Mating Conditions and Management Practices Influence Pregnancy Scanning Outcomes Differently between Ewe Breeds
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Sites and Protocols
2.2. Measurements
2.3. Statistical Analysis
2.4. Bayesian Network Model
3. Results
3.1. Descriptive Analysis
3.2. Bayesian Network Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yeates, N.T.M. The breeding season of the sheep with particular reference to its modification by artificial means using light. J. Agric. Sci. 1949, 39, 1–43. [Google Scholar] [CrossRef]
- Hammond, J. On the breeding season in the sheep. J. Agric. Sci. 1944, 34, 97–105. [Google Scholar] [CrossRef]
- Fogarty, N.M.; Mulholland, J.G. Seasonal reproductive performance of crossbred ewes in intensive lamb-production systems. Anim. Prod. Sci. 2014, 54, 791–801. [Google Scholar] [CrossRef]
- Paganoni, B.L.; Ferguson, M.B.; Greeff, J.M.; Kearney, G.A.; Thompson, A.N. Mating weight and condition score are both good predictors of lambing potential for young Merino and Border Leicester Merino ewes across different environments and years in Australia. Anim. Prod. Sci. 2022, 62, 1507–1517. [Google Scholar] [CrossRef]
- Hafez, E. Studies on the breeding season and reproduction of the ewe Part I. The breeding season in different environments Part II. The breeding season in one locality. J. Agric. Sci. 1952, 42, 189–231. [Google Scholar] [CrossRef]
- Hall, D.G.; Fogarty, N.M.; Gilmour, A.R. Seasonality of ovulation and estrus, and the ram effect in Poll Dorset ewes. Theriogenology 1986, 25, 455–461. [Google Scholar] [CrossRef]
- Hall, D.G.; Killeen, I.D. Seasonality of ovulation and estrus in Border Leicester ewes. Theriogenology 1989, 31, 721–726. [Google Scholar] [CrossRef]
- Fletcher, I.; Geytenbeek, P. Seasonal variation in the ovarian activity of Merino ewes. Aust. J. Exp. Agric. Anim. Husb. 1970, 10, 267. [Google Scholar] [CrossRef]
- Fletcher, I.; Geytenbeek, P.; Allden, W. Interaction between the effects of nutrition and season of mating on reproductive performance in crossbred ewes. Aust. J. Exp. Agric. Anim. Husb. 1970, 10, 393. [Google Scholar] [CrossRef]
- Morley, F.H.W.; White, D.H.; Kenney, P.A.; Davis, I.F. Predicting ovulation rate from liveweight in ewes. Agric. Syst. 1978, 3, 27–45. [Google Scholar] [CrossRef]
- Menassol, J.-B.; Collet, A.; Chesneau, D.; Malpaux, B.; Scaramuzzi, R.J. The interaction between photoperiod and nutrition and its effects on seasonal rhythms of reproduction in the ewe. Biol. Reprod. 2012, 86, 52. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, M.B.; Thompson, A.N.; Gordon, D.J.; Hyder, M.W.; Kearney, G.A.; Oldham, C.M.; Paganoni, B.L. The wool production and reproduction of Merino ewes can be predicted from changes in liveweight during pregnancy and lactation. Anim. Prod. Sci. 2011, 51, 763–775. [Google Scholar] [CrossRef] [Green Version]
- Kenyon, P.R.; Morel, P.C.H.; Morris, S.T. The effect of individual liveweight and condition scores of ewes at mating on reproductive and scanning performance. N. Z. Vet. J. 2004, 52, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Gunn, R.G.; Smith, W.F.; Senior, A.J.; Barthram, E.; Sim, D.A.; Hunter, E.A. Pre-mating herbage intake and the reproductive performance of north Country Cheviot ewes in different levels of body condition. Anim. Sci. 1991, 52, 149–156. [Google Scholar] [CrossRef]
