Effects of Garlic (Allium sativum L.) and Ramsons (Allium ursinum L.) on Lipid Oxidation and the Microbiological Quality, Physicochemical Properties and Sensory Attributes of Rabbit Meat Burgers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. pH
2.2.2. Lipid Oxidation (TBARS)
2.2.3. Cooking Loss
2.2.4. Color
2.2.5. Sensory Analysis
2.2.6. Microbial Analysis
Sample Preparation
Identification of Bacterial Colonies
2.3. Statistical Analysis
3. Results
3.1. pH, TBARS Values and Cooking Loss of Raw and Oven-Baked Burgers
3.2. Color Parameters of Raw and Oven-Baked Burgers
3.3. Sensory Properties of Raw and Oven-Baked Burgers
3.4. Microbiological Quality of Raw Burgers
4. Discussion
4.1. Physicochemical Properties and Lipid Oxidation (TBARS)
4.2. Sensory Properties
4.3. Microbiological Quality
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hermida, M.; González, M.; Miranda, M.; Rodrígue-Otero, J.L. Mineral analysis in rabbit meat from Galicia (NW Spain). Meat Sci. 2006, 73, 635–639. [Google Scholar] [CrossRef]
- Nistor, E.; Bampidis, V.A.; Păcală, N.; Pentea, M.; Tozer, J.; Prundeanu, H. Nutrient content of rabbit meat as compared to chicken, beef and pork meat. J. Anim. Prod. Adv. 2013, 3, 172–176. [Google Scholar] [CrossRef]
- Vergara, H.; Berruga, M.I.; Linares, M.B. Effect of gas composition on rabbit meat quality in modified atmosphere packaging. J. Sci. Food Agric. 2005, 85, 1981–1986. [Google Scholar] [CrossRef]
- Dalle Zotte, A. Rabbit farming for meat purposes. Anim. Front. 2014, 4, 62–67. [Google Scholar] [CrossRef] [Green Version]
- Petracci, M.; Cavani, C. Rabbit meat processing: Historical perspective to future directions. World Rabbit Sci. 2013, 21, 217–226. [Google Scholar] [CrossRef]
- Escribá-Pérez, C.; Baviera-Puig, A.; Montero-Vicente, L.; Buitrago-Vera, J. Children’s consumption of rabbit meat. World Rabbit Sci. 2019, 27, 113–122. [Google Scholar] [CrossRef]
- Petracci, M.; Soglia, F.; Leroy, F. Rabbit meat in need of a hat-trick: From tradition to innovation (and back). Meat Sci. 2018, 146, 93–100. [Google Scholar] [CrossRef]
- Mancini, S.; Mattioli, S.; Nuvoloni, R.; Pedonese, F.; Dal Bosco, A.; Paci, G. Effects of garlic powder and salt additions on fatty acids profile, oxidative status, antioxidant potential and sensory properties of raw and cooked rabbit meat burgers. Meat Sci. 2020, 169, 108226. [Google Scholar] [CrossRef] [PubMed]
- Mancini, S.; Preziuso, G.; Dal Bosco, A.; Roscini, V.; Szendrő, Z.; Fratini, F.; Paci, G. Effect of turmeric powder (Curcuma longa L.) and ascorbic acid on physical characteristics and oxidative status of fresh and stored rabbit burgers. Meat Sci. 2015, 110, 93–100. [Google Scholar] [CrossRef]
- Pateiro, M.; Gómez-Salazar, J.A.; Jaime-Patlán, M.; Sosa-Morales, M.E.; Lorenzo, J.M. Plant extracts obtained with green solvents as natural antioxidants in fresh meat products. Antioxidants 2021, 10, 181. [Google Scholar] [CrossRef]
- Aminzare, M.; Hashemi, M.; Ansarian, E.; Bimkar, M.; Azar, H.H.; Mehrasbi, M.R.; Daneshamooz, S.; Raeisi, M.; Jannat, B.; Afshari, A. Using natural antioxidants in meat and meat products as preservatives: A review. Adv. Anim. Vet. Sci. 2019, 7, 417–426. [Google Scholar] [CrossRef] [Green Version]
