Exploring the Biotechnological Value of Marine Invertebrates: A Closer Look at the Biochemical and Antioxidant Properties of Sabella spallanzanii and Microcosmus squamiger
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Sampling
2.3. Proximate Composition
2.4. Amino Acids
2.5. Minerals
2.6. Preparation of the Extracts
2.7. Chemical Characterization of the Extracts
2.7.1. FA Determination
2.7.2. HPLC-DAD Analysis for Carotenoid Determination
2.8. In Vitro Radical Scavenging Activity (RSA) of the Extracts
2.8.1. RSA on DPPH
2.8.2. Oxygen Radical Absorbance Capacity (ORAC) Assay
2.9. In Vitro Metal Chelating Properties of the Extracts
Copper (CCA) and Iron (ICA) Chelating Activity
2.10. Statistical Analyses
3. Results
3.1. Proximate Composition
3.2. Amino Acids
3.3. Minerals
3.4. Chemical Profile of S. spallanzanii and M. squamiger Extracts
3.4.1. FA
3.4.2. Carotenoids
3.5. Antioxidant Properties of the Extracts
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, L.; Zheng, Y.Y.; Shao, C.L.; Yun, C.; Wang, C.Y. Metabolites from marine invertebrates and their symbiotic microorganisms: Molecular diversity discovery, mining, and application. Mar. Life Sci. Technol. 2019, 1, 60–94. [Google Scholar] [CrossRef] [Green Version]
- Luparello, C.; Mauro, M.; Lazzara, V.; Vazzana, M. Collective locomotion of human cells, wound healing and their control by extracts and isolated compounds from marine invertebrates. Molecules 2020, 25, 2471. [Google Scholar] [CrossRef] [PubMed]
- Ahyong, S.; Kupriyanova, E.; Burghardt, I.; Sun, Y.; Hutchings, P.; Capa, M.; Cox, S. Phylogeography of the invasive Mediterranean fan worm, Sabella spallanzanii (Gmelin, 1791), in Australia and New Zealand. J. Mar. Biol. Assoc. UK 2017, 97, 985–991. [Google Scholar] [CrossRef]
- Oliver, A.J.F.; Xavier, P.; Michael, T.; Leigh, T.; Lohrer Andrew, M. The Introduced fanworm, Sabella spallanzanii, alters soft sediment macrofauna and bacterial communities. Front. Ecol. Evol. 2019, 7, 481. [Google Scholar]
- Von Ammon, U.; Wood, S.A.; Laroche, O.; Zaiko, A.; Lavery, S.D.; Inglis, G.J.; Pochon, X. Linking Environmental DNA and RNA for improved detection of the marine invasive Ffnworm Sabella spallanzanii. Front. Mar. Sci. 2019, 6, 621. [Google Scholar] [CrossRef]
- Stabili, L.; Sicuro, B.; Daprà, F.; Gai, F.; Abete, C.; Dibenedetto, A.; Giangrande, A. The biochemistry of Sabella spallanzanii (Annelida: Polychaeta): A potential resource for the fish feed industry. J. World Aquac. Soc. 2013, 44, 384–395. [Google Scholar] [CrossRef]
- Stabili, L.; Cecere, E.; Licciano, M.; Petrocelli, A.; Sicuro, B.; Giangrande, A. Integrated multitrophic aquaculture by-products with added value: The polychaete Sabella spallanzanii and the seaweed Chaetomorpha linum as potential dietary ingredients. Mar. Drugs 2019, 17, 12. [Google Scholar] [CrossRef] [Green Version]
- Stabili, L.; Licciano, M.; Giangrande, A.; Fanelli, G.; Cavallo, R.A. Sabella spallanzanii filter-feeding on bacterial community: Ecological implications and applications. Mar. Environ. Res. 2006, 61, 74–92. [Google Scholar] [CrossRef]
- Lušić, J.; Cvitković, I.; Despalatović, M.; Žunec, A.; Žuljević, A. Mediterranean fanworm, Sabella spallanzanii (Gmelin, 1791), as a potential biomonitor of trace metal pollution in the marine Environment. Chemosphere 2022, 287, 132123. [Google Scholar] [CrossRef]