- Sejian, V.; Maurya, V.P.; Naqvi, S.M.K.; Kumar, D.; Joshi, A. Effect of induced body condition score differences on physiological response, productive and reproductive performance of Malpura ewes kept in a hot, semi-arid environment. J. Anim. Physiol. Anim. Nutr. 2010, 94, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Osoro, K.; Martínez, A.; Celaya, R. Effect of breed and sward height on sheep performance and production per hectare during the spring and autumn in Northern Spain. Grass Forage Sci. 2002, 57, 137–146. [Google Scholar] [CrossRef] [Green Version]
- CSIRO. Nutrient Requirements of Domesticated Ruminants; CSIRO Publishing: Melbourne, Australia, 2007. [Google Scholar]
- Paganoni, B.L.; Ferguson, M.B.; Kearney, G.A.; Thompson, A.N. Increasing weight gain during pregnancy results in similar increases in lamb birthweights and weaning weights in Merino and non-Merino ewes regardless of sire type. Anim. Prod. Sci. 2014, 54, 727–735. [Google Scholar] [CrossRef]
- Blumer, S.; Behrendt, R.; Hocking Edwards, J.; Young, J.; Thompson, A. Lifetime Maternals—Phase II: Feeding Standards for Maternal Ewes; (Project Code: L.LSM.0008); Meat and Livestock Australia Limited: North Sydney, NSW, Australia, 2019. [Google Scholar]
- Young, J.M.; Thompson, A.N.; Curnow, M.; Oldham, C.M. Whole-farm profit and the optimum maternal liveweight profile of Merino ewe flocks lambing in winter and spring are influenced by the effects of ewe nutrition on the progeny’s survival and lifetime wool production. Anim. Prod. Sci. 2011, 51, 821–833. [Google Scholar] [CrossRef] [Green Version]
- Warn, L.; Webb Ware, J.; Salmon, L.; Donnelly, J.; Alcock, D. Analysis of the Profitability of Sheep Wool and Meat Enterprises in Southern Australia; (Project 1.2.6) [Report: Australian Sheep Industry CRC]; Sheep CRC: Armidale, NSW, Australia, 2006. [Google Scholar]
- Croker, K.; Curtis, K.; Speijers, J. Time of Lambing in Australian Flocks—2005 to 2007; Department of Agriculture and Food Western Australia: Perth, WA, Australia, 2009. [Google Scholar]
- Williams, A.H.; McPhee, S.R.; Reeve, J.L.; Staples, L.D. Optimum use of subcutaneous melatonin implants to enhance the reproductive performance of seasonal and non-seasonal sheep joined in spring and early summer. Anim. Reprod. Sci. 1992, 30, 225–258. [Google Scholar] [CrossRef]
- McHugh, N.; McGovern, F.; Creighton, P.; Pabiou, T.; McDermott, K.; Wall, E.; Berry, D. Mean difference in live-weight per incremental difference in body condition score estimated in multiple sheep breeds and crossbreds. Animal 2019, 13, 549–553. [Google Scholar] [CrossRef]
- Jefferies, B.C. Body condition scoring and its use in management. Tasman. J. Agric. 1961, 32, 19–21. [Google Scholar]
- Russel, A.J.F.; Doney, J.M.; Gunn, R.G. Subjective assessment of body fat in live sheep. J. Agric. Sci. 1969, 72, 451–454. [Google Scholar] [CrossRef]
- Microsoft Corporation. Microsoft® Excel® for Microsoft 365 MSO; Version 2202 Build 16.0.14931.20602 32-bit [Computer Software]; Microsoft Corporation: Redmond, WA, USA, 2022. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing [Statistical Software]; R Core Team: Vienna, Austria, 2021. [Google Scholar]
- Norsys Software Corp. Netica 64 Bit (for Windows 7 to 10) [Computer Software]; Version 6.09; Norsys Software Corp: Vancouver, BC, Canada, 2021. [Google Scholar]
- Kjærulff, U.B.; Madsen, A.L. Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis, 2nd ed.; 2013 ed.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Upton, G.; Cook, I. Oxford Dictionary of Statistics; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Norsys Software Corp. Netica 6.09 Online Help Manual. Available online: https://www.norsys.com/WebHelp/NETICA.htm (accessed on 21 August 2022).