- Boeira, C.P.; Piovesan, N.; Flores, D.C.B.; Soquetta, M.B.; Lucas, B.N.; Heck, R.T.; dos Santos, A.J.; Campagnol, P.C.B.; dos Santos, D.; Flores, E.M.M.; et al. Phytochemical characterization and antimicrobial activity of Cymbopogon citratus extract for application as natural antioxidant in fresh sausage. Food Chem. 2020, 319, 126553. [Google Scholar] [CrossRef]
- El-Hamidi, M.; El-Shami, S.M. Scavenging activity of different garlic extracts and garlic powder and their antioxidant effect on heated sunflower oil. Am. J. Food Technol. 2015, 10, 135–146. [Google Scholar] [CrossRef] [Green Version]
- Upadhyay, R.K. Nutritional and therapeutic potential of Allium vegetables. J. Nutr. Ther. 2017, 6, 18–37. [Google Scholar] [CrossRef]
- Chu, Y.-L.; Raghu, R.; Lu, K.-H.; Liu, C.-T.; Lin, S.-H.; Lai, Y.-S.; Cheng, W.-C.; Lin, S.-H.; Sheen, L.-Y. Autophagy therapeutic potential of garlic in human cancer therapy. J. Tradit. Complement. Med. 2013, 3, 159–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munekata, P.E.S.; Rocchetti, G.; Pateiro, M.; Lucini, L.; Domínguez, R.; Lorenzo, J.M. Addition of plant extracts to meat and meat products to extend shelf-life and health-promoting attributes: An overview. Curr. Opin. Food Sci. 2020, 31, 81–87. [Google Scholar] [CrossRef]
- Alirezalu, K.; Pateiro, M.; Yaghoubi, M.; Alirezalu, A.; Peighambardoust, S.H.; Lorenzo, J.M. Phytochemical constituents, advanced extraction technologies and techno-functional properties of selected Mediterranean plants for use in meat products. A comprehensive review. Trends Food Sci. Technol. 2020, 100, 292–306. [Google Scholar] [CrossRef]
- Domínguez, R.; Munekata, P.E.S.; Pateiro, M.; Maggiolino, A.; Bohrer, B.; Lorenzo, J.M. Red beetroot. A potential source of natural additives for the meat industry. Appl. Sci. 2020, 10, 8340. [Google Scholar] [CrossRef]
- Efenberger-Szmechtyk, M.; Nowak, A.; Czyzowska, A. Plant extracts rich in polyphenols: Antibacterial agents and natural preservatives for meat and meat products. Crit. Rev. Food Sci. Nutr. 2021, 61, 149–178. [Google Scholar] [CrossRef]
- Wang, W.; Kannan, K. Quantitative identification of and exposure to synthetic phenolic antioxidants, including butylated hydroxytoluene, in urine. Environ. Int. 2019, 128, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, J.S.; Santos, M.J.M.C.; Silva, L.K.R.; Pereira, L.C.L.; Santos, I.A.; da Silva Lannes, S.C.; da Silva, M.V. Natural antioxidants used in meat products: A brief review. Meat Sci. 2019, 148, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, J.M.; Pateiro, M.; Domínguez, R.; Barba, F.J.; Putnik, P.; Kovačević, D.B.; Shpigelman, A.; Granato, D.; Franco, D. Berries extracts as natural antioxidants in meat products: A review. Food Res. Int. 2018, 106, 1095–1104. [Google Scholar] [CrossRef] [PubMed]
- Smaoui, S.; Hlima, H.B.; Mtibaa, A.C.; Fourati, M.; Sellem, I.; Elhadef, K.; Ennouri, K.; Mellouli, L. Pomegranate peel as phenolic compounds source: Advanced analytical strategies and practical use in meat products. Meat Sci. 2019, 158, 107914. [Google Scholar] [CrossRef] [PubMed]