- Turon, X.; Nishikawa, T.; Rius, M. Spread of Microcosmus squamiger (Ascidiacea: Pyuridae) in the Mediterranean Sea and adjacent waters. J. Exp. Mar. Biol. Ecol. 2007, 342, 185–188. [Google Scholar] [CrossRef]
- Rius, M.; Pascual, M.; Turon, X. Phylogeography of the widespread marine invader Microcosmus squamiger (Ascidiacea) reveals high genetic diversity of introduced populations and non-independent colonizations. Divers. Distrib. 2008, 14, 818–828. [Google Scholar] [CrossRef]
- Rius, M.; Pineda, M.C.; Turon, X. Population dynamics and life cycle of the introduced ascidian Microcosmus squamiger in the Mediterranean Sea. Biol. Invasions 2009, 11, 2181–2194. [Google Scholar] [CrossRef] [Green Version]
- Turon, X.; Nishikawa, T. Spread of Microcosmus squamiger in the Mediterranean Sea. In Proceedings of the International Invasive Sea Squirt Conference, Woods Hole, MA, USA, 21–22 April 2005. [Google Scholar]
- Mastrototaro, F.; Dappiano, M. New record of the non-indigenous species Microcosmus squamiger (Ascidiacea: Stolidobranchia) in the harbour of Salerno (Tyrrhenian Sea, Italy). Mar. Biodivers. Rec. 2005, 1, E12. [Google Scholar] [CrossRef] [Green Version]
- Zenetos, A.; ÇIinar, M.E.; Pancucci-Papadopoulou, M.A.; Harmelin, J.G.; Furnari, G.; Andaloro, F.; Bellou, N.; Streftaris, N.; Zibrowius, H. Annotated list of marine alien species in the Mediterranean with records of the worst invasive species. Med. Mar. Sci. 2005, 6, 63–118. [Google Scholar] [CrossRef]
- Occhipinti-Ambrogi, A.; Marchini, A.; Cantone, G.; Castelli, A.; Chimenz, C.; Cormaci, M.; Froglia, C.; Furnari, G.; Gambi, M.C.; Giaccone, G.; et al. Alien species along the Italian coasts: An overview. Biol. Invasions 2011, 13, 215–237. [Google Scholar] [CrossRef]
- Giangrande, A.; Pierri, C.; Del Pasqua, M.; Gravili, C.; Gambi MCGravina, M.F. The Mediterranean in check: Biological invasions in a changing sea. Mar. Ecol. 2020, 41, e12583. [Google Scholar] [CrossRef]
- Onen, S.A. First occurrence of fouling ascidian species Microcosmus squamiger Michaelsen, 1927 and Didemnum ahu Monniot C. & Monniot F., 1987 in İzmir Bay (Eastern Aegean Sea). J. Nat. Hist. 2020, 54, 1897–1912. [Google Scholar]
- Tracy, B.M.; Larson, K.J.; Ashton, G.V.; Lambert, G.; Chang, A.L.; Ruiz, G.M. Northward range expansion of three non-native ascidians on the west coast of North America. BioInvasions Rec. 2017, 3, 203–209. [Google Scholar] [CrossRef]
- Lambert, C.C.; Lambert, G. Persistence and differential distribution of nonindigenous ascidians in harbors of the Southern California Bight. Mar. Ecol. Prog. Ser. 2003, 259, 145–161. [Google Scholar] [CrossRef] [Green Version]
- Rius, M.; Turon, X.; Pascual, M. Isolation of polymorphic microsatellite loci for the marine invader Microcosmus squamiger (Ascidiacea). Mol. Ecol. Res. 2008, 8, 1405–1407. [Google Scholar] [CrossRef]
- Smith, M.J.; Dehnel, P.A. The composition of tunic from four species of ascidians. Comp. Biochem. Physiol. Part B Biochem. 1971, 40, 615–622. [Google Scholar] [CrossRef]
- Ananthan, G.; Karthikeyan, M.M.; Selva, P.A.; Raghunathan, C. Studies on the seasonal variations in the proximate composition of ascidians from the Palk Bay, Southeast coast of India. Asian Pac. J. Trop. Biomed. 2012, 2, 793–797. [Google Scholar] [CrossRef] [Green Version]
- Radhalakshmi, R.; Sivakumar, V.; Ali, H.A.J. Analysis of selected species of ascidians as bioindicators o metals in marine ecosystem. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 755–764. [Google Scholar]