- Gómez-Villegas, M.A.; Main, P.; Viviani, P. Sensitivity to evidence in Gaussian Bayesian networks using mutual information. Inf. Sci. 2014, 275, 115–126. [Google Scholar] [CrossRef]
- Allworth, M.B.; Wrigley, H.A.; Cowling, A. Fetal and lamb losses from pregnancy scanning to lamb marking in commercial sheep flocks in southern New South Wales. Anim. Prod. Sci. 2017, 57, 2060–2065. [Google Scholar] [CrossRef]
- Kleemann, D.O.; Walker, S.K. Fertility in South Australian commercial Merino flocks: Sources of reproductive wastage. Theriogenology 2005, 63, 2075–2088. [Google Scholar] [CrossRef]
- Kelley, R.B.; Shaw, H.E.B. Observations on the periodicity of oestrus in certain Australian Merino ewes and a half-breed group. CSIR J. 1939, 12, 18–22. [Google Scholar]
- English, J.; Poulton, A.; Arendt, J.; Symons, A. A comparison of the efficiency of melatonin treatments in advancing oestrus in ewes. Reproduction 1986, 77, 321–327. [Google Scholar] [CrossRef] [Green Version]
- Kleemann, D.O.; Grosser, T.I.; Walker, S.K. Fertility in South Australian commercial Merino flocks: Aspects of management. Theriogenology 2006, 65, 1649. [Google Scholar] [CrossRef]
- Dun, R.; Ahmed, W.; Morrant, A. Annual reproductive rhythm in Merino sheep related to the choice of a mating time at Trangie, central western New South Wales. Aust. J. Agric. Res. 1960, 11, 805. [Google Scholar] [CrossRef]
- Gelez, H.; Fabre-Nys, C. Neural pathways involved in the endocrine response of anestrous ewes to the male or its odor. Neuroscience 2006, 140, 791–800. [Google Scholar] [CrossRef]
- Goulet, F.; Castonguay, F.W. Influence of lambing-to-rebreeding interval on ewe reproductive performance in the anoestrus season. Can. J. Anim. Sci. 2002, 82, 453–456. [Google Scholar] [CrossRef]
- Fogarty, N.M.; Hall, D.G. Performance of crossbred progeny of Trangie Fertility Merino and Booroola Merino rams and Poll Dorset ewes. 3. Reproduction, liveweight and wool production of adult ewes. Aust. J. Exp. Agric. 1995, 35, 1083–1091. [Google Scholar] [CrossRef]
- Kilminster, T.; Greeff, J. A note on the reproductive performance of Damara, Dorper and Merino sheep under optimum management and nutrition for Merino ewes in the eastern wheatbelt of Western Australia. Trop. Anim. Health Prod. 2011, 43, 1459–1464. [Google Scholar] [CrossRef]
- Safari, E.; Fogarty, N.M.; Gilmour, A.R. A review of genetic parameter estimates for wool, growth, meat and reproduction traits in sheep. Livest. Prod. Sci. 2005, 92, 271–289. [Google Scholar] [CrossRef]
- Masters, D.G.; Ferguson, M.B. A review of the physiological changes associated with genetic improvement in clean fleece production. Small Rumin. Res. 2019, 170, 62–73. [Google Scholar] [CrossRef]
- Michels, H.; Decuypere, E.; Onagbesan, O. Litter size, ovulation rate and prenatal survival in relation to ewe body weight: Genetics review. Small Rumin. Res. 2000, 38, 199–209. [Google Scholar] [CrossRef]