- Kovarovič, J.; Bystrická, J.; Vollmannová, A.; Tóth, T.; Brindza, J. Biologically valuable substances in garlic (Allium sativum L.)—A review. J. Cent. Eur. Agric. 2019, 20, 292–304. [Google Scholar] [CrossRef] [Green Version]
- Marchese, A.; Barbieri, R.; Sanches-Silva, A.; Daglia, M.; Nabavi, S.F.; Jafari, N.J.; Izadi, M.; Ajami, M.; Nabavie, S.M. Antifungal and antibacterial activities of allicin: A review. Trends Food Sci. Technol. 2016, 52, 49–56. [Google Scholar] [CrossRef]
- Martins, N.; Petropoulos, S.; Ferreira, I.C.F.R. Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre- and post-harvest conditions: A review. Food Chem. 2016, 211, 41–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Sayed, H.S.; Chizzola, R.; Ramadan, A.A.; Edris, A.E. Chemical composition and antimicrobial activity of garlic essential oils evaluated in organic solvent, emulsifying, and self-microemulsifying water based delivery systems. Food Chem. 2017, 221, 196–204. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Missbach, B.; Hoffmann, G. An umbrella review of garlic intake and risk of cardiovascular disease. Phytomedicine 2016, 23, 1127–1133. [Google Scholar] [CrossRef] [PubMed]
- Lanzotti, V. The analysis of onion and garlic. J. Chromatogr. A 2016, 1112, 3–22. [Google Scholar] [CrossRef] [Green Version]
- Brewer, M.S. Natural antioxidants: Sources, compounds, mechanisms of action, and potential applications. Compr. Rev. Food Sci. Food Saf. 2011, 10, 221–247. [Google Scholar] [CrossRef]
- Lupoae, M.; Coprean, D.; Dinică, R.; Lupoae, P.; Gurau, G.; Bahrim, G. Antimicrobial activity of extracts of wild garlic (Allium ursinum) from romanian spontaneous flora. Sci. Study Res. Chem. Chem. Eng. Biotechnol. Food Ind. 2013, 14, 221–227. Available online: https://www.proquest.com/docview/1530420307?pqorigsite=gscholar&fromopenview=true (accessed on 20 January 2022).
- Sobolewska, D.; Podolak, I.; Makowska-Was, J. Allium ursinum: Botanical, phytochemical and pharmacological overview. Phytochem. Rev. 2015, 14, 81–97. [Google Scholar] [CrossRef] [Green Version]
- Djurdjevic, L.; Dinic, A.; Pavlovic, P.; Mitrovic, M.; Karadzic, B.; Tesevic, V. Allelopathic potential of Allium ursinum L. Biochem. Syst. Ecol. 2004, 32, 533–544. [Google Scholar] [CrossRef]
- Mancini, S.; Preziuso, G.; Fratini, F.; Torracca, B.; Nuvoloni, R.; Dal Bosco, A.; Paci, G. Qualitative improvement of rabbit burgers using Zingiber officinale Roscoe powder. World Rabbit Sci. 2017, 25, 367–375. [Google Scholar] [CrossRef] [Green Version]
- Mancini, S.; Mattioli, S.; Nuvoloni, R.; Pedonese, F.; dal Bosco, A.; Paci, G. Effects of garlic powder and salt on meat quality and microbial loads of rabbit burgers. Foods 2020, 9, 1022. [Google Scholar] [CrossRef]
- De Blas, C.; Mateos, G.G. Feed formulation. In Nutrition of the Rabbit, 2nd ed.; de Blas, C., Wiseman, J., Eds.; CAB International: Wallingford, UK, 2010; pp. 222–232. [Google Scholar]
- The European Parliament and the Council of the European Union. Directive 2010/63/EU of the European parliament and of the council on the protection of animals used for scientific purposes. Official Journal of the European Union(OJEU), 20.10.2010, L 276/33. Available online: https://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:276:0033:0079:en:PDF (accessed on 1 March 2022).