- Meenakshi, V.K.; Gomathy, S.; Senthamarai, S. Analysis of vitamins by HPLC and phenolic compounds, flavonoids by HPTLC in Microcosmus exasperates. Eur. J. Zool. Res. 2012, 1, 105–110. [Google Scholar]
- Giakoumi, S.; Katsanevakis, S.; Albano, P.G.; Azzurro, E.; Cardoso, A.C.; Cebrian, E.; Deidun, A.; Edelist Francour, D.P.; Jimenez, C.; Mačić, V.; et al. Management priorities for marine invasive species. Sci. Total Environ. 2019, 688, 976–982. [Google Scholar] [CrossRef]
- Pinteus, S.; Lemos, M.F.; Alves, C.; Neugebauer, A.; Silva, J.; Thomas, O.P.; Botana, L.M.; Gaspar, H.; Pedrosa, R. Marine invasive macroalgae: Turning a real threat into a major opportunity-the biotechnological potential of Sargassum muticum and Asparagopsis armata. Algal Res. 2018, 34, 217–234. [Google Scholar] [CrossRef]
- Pinteus, S.; Lemos, M.F.L.; Simões, M.; Alves, C.; Silva, J.; Gaspar, H.; Martins, A.; Rodrigues, A.; Pedrosa, R. Marine invasive species for high-value products’ exploration–Unveiling the antimicrobial potential of Asparagopsis armata against human pathogens. Algal Res. 2020, 52, 102091. [Google Scholar] [CrossRef]
- Pacheco, D.; Araújo, G.S.; Cotas, J.; Gaspar, R.; Neto, J.M.; Pereira, L. Invasive seaweeds in the Iberian Peninsula: A contribution for food supply. Mar. Drugs 2020, 18, 560. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis; Association of Official Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Pereira, H.; Barreira, L.; Custódio, L.; Alrokayan, S.; Mouffouk, F.; Varela, J.; Ben-Hamadou, R. Isolation and fatty acid profile of selected microalgae strains from the red sea for biofuel production. Energies 2013, 6, 2773–2783. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, F.; Barbosa, M.; Pereira, D.M.; Sousa-Pinto, I.; Valentão, P.; Azevedo, I.C.; Andrade, P.B. Chemical profiling of edible seaweed (Ochrophyta) extracts and assessment of their In Vitro effects on cell-free enzyme systems and on the viability of glutamate-injured SH-SY5Y cells. Food Chem. Toxicol. 2018, 116, 196–206. [Google Scholar] [CrossRef]
- Fernandes, F.; Barbosa, M.; Oliveira, A.P.; Azevedo, I.C.; Sousa-Pinto, I.; Valentão, P.; Andrade, P. The pigments of kelps (Ochrophyta) as part of the flexible response to highly variable marine Environments. J. Appl. Phycol. 2016, 28, 3689–3696. [Google Scholar] [CrossRef]
- Rodrigues, M.J.; Soszynski, A.; Martins, A.; Rauter, A.P.; Neng, N.R.; Nogueira, J.M.F.; Varela, J.; Barreira, L.; Custódio, L. Unravelling the antioxidant potential and the phenolic composition of organs of Limonium algarvense. Ind. Crops Prod. 2015, 77, 315–332. [Google Scholar] [CrossRef]
- Gillespie, K.M.; Chae, J.M.; Ainsworth, E.A. Rapid measurement of total antioxidant capacity in plants. Nat. Prot. 2007, 2, 867–870. [Google Scholar] [CrossRef] [PubMed]
- Lillebø, A.I.; Pita, C.; Rodrigues, J.; Ramos, S.; Villasante, S. How can marine ecosystem services support the Blue Growth agenda? Mar. Pol. 2017, 81, 132–142. [Google Scholar] [CrossRef]
- Freitas, A.C.; Rodrigues, D.; Rocha-Santos, T.A.P.; Gomes, A.M.P.; Duarte, A.C. Marine biotechnology advances towards applications in new functional foods. Biotechnol. Adv. 2012, 30, 1506–1515. [Google Scholar] [CrossRef]