- Coop, I.E. Effect of flushing on reproductive performance of ewes. J. Agric. Sci. 1966, 67, 305–323. [Google Scholar] [CrossRef]
- Smith, J.F. A review of recent developments on the effect of nutrition on ovulation rate (the flushing effect) with particular reference to research at Ruakura. Proc. N. Z. Soc. Anim. Prod. 1991, 51, 15–23. [Google Scholar]
- Gunn, R.G.; Rhind, S.M.; Maxwell, T.J.; Sim, D.A.; Jones, J.R.; James, M.E. The effect of sward height and active immunization against androstenedione on reproductive performance of ewes of two Welsh breeds in different body conditions. Anim. Prod. 1988, 46, 417–426. [Google Scholar] [CrossRef]
- Curnow, M.; Oldham, C.M.; Behrendt, R.; Gordon, D.J.; Hyder, M.W.; Rose, I.J.; Whale, J.W.; Young, J.M.; Thompson, A.N. Successful adoption of new guidelines for the nutritional management of ewes is dependent on the development of appropriate tools and information. Anim. Prod. Sci. 2011, 51, 851–856. [Google Scholar] [CrossRef]
- Hocking Edwards, J.E.; Copping, K.J.; Thompson, A.N. Managing the nutrition of twin-bearing ewes during pregnancy using Lifetimewool recommendations increases production of twin lambs. Anim. Prod. Sci. 2011, 51, 813–820. [Google Scholar] [CrossRef]
- Kenyon, P.R.; Maloney, S.K.; Blache, D. Review of sheep body condition score in relation to production characteristics. N. Z. J. Agric. Res. 2014, 57, 38–64. [Google Scholar] [CrossRef]
- Geenty, K.G.; Brien, F.D.; Hinch, G.N.; Dobos, R.C.; Refshauge, G.; McCaskill, M.; Ball, A.J.; Behrendt, R.; Gore, K.P.; Savage, D.B.; et al. Reproductive performance in the Sheep CRC Information Nucleus using artificial insemination across different sheep-production environments in southern Australia. Anim. Prod. Sci. 2014, 54, 715–726. [Google Scholar] [CrossRef]
- Munoz-Gutierrez, M.; Findlay, P.; Adam, C.L.; Wax, G.; Campbell, B.; Kendall, N.; Khalid, M.; Forsberg, M.; Scaramuzzi, R. The ovarian expression of mRNAs for aromatase, IGF-I receptor, IGF-binding protein-2,-4 and-5, leptin and leptin receptor in cycling ewes after three days of leptin infusion. Reproduction 2005, 130, 869–881. [Google Scholar] [CrossRef] [Green Version]
- Chadwick, M.; Pearce, K. Nutritional Management of Dorpers for Reproduction and Growth in Australia: A Literature Review; (Project Code: B.COM.0320); Meat and Livestock Australia Limited: North Sydney, NSW, Australia, 2013. [Google Scholar]
- Making More From Sheep. Module 10: Wean More Lambs; Procedure 10.1 Ensure most Ewes Get in-Lamb [an AWI and MLA Joint Initiative]. Available online: http://www.makingmorefromsheep.com.au/wean-more-lambs/procedure_10.1.htm (accessed on 7 July 2022).
- Meat and Livestock Australia Limited. Rams. Available online: https://www.mla.com.au/research-and-development/Genetics-and-breeding/sheep/reproduction/rams/ (accessed on 8 August 2022).
- Fowler, D.G. Mating activity and reproductive performance in Merino flocks where ram percentages are 1.0, 0.5 and 0.25. Anim. Prod. Sci. 1982, 22, 268–273. [Google Scholar] [CrossRef]