- Daszkiewicz, T.; Gugołek, A.; Janiszewski, P.; Kubiak, D.; Czoik, M. The effect of intensive and extensive production systems on carcass quality in New Zealand White rabbits. World Rabbit Sci. 2012, 20, 25–33. [Google Scholar] [CrossRef]
- Pikul, J.; Leszczyński, D.E.; Kummerow, F.A. Evaluation of three modified TBA methods for measuring lipid oxidation in chicken meat. J. Agric. Food Chem. 1989, 37, 1309–1313. [Google Scholar] [CrossRef]
- AMSA. Research Guidelines for Cookery, Sensory Evaluation and Instrumental Tenderness Measurements of Fresh Meat; National Live Stock and Meat Board: Chicago, IL, USA, 1995. [Google Scholar]
- Commission Internationale de l’Eclairage (CIE). Recommendations on Uniform Color Spaces-Color Difference Equations; Psychometric Color Terms; Supplement No. 2 to CIE Publication No. 15 (E-1.3.1.); 1971/(TC-1-3); Bureau Central de la CIE: Paris, France, 1978. [Google Scholar]
- ISO. ISO 8586; Sensory Analysis—General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors; International Organization for Standardization: Geneva, Switzerland, 2012. [Google Scholar]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A comprehensive review on lipid oxidation in meat and meat products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef] [Green Version]
- Pateiro, M.; Munekata, P.E.S.; Sant’Ana, A.S.; Domínguez, R.; Rodríguez-Lázaro, D.; Lorenzo, J.M. Application of essential oils as antimicrobial agents against spoilage and pathogenic microorganisms in meat products. Int. J. Food Microbiol. 2021, 337, 108966. [Google Scholar] [CrossRef]
- Papuc, C.; Goran, G.V.; Predescu, C.N.; Nicorescu, V.; Stefan, G. Plant polyphenols as antioxidant and antibacterial agents for shelf-life extension of meat and meat products: Classification, structures, sources, and action mechanisms. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1243–1268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, Y.; Yadav, D.N.; Ahmad, T.; Narsaiah, K. Recent Trends in the Use of Natural Antioxidants for Meat and Meat Products. Compr. Rev. Food Sci. Food Saf. 2015, 14, 796–812. [Google Scholar] [CrossRef] [Green Version]
- De Carvalho, F.A.L.; Lorenzo, J.M.; Pateiro, M.; Bermúdez, R.; Purriños, L.; Trindade, M.A. Effect of guarana (Paullinia cupana) seed and pitanga (Eugenia uniflora L.) leaf extracts on lamb burgers with fat replacement by chia oil emulsion during shelf life storage at 2 °C. Food Res. Int. 2019, 125, 108554. [Google Scholar] [CrossRef]
- Primo, E. Oleaginosas. Grasas Animales. Grasas Plásticas. Química de los Alimentos; Editorial Síntesis: Madrid, Spain, 1998; pp. 195–202. [Google Scholar]
- Alarcón, M.; López-Viñas, M.; Pérez-Coello, M.S.; Díaz-Maroto, M.C.; Alañón, M.E.; Soriano, A. Effect of wine lees as alternative antioxidants on physicochemical and sensorial composition of deer burgers stored during chilled storage. Antioxidants 2020, 9, 687. [Google Scholar] [CrossRef]
- Garrido, M.D.; Auqui, M.; Martí, N.; Linares, M.B. Effect of two different red grape pomace extracts obtained under different extraction systems on meat quality of pork burgers. LWT Food Sci. Technol. 2011, 44, 2238–2243. [Google Scholar] [CrossRef]
- Zamuz, S.; López-Pedrouso, M.; Barba, F.J.; Lorenzo, J.M.; Domínguez, H.; Franco, D. Application of hull, bur and leaf chestnut extracts on the shelf-life of beef patties stored under MAP: Evaluation of their impact on physicochemical properties, lipid oxidation, antioxidant, and antimicrobial potential. Food Res. Int. 2018, 112, 263–273. [Google Scholar] [CrossRef]