- Martins, A.; Vieira, H.; Gaspar, H.; Santos, S. Marketed marine natural products in the pharmaceutical and cosmeceutical industries: Tips for success. Mar. Drugs 2014, 12, 1066–1101. [Google Scholar] [CrossRef] [Green Version]
- Rodrigo, A.P.; Costa, P.M. The hidden biotechnological potential of marine invertebrates: The Polychaeta case study. Environ. Res. 2019, 173, 270–280. [Google Scholar] [CrossRef]
- Ganesan, A.R.; Mohanram, M.S.G.; Balasubramanian, B.; Kim, I.H.; Seedevi, P.; Mohan, K.; Kanagasabai, S.; Arasu, M.V.; Al-Dhabi, N.A.; Ignacimuthu, S. Marine invertebrates’ proteins: A recent update on functional property. J. King Saud Univ.-Sci. 2020, 32, 1496–1502. [Google Scholar] [CrossRef]
- Rocha, J.; Peixe, L.; Gomes, N.C.M.; Calado, R. Cnidarians as a source of new marine bioactive compounds—An overview of the last decade and future steps for bioprospecting. Mar. Drugs 2011, 9, 1860–1886. [Google Scholar] [CrossRef]
- Pinteus, S.; Lemos, M.F.L.; Alves, C.; Silva, J.; Rui Pedrosa, R. The marine invasive seaweeds Asparagopsis armata and Sargassum muticum as targets for greener antifouling solutions. Sci. Total Environ. 2021, 750, 141272. [Google Scholar] [CrossRef]
- Meena, B.; Anburajan, L.; Nitharsan, K.; Vinithkuma, N.V.; Dharani, G. Taxonomic composition and biological activity of bacterial communities associated with marine Ascidians from Andaman Islands, India. Appl. Biochem. Biotechnol. 2021, 193, 2932–2963. [Google Scholar] [CrossRef]
- Pombo, A.; Baptista, T.; Granada, L.; Ferreira, S.M.F.; Gonçalves, S.C.; Anjos, C.; Costa, J.L. Insight into aquaculture’s potential of marine annelid worms and ecological concerns: A review. Rev. Aquac. 2020, 12, 107–121. [Google Scholar] [CrossRef]
- Glencross, B.D.; Booth, M.; Allan, G.L. A feed is only as good as its ingredients—A review of ingredient evaluation strategies for aquaculture feeds. Aquac. Nut. 2007, 13, 17–34. [Google Scholar] [CrossRef]
- Yang, Y.; Xie, S.; Cui, Y.; Lei, W.; Zhu, X.; Yang, Y.; Yu, Y. Effect of replacement of dietary fish meal by meat and bone meal and poultry by-product meal on growth and feed utilization of gibel carp, Carassius auratus gibelio. Aquac. Nut. 2004, 10, 289–294. [Google Scholar] [CrossRef]
- Roy, S.S.; Pal, R. Microalgae in aquaculture: A review with special references to nutritional value and fish dietetics. Proc. Zool. Soc. 2015, 68, 1–8. [Google Scholar] [CrossRef]
- Prabu, E.; Felix, S.; Felix, N.; Ahilan, B.; Ruby, P. An overview on significance of fish nutrition in aquaculture industry. Int. J. Fish. Aquat. Stud. 2017, 5, 349–355. [Google Scholar]
- Miles, R.D.; Chapman, F.A. The Benefits of Fish Meal in Aquaculture Diets; University of Florida IFAS Extension: Gainesville, FL, USA, 2015; p. 6. [Google Scholar]
- Jeong, B.-Y.; Choi, B.-D.; Moon, S.-K.; Lee, J.-S.; Jeong, W.-G.; Kim, P.-H. Proximate composition and sterol content of 35 species of marine invertebrates. Korean J. Fish. Aquat. Sci. 1999, 32, 192–197. [Google Scholar]
- Oliveira, A.R.; Sykes, A.V.; Hachero-Cruzado, I.; Azeiteiro, U.M.; Esteves, E. A sensory and nutritional comparison of mussels (Mytilus sp.) produced in NW Iberia and in the Armona offshore production area (Algarve, Portugal). Food Chem. 2015, 168, 520–528. [Google Scholar] [CrossRef]
- USDA. National Nutrient Database for Standard Reference, Legacy Release; United States Department of Agriculture–Agricultural Research Service: Washington, DC, USA, 2021.