- Mattner, P.; Braden, A. Studies in flock mating of sheep. 2. Fertilization and prenatal mortality. Aust. J. Exp. Agric. 1967, 7, 110–116. [Google Scholar] [CrossRef]
- Allison, A.J. Ewe and ram fertility in commercial flocks mated with differing numbers of ewes per ram. N. Z. J. Exp. Agric. 1975, 3, 161–167. [Google Scholar] [CrossRef] [Green Version]
- Lightfoot, R.J.; Smith, J.A.C. Studies on the number of ewes joined per ram for flock matings under paddock conditions. I. Mating behaviour and fertility. Aust. J. Agric. Res. 1968, 19, 1029–1042. [Google Scholar] [CrossRef]
- Mattner, P.E.; Braden, A.W.H.; Turnbull, K.E. Studies in flock mating of sheep. 1. Mating behaviour. Anim. Prod. Sci. 1967, 7, 103–109. [Google Scholar] [CrossRef]
- Lindsay, D.R.; Robinson, T.J. Studies on the efficiency of mating in the sheep II. The effect of freedom of rams, paddock size, and age of ewes. J. Agric. Sci. 1961, 57, 141–145. [Google Scholar] [CrossRef]
- Oldham, C.M.; Gherardi, P.B.; Lindsay, D.R.; Mackintosh, J.B.; Adams, N.R. The influence of level of feed intake on sperm-producing capacity of testicular tissue in the ram. Aust. J. Agric. Res. 1978, 29, 173–179. [Google Scholar] [CrossRef]
- Martin, G.B.; Blache, D.; Miller, D.W.; Vercoe, P.E. Interactions between nutrition and reproduction in the management of the mature male ruminant. Animal 2010, 4, 1214–1226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barwick, S.A.; Kilgour, R.; Fowler, D.G.; Wilkins, J.; Harvey, W. Ram mating performance in Border Leicesters and related breed types. 3. Relationships of ram serving capacity, testis diameter, liveweight, breed and age with flock fertility. Aust. J. Exp. Agric. 1989, 29, 17. [Google Scholar] [CrossRef]
- Kleemann, D.O.; Walker, S.K.; Ponzoni, R.W.; Gifford, D.R.; Walkley, J.R.W.; Smith, D.H.; Grimson, R.J.; Jaensch, K.S.; Walkom, S.F.; Brien, F.D. Effect of previous reproductive performance on current reproductive rate in South Australian Merino ewes. Anim. Prod. Sci. 2016, 56, 716–725. [Google Scholar] [CrossRef]
Season | Breed | No. of Flocks | Pregnancy Outcome | Pregnancy Rate | No. of Fetuses | Multiple Rate | ||
---|---|---|---|---|---|---|---|---|
Non-Pregnant | Pregnant | Single | Multiple | |||||
Spring | Composite A | 1 | 17 | 427 | 0.96 | 36 | 391 | 0.92 |
Maternal | 2 | 134 | 828 | 0.86 | 301 | 527 | 0.64 | |
Merino A | 7 | 545 | 2794 | 0.84 | 1304 | 1490 | 0.53 | |
Shedding | 2 | 153 | 845 | 0.85 | 457 | 388 | 0.46 | |
Summer | Composite B | 8 | 298 | 3683 | 0.93 | 849 | 2229 | 0.72 |
Maternal | 8 | 387 | 3446 | 0.90 | 1215 | 2231 | 0.65 | |
Merino | 8 | 462 | 3576 | 0.89 | 1968 | 1608 | 0.45 | |
Shedding | - | - | - | - | - | - | - | |
Autumn | Composite | 7 | 203 | 4152 | 0.95 | 743 | 3409 | 0.82 |
Maternal B | 2 | 213 | 1572 | 0.88 | 271 | 835 | 0.75 | |
Merino | 8 | 188 | 3779 | 0.95 | 2061 | 1718 | 0.45 | |
Shedding | 3 | 214 | 1241 | 0.85 | 477 | 764 | 0.62 | |
Total | 58 | 2814 | 26,343 | 9682 | 15,590 |