- Fernandes, R.P.P.; Trindade, M.A.; Lorenzo, J.M.; Munekata, P.E.S.; De Melo, M.P. Effects of oregano extract on oxidative, microbiological and sensory stability of sheep burgers packed in modified atmosphere. Food Control 2016, 63, 65–75. [Google Scholar] [CrossRef]
- Kinalski, T.; Noreña, C.P.Z. Effect of blanching treatments on antioxidant activity and thiosulfinate degradation of garlic (Allium sativum L.). Food Bioprocess Technol. 2014, 7, 2152–2157. [Google Scholar] [CrossRef]
- Zhang, X.; Meng, Q.; Hi, L.; Zhao, L.; Ren, L. Effects of garlic extract on color, lipid oxidation and oxidative breakdown products in raw ground beef during refrigerated storage. Ital. J. Food Sci. 2016, 28, 139–147. [Google Scholar] [CrossRef]
- Lenková, M.; Bystrická, J.; Tóth, T.; Hrstková, M. Evaluation and comparison of the content of total polyphenols and antioxidant activity of selected species of the genus Allium. J. Cent. Eur. Agric. 2016, 17, 1119–1133. [Google Scholar] [CrossRef] [Green Version]
- Nurwantoro; Bintoro, V.P.; Legowo, A.M.; Purnomoadi, A.; Setiani, B.E. Garlic antioxidant (Allium sativum L.) to prevent meat rancidity. Procedia Food Sci. 2015, 3, 137–141. [Google Scholar] [CrossRef] [Green Version]
- Mancini, S.; Nuvoloni, R.; Pedonese, F.; Paci, G. Effects of garlic powder and salt additions in rabbit meat burgers: Preliminary evaluation. J. Food Process. Preserv. 2019, 43, e13894. [Google Scholar] [CrossRef]
- Sallam, K.I.; Ishioroshi, M.; Samejima, K. Antioxidant and antimicrobial effects of garlic in chicken sausage. LWT Food Sci. Technol. 2004, 37, 849–855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Ginés, J.M.; Fernández-Lopez, J.; Sayas-Barbera, E.; Perez-Alvarez, J.A. Meat products as functional foods: A review. J. Food Sci. 2005, 70, R37–R43. [Google Scholar] [CrossRef]
- King, N.J.; Whyte, R. Does it look cooked? A review of factors that influence cooked meat color. J. Food Sci. 2006, 71, R31–R40. [Google Scholar] [CrossRef]
- Rodriguez-Estrada, M.T.; Penazzi, G.; Caboni, M.F.; Bertacco, G.; Lercker, G. Effect of different cooking methods on some lipid and protein components of hamburgers. Meat Sci. 1997, 45, 365–375. [Google Scholar] [CrossRef]
- Hęś, M.; Gramza-Michałowska, A.; Szymandera-Buszka, K. Effect of cooking methods and frozen storage on lipid oxidation in meat products with antioxidants. Bromat. Chem. Toksykol. 2009, 42, 455–459. Available online: https://www.ptfarm.pl/pub/File/bromatologia_2009/bromatologia_3_2009/BR3%20s.%200455-0459.pdf (accessed on 1 March 2022).
- Wroniak, M.; Łukasik, D.; Maszewska, M. Comparison of the oxidative stability of some selected cold-pressed and fully refined oils. Żywność. Nauka. Technologia. Jakość 2006, 1, 214–221. Available online: https://www.pttz.org/zyw/wyd/czas/2006,%201(46)%20Supl/24_Wroniak.pdf (accessed on 1 March 2022).
- Cieślik, E.; Filipiak-Florkiewicz, A. Wpływ Obróbki Technologicznej na Zawartość Przeciwutleniaczy w Produktach Spożywczych. Przeciwutleniacze w Żywności; Grajek, W., Ed.; WNT: Warszawa, Poland, 2007; pp. 474–478. [Google Scholar]
- Soriano, A.; Alañón, M.E.; Alarcón, M.; García-Ruíz, A.; Díaz-Maroto, M.C.; Pérez-Coello, M.S. Oak wood extracts as natural antioxidants to increase shelf life of raw pork patties in modified atmosphere packaging. Food Res. Int. 2018, 111, 524–533. [Google Scholar] [CrossRef]
