | 8.5 | ||
Urea | 2.0 | ||
Molasses | 2.0 | ||
Tallow | 2.0 | ||
Salt | 0.3 | ||
Sulfur | 0.3 | ||
Mineral mixture 1 | 0.3 | ||
Chemical composition | |||
Dry matter (DM), % | 89.6 | 22.2 | 90.2 |
% of dry matter | |||
Organic matter (OM) | 90.7 | 98.9 | 83.0 |
Crude protein (CP) | 12.3 | 20.6 | 2.7 |
Ether extract (EE) | 3.5 | 1.2 | 2.0 |
Neutral detergent fiber (NDF) | 56.4 | - | 80.4 |
Acid detergent fiber (ADF) | 28.3 | - | 54.0 |
Item | Supplement Levels (mL/hd/d) 1 | SEM | Contrasts 2 | ||||
---|---|---|---|---|---|---|---|
0 | 100 | 200 | 300 | L | Q | ||
Body weight | |||||||
Initial body weight (kg) | 512.0 | 505.3 | 505.7 | 517.3 | 19.32 | 0.22 | 0.66 |
Final body weight (kg) | 531.0 | 526.3 | 529.0 | 539.5 | 20.35 | 0.32 | 0.45 |
Dry matter intake (DMI) | |||||||
Kg/d | 13.3 | 15.3 | 15.7 | 15.5 | 0.34 | 0.27 | 0.22 |
%BW | 2.6 | 3.0 | 3.1 | 3.1 | 0.09 | 0.78 | 0.77 |
g/kg BW 0.75 | 123.9 b | 143.8 a | 147.5 a | 145.5 a | 3.33 | 0.03 | 0.43 |
Nutrient intake (kg/hd/d) | |||||||
Organic matter (OM) | 12.1 | 13.9 | 14.3 | 14.1 | 0.32 | 0.66 | 0.83 |
Crude protein (CP) | 1.6 | 1.8 | 1.9 | 1.9 | 0.04 | 0.54 | 0.69 |
Ether extract (EE) | 0.4 | 0.5 | 0.6 | 0.5 | 0.01 | 0.45 | 0.92 |
Neutral detergent fiber (NDF) | 7.5 | 8.6 | 8.9 | 8.7 | 0.20 | 0.67 | 0.18 |
Acid detergent fiber (ADF) | 3.8 | 4.3 | 4.5 | 4.4 | 0.10 | 0.97 | 0.65 |
Apparent digestibility (%) | |||||||
Dry matter (DM) | 65.0 | 64.6 | 68.4 | 66.9 | 2.22 | 0.23 | 0.55 |
Organic matter (OM) | 65.4 | 67.1 | 70.7 | 68.45 | 1.65 | 0.22 | 0.34 |
Crude protein (CP) | 50.5 b | 53.2 b | 69.1 a | 67.3 a | 1.07 | 0.01 | 0.43 |
Ether extract (EE) | 66.7 | 71.4 | 73.2 | 72.6 | 0.96 | 0.45 | 0.89 |
Neutral detergent fiber (NDF) | 49.6 b | 55.1 ab | 63.2 a | 61.9 a | 1.52 | 0.02 | 0.65 |
Acid detergent fiber (ADF) | 49.1 b | 55.0 ab | 64.3 a | 59.7 ab | 1.69 | 0.05 | 0.44 |
Item | Supplement Levels (mL/hd/d) | SEM | Contrasts | ||||
---|---|---|---|---|---|---|---|
0 | 100 | 200 | 300 | L | Q | ||
BUN, mg/dL | |||||||
0 h post feeding | 11.1 | 11.7 | 12.4 | 12.7 | 0.29 | 0.44 | 0.98 |
4 h post feeding | 12.9 b | 13.1 b | 19.7 a | 18.4 a | 0.25 | 0.01 | 0.78 |
Average | 12.1 b | 12.4 b | 16.1 a | 15.6 a | 0.08 | 0.01 | 0.04 |
Item | Supplement Levels (mL/hd/d) | SEM | Contrasts | |||||
---|---|---|---|---|---|---|---|---|
0 | 100 | 200 | 300 | L | Q | |||
Production | ||||||||
Milk yield (kg/hd/d) | 12.6 b | 14.0 ab | 15.4 a | 14.8 a | 0.22 | 0.01 | 0.23 | |
3.5% Fat corrected-milk (kg/hd/d) | 12.7 c | 14.9 b | 17.7 a | 16.3 ab | 0.32 | 0.01 | 0.04 | |
Milk composition, % | ||||||||
Fat | 3.4 | 3.9 | 4.5 | 4.2 | 0.17 | 0.23 | 0.15 | |
Protein | 3.2 b | 3.7 ab | 4.0 a | 3.7 ab | 0.09 | 0.03 | 0.23 | |
Lactose | 4.2 | 4.4 | 4.8 | 4.6 | 0.15 | 0.33 | 0.27 | |
Solid not fat (SNF) | 8.1 | 8.5 | 8.8 | 8.6 | 0.12 | 0.44 | 0.34 | |
Total solid (TS) | 10.8 b | 12.2 ab | 13.0 a | 12.6 a | 0.23 | 0.04 | 0.66 | |
Specific gravity | 1.03 | 1.03 | 1.03 | 1.02 | 0.0003 | 0.54 | 0.45 | |
Milk urea-nitrogen (MUN), mg/100 mL | ||||||||
11.9 b | 12.2 bc | 15.4 a | 14.4 ab | 0.39 | 0.03 | 0.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polyorach, S.; Nampukdee, R.; Wanapat, M.; Kang, S.; Cherdthong, A.; Poungchompu, O.; Gunun, P.; Gunun, N.; Foiklang, S.; Thinowong, A.; et al. Microbial Fermented Liquid Supplementation Improves Nutrient Digestibility, Feed Intake, and Milk Production in Lactating Dairy Cows Fed Total Mixed Ration. Animals 2023, 13, 933. https://doi.org/10.3390/ani13050933
Polyorach S, Nampukdee R, Wanapat M, Kang S, Cherdthong A, Poungchompu O, Gunun P, Gunun N, Foiklang S, Thinowong A, et al. Microbial Fermented Liquid Supplementation Improves Nutrient Digestibility, Feed Intake, and Milk Production in Lactating Dairy Cows Fed Total Mixed Ration. Animals. 2023; 13(5):933. https://doi.org/10.3390/ani13050933
Chicago/Turabian StylePolyorach, Sineenart, Rutsamee Nampukdee, Metha Wanapat, Sungchhang Kang, Anusorn Cherdthong, Onanong Poungchompu, Pongsatorn Gunun, Nirawan Gunun, Suban Foiklang, Anusorn Thinowong, and et al. 2023. "Microbial Fermented Liquid Supplementation Improves Nutrient Digestibility, Feed Intake, and Milk Production in Lactating Dairy Cows Fed Total Mixed Ration" Animals 13, no. 5: 933. https://doi.org/10.3390/ani13050933
APA StylePolyorach, S., Nampukdee, R., Wanapat, M., Kang, S., Cherdthong, A., Poungchompu, O., Gunun, P., Gunun, N., Foiklang, S., Thinowong, A., Jindatajak, Y., Lapmee, A., & Norrapoke, T. (2023). Microbial Fermented Liquid Supplementation Improves Nutrient Digestibility, Feed Intake, and Milk Production in Lactating Dairy Cows Fed Total Mixed Ration. Animals, 13(5), 933. https://doi.org/10.3390/ani13050933