Node | Pregnancy Outcome | Fetal No. | ||
---|---|---|---|---|
MI | P (%) | MI | P (%) | |
Breed | 0.00616 | 1.35 | 0.0581 | 6.09 |
During | 0.00225 | 0.493 | 0.0255 | 2.67 |
Mating BCS | 0.00217 | 0.475 | 0.0111 | 1.16 |
Season | 0.00611 | 1.34 | 0.00312 | 0.327 |
Mating weight | 0.00302 | 0.662 | 0.0402 | 4.21 |
Ram | 0.00425 | 0.931 | 0.00738 | 0.773 |
Region | 0.00196 | 0.430 | 0.0323 | 3.38 |
Node | Composite | Maternal | Merino | Shedding | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pregnancy Outcome | Fetal No. | Pregnancy Outcome | Fetal No. | Pregnancy Outcome | Fetal No. | Pregnancy Outcome | Fetal No. | |||||||||
MI | P (%) | MI | P (%) | MI | P (%) | MI | P (%) | MI | P (%) | MI | P (%) | MI | P (%) | MI | P (%) | |
During | 0.00804 | 2.48 | 0.00346 | 0.467 | 0.0100 | 1.98 | 0.00962 | 1.06 | 0.0126 | 2.60 | 0.0178 | 1.79 | 0.0186 | 3.06 | 0.0531 | 5.36 |
Mating BCS | 0.00107 | 0.331 | 0.00486 | 0.656 | 0.00335 | 0.668 | 0.00683 | 0.76 | 0.00184 | 0.381 | 0.0126 | 1.26 | 0.00473 | 0.778 | 0.0115 | 1.15 |
Season | 0.00278 | 0.858 | 0.0109 | 1.47 | 0.00142 | 0.284 | 0.0108 | 1.20 | 0.0182 | 3.75 | 0.00403 | 0.404 | 0.0000600 | 0.00965 | 0.0174 | 1.75 |
Mating weight | 0.00268 | 0.826 | 0.0230 | 3.10 | 0.00394 | 0.785 | 0.0256 | 2.83 | 0.00372 | 0.769 | 0.0398 | 3.98 | 0.00383 | 0.629 | 0.0427 | 4.30 |
Ram | 0.00339 | 1.04 | 0.00919 | 1.24 | 0.0191 | 3.81 | 0.0180 | 1.99 | 0.00613 | 1.27 | 0.0106 | 1.06 | - | - | - | - |
Region | 0.00765 | 2.36 | 0.00148 | 0.199 | 0.0215 | 4.29 | 0.00886 | 0.980 | 0.000690 | 0.143 | 0.0226 | 2.26 | 0.0159 | 2.62 | 0.0734 | 7.40 |
Node | Level | Level Description | Fetal No. | ||
---|---|---|---|---|---|
Non-Pregnant | Single | Multiple | |||
During | Well above average | Seasonal conditions described by producers during mating | 10.4 | 23.3 | 66.2 |
Above average | 4.94 | 18.1 | 76.9 | ||
Average | 2.48 | 21.8 | 75.7 | ||
Below average | - | - | - | ||
Well below average | - | - | - | ||
Mating BCS | LT2 | BCS < 2 | 11.2 | 29.7 | 59.1 |
E2 | BCS 2–2.25 | 7.67 | 25.6 | 66.8 | |
E2.5 | BCS 2.5–2.75 | 6.36 | 21.3 | 72.4 | |
E3 | BCS 3–3.25 | 5.65 | 21.4 | 73.0 | |
E3.5 | BCS 3.5–3.75 | 5.22 | 19.3 | 75.5 | |
E4 | BCS 4–4.25 | 5.08 | 16.0 | 78.9 | |
GT4 | BCS ≥ 4.5 | 6.55 | 16.5 | 76.9 | |
Mating season | Spring | Season of mating | 3.82 | 8.08 | 88.1 |
Summer | 7.50 | 23.9 | 68.6 | ||
Autumn | 4.66 | 17.1 | 78.3 | ||
Mating weight | 21 to 50 | 21 to 49.5 kg | 9.05 | 43.2 | 47.8 |
50 to 60 | 50 to 59.5 kg | 6.10 | 25.4 | 68.5 | |
60 to 70 | 60 to 69.5 kg | 4.53 | 15.8 | 79.7 | |
70 to 80 | 70 to 79.5 kg | 5.46 | 15.9 | 78.6 | |
80 to 90 | 80 to 89.5 kg | 7.02 | 17.9 | 75.1 | |
90 to 100 | 90 to 99.5 kg | 7.96 | 17.0 | 75.1 | |
100 to 123 | ≥100 kg | 14.1 | 17.2 | 68.7 | |
Ram | E1 | 1.0 to 1.25% | 4.24 | 13.2 | 82.6 |
E1.5 | 1.3 to 1.75% | 2.37 | 22.4 | 75.2 | |
E2 | 1.8 to 2.3% | 5.89 | 18.9 | 75.2 | |
E2.5 | 2.5% | 11.7 | 35.4 | 52.9 | |