- Andrés, A.I.; O’Grady, M.N.; Gutierrez, J.I.; Kerry, J.P. Screening of phytochemicals in fresh lamb meat patties stored in modified atmosphere packs: Influence on selected meat quality characteristics. Int. J. Food Sci. Technol. 2010, 45, 289–294. [Google Scholar] [CrossRef]
- Śmiecińska, K.; Daszkiewicz, T. Lipid oxidation and color changes in beef stored under different modified atmospheres. J. Food Process. Preserv. 2021, 45, e15263. [Google Scholar] [CrossRef]
- Mills, J.; Donnison, A.; Brightwell, G. Factors affecting microbial spoilage and shelf-life of chilled vacuum-packed lamb transported to distant markets: A review. Meat Sci. 2014, 98, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Walsh, H.M.; Kerry, J.P. Meat packaging. In Meat Processing. Improving Quality; Kerry, J.P., Kerry, J.F., Ledward, D.A., Eds.; CRC Press, LLC and Woodhead Publishing: Cambridge, UK, 2002; pp. 417–451. [Google Scholar]
- Yin, M.C.; Faustman, C. Influence of temperature, pH, and phospholipid composition upon the stability of myoglobin and phospholipid: A liposome model. J. Agric. Food Chem. 1993, 41, 853–857. [Google Scholar] [CrossRef]
- Lee, E.-J.; Cho, J.-E.; Kim, J.-H.; Lee, S.-K. Green pigment in crushed garlic (Allium sativum L.) cloves: Purification and partial characterization. Food Chem. 2007, 101, 1677–1686. [Google Scholar] [CrossRef]
- Wang, D.; Yang, X.; Wang, Z.; Hu, X.; Zhao, G. Isolation and identification of one kind of yellow pigments from model reaction systems related to garlic greening. Food Chem. 2009, 117, 296–301. [Google Scholar] [CrossRef]
- Wang, D.; Li, X.; Zhao, X.; Zhang, C.; Ma, Y.; Zhao, G. Characterization of a new yellow pigment from model reaction system related to garlic greening. Eur. Food Res. Technol. 2010, 230, 973–979. [Google Scholar] [CrossRef]
- McMillin, K.W. Where is MAP going? A review and future potential of modified atmosphere packaing for meat. Meat Sci. 2008, 80, 43–65. [Google Scholar] [CrossRef]
- Lavieri, N.; Wiliams, S.K. Effects of packaging systems and fat concentrations on microbiology, sensory and physical properties of ground beef stored at 4 ± 1 °C. Meat Sci. 2014, 97, 534–541. [Google Scholar] [CrossRef] [PubMed]
- Gribble, A.; Mills, J.; Brightwell, G. The spoilage characteristics of Brochothrix thermosphacta and two psychrotolerant Enterobacteriaceae in vacuum packed lamb and the comparison between high and low pH cuts. Meat Sci. 2014, 97, 83–92. [Google Scholar] [CrossRef]
- Overholt, M.F.; Mancini, S.; Galloway, H.O.; Preziuso, G.; Dilger, A.C.; Boler, D.D. Effects of salt purity on lipid oxidation, sensory characteristics, and textural properties of fresh, ground pork patties. LWT Food Sci. Technol. 2016, 65, 890–896. [Google Scholar] [CrossRef] [Green Version]
- Martínez, L.; Djenane, D.; Cilla, I.; Beltrán, J.A.; Roncalés, P. Effect of different concentrations of carbon dioxide and low concentration of carbon monoxide on the shelf-life of fresh pork sausages packaged in modified atmosphere. Meat Sci. 2005, 71, 563–570. [Google Scholar] [CrossRef]
- Aydin, A.; Bostan, K.; Erkan, M.E.; Bingöl, B. The Antimicrobial Effects of Chopped Garlic in Ground Beef and Raw Meatball (Çiğ Köfte). J. Med. Food 2007, 10, 203–207. [Google Scholar] [CrossRef]