GT2.5 | 2.8 to 4.0% | - | - | - | |
Region | Central NSW | 7.17 | 19.9 | 72.9 | |
East VIC | 6.90 | 17.9 | 75.1 | ||
Northern NSW/QLD | 1.73 | 26.0 | 72.3 | ||
SA Peninsula | - | - | - | ||
Wimmera Mallee Murray | 2.08 | 18.1 | 79.8 |
Node | Level | Level Description | Fetal No. | ||
---|---|---|---|---|---|
Non-Pregnant | Single | Multiple | |||
During | Well above average | Seasonal conditions described by producers during mating | 7.87 | 25.3 | 66.9 |
Above average | 15.5 | 32.4 | 52.1 | ||
Average | 10.1 | 35.2 | 54.6 | ||
Below average | - | - | - | ||
Well below average | - | - | - | ||
Mating BCS | LT2 | BCS < 2 | 22.7 | 37.5 | 39.8 |
E2 | BCS 2–2.25 | 16.1 | 34.9 | 49.0 | |
E2.5 | BCS 2.5–2.75 | 13.1 | 30.7 | 56.3 | |
E3 | BCS 3–3.25 | 10.9 | 30.8 | 58.3 | |
E3.5 | BCS 3.5–3.75 | 9.51 | 28.5 | 61.9 | |
E4 | BCS 4–4.25 | 9.19 | 24.6 | 66.2 | |
GT4 | BCS ≥ 4.5 | 10.4 | 24.1 | 65.4 | |
Mating season | Spring | Season of mating | 13.9 | 31.2 | 54.8 |
Summer | 9.98 | 31.7 | 58.3 | ||
Autumn | 11.80 | 20.2 | 68.0 | ||
Mating weight | 21 to 50 | 21 to 49.5 kg | 18.5 | 51.8 | 29.7 |
50 to 60 | 50 to 59.5 kg | 13.60 | 36.4 | 50.0 | |
60 to 70 | 60 to 69.5 kg | 9.79 | 26.5 | 63.7 | |
70 to 80 | 70 to 79.5 kg | 9.81 | 25.0 | 65.1 | |
80 to 90 | 80 to 89.5 kg | 9.93 | 24.4 | 65.7 | |
90 to 100 | 90 to 99.5 kg | 9.90 | 21.9 | 68.2 | |
100 to 123 | ≥100 kg | 17.7 | 23.1 | 59.2 | |
Ram | E1 | 1.0 to 1.25% | 30.10 | 25.8 | 44.1 |
E1.5 | 1.3 to 1.75% | 10.4 | 22.7 | 66.9 | |
E2 | 1.8 to 2.3% | 8.35 | 24.9 | 66.8 | |
E2.5 | 2.5% | 14.3 | 38.8 | 46.9 | |
GT2.5 | 2.8 to 4.0% | 10.5 | 38.7 | 50.8 | |
Region | Central NSW | 10.1 | 25.9 | 64.1 | |
East VIC | 4.49 | 38.9 | 56.6 | ||
Northern NSW/QLD | 12.9 | 36.5 | 50.6 | ||
SA Peninsula | - | - | - | ||
Wimmera Mallee Murray | 30.1 | 25.8 | 44.1 |
Node | Level | Level Description | Fetal No. | ||
---|---|---|---|---|---|
Non-Pregnant | Single | Multiple | |||
During | Well above average | Seasonal conditions described by producers during mating | 13.1 | 35.4 | 51.5 |
Above average | 6.6 | 50.3 | 43.1 | ||
Average | 14.2 | 42.1 | 43.7 | ||
Below average | 7.24 | 60.9 | 31.9 | ||
Well below average | 20.3 | 62.8 | 16.9 | ||
Mating BCS | LT2 | BCS < 2 | 17.7 | 55.8 | 26.5 |
E2 | BCS 2–2.25 | 12.8 | 54.8 | 32.4 | |
E2.5 | BCS 2.5–2.75 | 11.3 | 50.2 | 38.5 | |
E3 | BCS 3–3.25 | 9.66 | 50.5 | 39.8 | |
E3.5 | BCS 3.5–3.75 | 9.05 | 46.2 | 44.8 | |
E4 | BCS 4–4.25 | 9.28 | 39.8 | 50.9 | |
GT4 | BCS ≥ 4.5 | 11.6 | 38.3 | 50.0 | |
Mating season | Spring | Season of mating | 16.3 | 38.9 | 44.8 |
Summer | 11.60 | 49.0 | 39.4 | ||
Autumn | 4.71 | 51.8 | 43.5 | ||
Mating weight | 21 to 50 | 21 to 49.5 kg | 14.2 | 66.0 | 19.8 |
50 to 60 | 50 to 59.5 kg | 9.93 | 55.4 | 34.7 | |
60 to 70 | 60 to 69.5 kg | 8.33 | 42.3 | 49.3 | |
70 to 80 | 70 to 79.5 kg | 9.25 | 39.4 | 51.4 | |
80 to 90 | 80 to 89.5 kg | 12.10 | 39.1 | 48.8 | |
90 to 100 | 90 to 99.5 kg | 15.10 | 34.4 | 50.5 | |
100 to 123 | ≥100 kg | 17.9 | 32.1 | 50.0 | |