- López-Vargas, J.H.; Fernández-López, J.; Pérez-Álvarez, J.Á.; Viuda-Martos, M. Quality characteristics of pork burger added with albedo-fiber powder obtained from yellow passion fruit (Passiflora edulis var. flavicarpa) co-products. Meat Sci. 2014, 97, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, J.M.; Sineiro, J.; Amado, I.R.; Franco, D. Influence of natural extracts on the shelf life of modified atmosphere-packaged pork patties. Meat Sci. 2014, 96, 526–534. [Google Scholar] [CrossRef]
- Mancini, S.; Paci, G.; Fratini, F.; Torracca, B.; Nuvoloni, R.; Dal Bosco, A.; Roscini, V.; Preziuso, G. Improving pork burgers quality using Zingiber officinale Roscoe powder (ginger). Meat Sci. 2017, 129, 161–168. [Google Scholar] [CrossRef]
- Muzolf-Panek, M.; Kaczmarek, A.; Tomaszewska-Gras, J.; Cegielska-Radziejewska, R.; Majcher, M. Oxidative and microbiological stability of raw ground pork during chilled storage as affected by Plant extracts. Int. J. Food Prop. 2019, 22, 111–129. [Google Scholar] [CrossRef] [Green Version]
- Śmiecińska, K. Microbiological quality of beef stored under different modified atmospheres. Med. Weter. 2021, 77, 99–105. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, J.; Guo, X. Effects of Antimicrobial and Antioxidant Activities of Spice Extracts on Raw Chicken Meat Quality. Food Sci. Hum. Wellness 2016, 5, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Wang, X.; Xiao, Z.; Bi, W. Effect of Chitosan Nanoparticles Loaded with Cinnamon Essential Oil on the Quality of Chilled Pork. LWT Food Sci. Technol. 2015, 63, 519–526. [Google Scholar] [CrossRef]
- Soares, K.S.; Souza, M.P.; Silva-Filho, E.C.; Barud, H.S.; Ribeiro, C.A.; Santos, D.D.; Rocha, K.N.S.; de Moura, J.F.P.; Oliveira, R.L.; Bezerra, L.R. Effect of Edible Onion (Allium cepa L.) Film on Quality, Sensory Properties and Shelf Life of Beef Burger Patties. Molecules 2021, 26, 7202. [Google Scholar] [CrossRef]
- Redondo-Solano, M.; Guzmán-Saborío, P.; Ramírez-Chavarría, F.; Chaves-Ulate, C.; Araya-Quesada, Y.; Araya-Morice, A. Effect of the type of packaging on the shelf life of ground rabbit meat. Food Sci. Technol. Int. 2022, 28, 190–199. [Google Scholar] [CrossRef] [PubMed]
Parameter | Additive ** | Storage Time (ST) ** | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
C | G | R | GR | ST0 | ST7 | Additive | ST | ||
raw burgers | |||||||||
pH | 5.79 a | 5.88 ab | 5.87 ab | 5.94 b | 5.94 a | 5.80 b | 0.012 | ˂0.001 | ˂0.001 |
TBARS | 0.65 a | 0.94 ac | 1.07 c | 1.66 b | 0.76 a | 1.41 b | 0.058 | ˂0.001 | ˂0.001 |
cooking loss | 15.16 | 17.23 | 15.83 | 16.58 | 16.34 | 16.06 | 0.303 | 0.084 | 0.650 |
oven-baked burgers | |||||||||
pH | 6.07 a | 6.11 a | 6.11 a | 6.21 b | 6.20 a | 6.05 b | 0.012 | ˂0.001 | ˂0.001 |
TBARS | 1.16 a | 1.19 a | 1.57 b | 1.95 c | 1.41 | 1.54 | 0.042 | ˂0.001 | 0.125 |
Parameter | Additive ** | Storage Time (ST) ** | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
C | G | R | GR | ST0 | ST7 | Additive | ST | ||
raw burgers | |||||||||
L* (lightness) | 55.35 a | 56.77 b | 49.78 c | 49.42 c | 52.80 | 52.86 | 0.358 | ˂0.001 | 0.944 |
a* (redness) | 11.50 a | 8.12 b | 2.81 c | 0.51 d | 6.87 a | 4.59 b | 0.507 | ˂0.001 | 0.023 |
b* (yellowness) | 17.32 a | 18.64 bc | 18.19 b | 19.05 c | 18.84 a | 17.76 b | 0.109 | ˂0.001 | ˂0.001 |
C* (chroma saturation) | 20.82 a | 20.34 a | 18.44 b | 19.06 bc | 20.55 a | 18.78 b | 0.169 | ˂0.001 | ˂0.001 |
h° (hue angle) | 56.69 ab | 66.61 a | 81.36 a | 25.49 b | 70.91 a | 44.16 b | 5.288 | 0.001 | 0.010 |
oven-baked burgers | |||||||||
L* (lightness) | 70.06 a | 71.04 a | 66.94 b | 66.58 bc | 69.20 a | 68.11 b | 0.262 | ˂0.001 | 0.037 |