Ram | E1 | 1.0 to 1.25% | 14.50 | 62.1 | 23.5 |
E1.5 | 1.3 to 1.75% | 11.4 | 42.7 | 46.0 | |
E2 | 1.8 to 2.3% | 8.60 | 46.5 | 44.9 | |
E2.5 | 2.5% | 18.9 | 50.8 | 30.2 | |
GT2.5 | 2.8 to 4.0% | 16.3 | 51.3 | 32.4 | |
Region | Central NSW | 9.82 | 42.4 | 47.8 | |
East VIC | - | - | - | ||
Northern NSW/QLD | 10.4 | 60.6 | 29.0 | ||
SA Peninsula | 12.5 | 50.5 | 37.0 | ||
Wimmera Mallee Murray | 11.8 | 39.3 | 48.8 |
Node | Level | Level Description | Fetal No. | ||
---|---|---|---|---|---|
Non-Pregnant | Single | Multiple | |||
During | Well above average | Seasonal conditions described by producers during mating | - | - | - |
Above average | 18.0 | 28.6 | 53.5 | ||
Average | 4.80 | 50.8 | 44.4 | ||
Below average | - | - | - | ||
Well below average | 15.8 | 59.0 | 25.1 | ||
Mating BCS | LT2 | BCS < 2 | 26.9 | 44.4 | 28.6 |
E2 | BCS 2–2.25 | 19.9 | 43.8 | 36.3 | |
E2.5 | BCS 2.5–2.75 | 17.2 | 39.8 | 42.9 | |
E3 | BCS 3–3.25 | 14.6 | 40.7 | 44.7 | |
E3.5 | BCS 3.5–3.75 | 13.0 | 37.5 | 49.5 | |
E4 | BCS 4–4.25 | 12.1 | 31.7 | 56.2 | |
GT4 | BCS ≥ 4.5 | 12.4 | 31.8 | 55.8 | |
Mating season | Spring | Season of mating | 15.3 | 45.8 | 38.9 |
Summer | - | - | - | ||
Autumn | 14.70 | 32.7 | 52.6 | ||
Mating weight | 21 to 50 | 21 to 49.5 kg | 21.3 | 57.5 | 21.1 |
50 to 60 | 50 to 59.5 kg | 16.4 | 45.3 | 38.3 | |
60 to 70 | 60 to 69.5 kg | 13.4 | 33.1 | 53.5 | |
70 to 80 | 70 to 79.5 kg | 14.3 | 28.5 | 57.2 | |
80 to 90 | 80 to 89.5 kg | 12.2 | 34.0 | 53.8 | |
90 to 100 | 90 to 99.5 kg | 9.80 | 35.0 | 55.2 | |
100 to 123 | ≥100 kg | 10.4 | 30.5 | 59.1 | |
Ram | E1 | 1.0 to 1.25% | - | - | - |
E1.5 | 1.3 to 1.75% | - | - | - | |
E2 | 1.8 to 2.3% | 14.90 | 38.0 | 47.0 | |
E2.5 | 2.5% | - | - | - | |
GT2.5 | 2.8 to 4.0% | - | - | - | |
Region | Central NSW | 14.4 | 37.0 | 48.5 | |
East VIC | - | - | - | ||
Northern NSW/QLD | 9.69 | 54.5 | 35.9 | ||
SA Peninsula | - | - | - | ||
Wimmera Mallee Murray | 24.0 | 14.1 | 61.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bates, A.L.; McGrath, S.R.; Robertson, S.M.; Refshauge, G. Mating Conditions and Management Practices Influence Pregnancy Scanning Outcomes Differently between Ewe Breeds. Animals 2022, 12, 2908. https://doi.org/10.3390/ani12212908
Bates AL, McGrath SR, Robertson SM, Refshauge G. Mating Conditions and Management Practices Influence Pregnancy Scanning Outcomes Differently between Ewe Breeds. Animals. 2022; 12(21):2908. https://doi.org/10.3390/ani12212908
Chicago/Turabian StyleBates, Amy L., Shawn R. McGrath, Susan M. Robertson, and Gordon Refshauge. 2022. "Mating Conditions and Management Practices Influence Pregnancy Scanning Outcomes Differently between Ewe Breeds" Animals 12, no. 21: 2908. https://doi.org/10.3390/ani12212908
APA StyleBates, A. L., McGrath, S. R., Robertson, S. M., & Refshauge, G. (2022). Mating Conditions and Management Practices Influence Pregnancy Scanning Outcomes Differently between Ewe Breeds. Animals, 12(21), 2908. https://doi.org/10.3390/ani12212908