a* (redness) | 3.98 a | 3.14 a | 0.77 b | 0.61 bc | 1.26 a | 2.99 b | 0.201 | ˂0.001 | ˂0.001 |
b* (yellowness) | 19.79 a | 20.19 ac | 21.48 bc | 22.23 b | 19.58 a | 22.27 b | 0.221 | ˂0.001 | ˂0.001 |
C* (chroma saturation) | 20.21 a | 20.44 a | 21.50 a | 13.96 b | 15.52 a | 22.53 b | 0.654 | ˂0.001 | ˂0.001 |
h° (hue angle) | 78.97 a | 81.27 a | 88.04 a | 7.61 b | 45.56 a | 82.38 b | 6.129 | ˂0.001 | 0.002 |
Parameter | Additive ** | Storage Time (ST) ** | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
C | G | R | GR | ST0 | ST7 | Additive | ST | ||
raw burgers | |||||||||
off-odors | 0.21 | 0.26 | 0.28 | 0.24 | 0.14 a | 0.25 b | 0.021 | 0.181 | 0.010 |
appearance | 8.93 a | 7.72 b | 6.55 c | 5.07 d | 6.91 | 7.23 | 0.173 | ˂0.001 | 0.341 |
overall acceptability | 8.44 a | 7.55 b | 7.20 c | 5.85 d | 7.36 | 7.16 | 0.112 | ˂0.001 | 0.391 |
oven-baked burgers | |||||||||
appearance | 6.35 a | 6.52 ac | 8.30 b | 7.50 bc | 6.11 a | 8.22 b | 0.158 | ˂0.001 | ˂0.001 |
aroma—intensity | 3.72 a | 7.95 b | 8.57 b | 8.66 b | 7.12 | 7.33 | 0.258 | ˂0.001 | 0.690 |
flavor—intensity | 5.35 a | 8.17 b | 8.37 b | 8.52 b | 7.95 a | 7.26 b | 0.161 | ˂0.001 | 0.033 |
hardness | 5.87 a | 6.02 a | 7.70 b | 7.70 bc | 7.30 a | 6.35 b | 0.141 | ˂0.001 | ˂0.001 |
juiciness | 5.50 a | 6.85 b | 8.05 c | 7.85 c | 7.16 | 6.96 | 0.141 | ˂0.001 | 0.484 |
overall acceptability | 6.42 a | 6.90 a | 8.32 b | 7.47 c | 6.69 a | 7.60 b | 0.105 | ˂0.001 | 0.002 |
off-odors | 0.15 ab | 0.08 ab | 0.07 a | 0.17 b | 0.05 a | 0.18 b | 0.013 | 0.040 | ˂0.001 |
off-flavors | 0.42 a | 0.20 b | 0.07 b | 0.15 b | 0.12 a | 0.29 b | 0.026 | ˂0.001 | 0.001 |
Parameter | Additive ** | Storage Time (ST) ** | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
C | G | R | GR | ST0 | ST7 | Additive | ST | ||
Enterobacteriacea | 5.87 | 5.98 | 6.00 | 6.32 | 4.67 a | 6.42 b | 0.165 | 0.796 | ˂0.001 |
Pseudomonas spp. | 6.04 | 5.64 | 5.85 | 5.65 | 4.23 a | 7.35 b | 0.179 | 0.840 | ˂0.001 |
lactic acid bacteria | 5.69 | 5.85 | 6.02 | 5.74 | 5.39 a | 6.26 b | 0.072 | 0.388 | ˂0.001 |
total aerobic psychrotrophic bacteria | 6.87 | 7.05 | 6.95 | 6.90 | 6.22 a | 7.66 b | 0.088 | 0.90 | ˂0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Śmiecińska, K.; Gugołek, A.; Kowalska, D. Effects of Garlic (Allium sativum L.) and Ramsons (Allium ursinum L.) on Lipid Oxidation and the Microbiological Quality, Physicochemical Properties and Sensory Attributes of Rabbit Meat Burgers. Animals 2022, 12, 1905. https://doi.org/10.3390/ani12151905
Śmiecińska K, Gugołek A, Kowalska D. Effects of Garlic (Allium sativum L.) and Ramsons (Allium ursinum L.) on Lipid Oxidation and the Microbiological Quality, Physicochemical Properties and Sensory Attributes of Rabbit Meat Burgers. Animals. 2022; 12(15):1905. https://doi.org/10.3390/ani12151905
Chicago/Turabian StyleŚmiecińska, Katarzyna, Andrzej Gugołek, and Dorota Kowalska. 2022. "Effects of Garlic (Allium sativum L.) and Ramsons (Allium ursinum L.) on Lipid Oxidation and the Microbiological Quality, Physicochemical Properties and Sensory Attributes of Rabbit Meat Burgers" Animals 12, no. 15: 1905. https://doi.org/10.3390/ani12151905
APA StyleŚmiecińska, K., Gugołek, A., & Kowalska, D. (2022). Effects of Garlic (Allium sativum L.) and Ramsons (Allium ursinum L.) on Lipid Oxidation and the Microbiological Quality, Physicochemical Properties and Sensory Attributes of Rabbit Meat Burgers. Animals, 12(15), 1905. https://doi.org/10.3390/ani12151905