- Wu, G.; Morris, S.M., Jr. Arginine metabolism: Nitric oxide and beyond. Biochem. J. 1998, 336, 1–17. [Google Scholar] [CrossRef]
- Rajapakse, N.W.; Mattson, D.L. Role of L-Arginine in nitric oxide production in health and hypertension. Clin. Exp. Pharmacol. Physiol. 2009, 36, 249–255. [Google Scholar] [CrossRef]
- Chin-Dusting, J.P.F.; Willems, L.; Kaye, D.M. L-Arginine transporters in cardiovascular disease: A novel therapeutic target. Pharmacol. Ther. 2007, 116, 428–436. [Google Scholar] [CrossRef]
- Ikeda, A.; Imaizumi, K.; Sugano, M. Interaction of dietary protein and fat on plasma cholesterol and amino acid levels, fatty acid desaturation, and prostacyclin production in exogenous hypercholesterolemic rats. Biosci. Biotechnol. Biochem. 1993, 57, 1867–1872. [Google Scholar] [CrossRef]
- Luo, Z.; Liu, Y.; Mai, K.; Tian, L. Advance in research on arginine requirement for fish: A review. Shuichan Xuebao 2004, 28, 450–459. [Google Scholar]
- Borlongan, I.G. Arginine and threonine requirements of milkfish (Chanos chanos Forsskal) juveniles. Aquaculture 1991, 93, 313–322. [Google Scholar] [CrossRef]
- Berge, G.E.; Lied, E.; Sveier, H. Nutrition of Atlantic salmon (Salmo salar): The requirement and metabolism of arginine. Comp. Biochem. Physiol. 1997, 117, 501–509. [Google Scholar] [CrossRef]
- Alam, M.S.; Teshima, S.I.; Koshio, S.; Ishikawa, M. Arginine requirement of juvenile Japanese flounder Paralichthys olivaceus estimated by growth and biochemical parameters. Aquaculture 2002, 205, 127–140. [Google Scholar] [CrossRef]
- Buentello, J.A.; Gatlin, D.M. The dietary arginine requirement of channel catfish (Ictalurus punctatus) is influenced by endogenous synthesis of arginine from glutamic acid. Aquaculture 2000, 188, 311–321. [Google Scholar] [CrossRef]
- Chow, M.; Boyd, C.D.; Iruela-Arispe, M.L.; Wrenn, D.S.; Mecham, R.; Helene Sage, E. Characterization of elastin protein and mRNA from salmonid fish (Oncorhynchus kisutch). Comp. Biochem. Physiol.-Part B Biochem. 1989, 93, 835–845. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Wu, G. Roles of dietary glycine, proline, and hydroxyproline in collagen synthesis and animal growth. Amino Acids 2018, 50, 29–38. [Google Scholar] [CrossRef]
- Debelle, L.; Tamburro, A.M. Elastin: Molecular description and function. Int. J. Biochem. Cell Biol. 1999, 31, 261–272. [Google Scholar] [CrossRef]
- Li, P.; Mai, K.; Trushenski, J.; Wu, G. New developments in fish amino acid nutrition: Towards functional and Environmentally oriented aquafeeds. Amino Acids 2009, 37, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.-W.; Tian, L.-X.; Jin, Y.; Yang, H.-J.; Liang, G.-Y.; Liu, Y.-J. Effect of glycine supplementation on growth performance, body composition and salinity stress of juvenile Pacific white shrimp, Litopenaeus vannamei fed low fishmeal diet. Aquaculture 2014, 418–419, 159–164. [Google Scholar] [CrossRef]
- Xie, S.; Zhou, W.; Tian, L.; Niu, J.; Liu, Y. Effect of N-acetyl cysteine and glycine supplementation on growth performance, glutathione synthesis, anti-oxidative and immune ability of Nile tilapia, Oreochromis niloticus. Fish Shellfish Immunol. 2016, 55, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Murai, T.; Sumalangkay, A.; Pascual, F.P. Improvement of diet attractability for Penaeus monodon by supplementing various attractants. In SEAFDEC Aquaculture Department Quarterly Research Report; SEAFDEC Aquaculture Department: Tigbauan, Philippines, 1981; Volume 5, pp. 1–4. [Google Scholar]
- Smith, D.M.; Tabrett, S.J.; Barclay MCIrvin, S.J. The efficacy of ingredients included in shrimp feeds to stimulate intake. Aquac. Nutr. 2005, 11, 263–272. [Google Scholar] [CrossRef]
- Dragnes, B.T.; Larsen, R.; Ernstsen, M.H.; Mæhre, H.; Elvevoll, E.O. Impact of processing on the taurine content in processed seafood and their corresponding unprocessed raw materials. Int. J. Food Sci. Nutr. 2009, 60, 143–152. [Google Scholar] [CrossRef]
- El-Sayed, A.M. Is dietary taurine supplementation beneficial for farmed fish and shrimp? A comprehensive review. Rev. Aquac. 2014, 6, 241–255. [Google Scholar] [CrossRef]
- Sampath, W.W.H.A.; Rathnayake, R.M.D.S.; Yang, M.; Zhang, W.; Mai, K. Roles of dietary taurine in fish nutrition. Mar. Life Sci. Technol. 2020, 2, 360–375. [Google Scholar] [CrossRef]
- Shen, G.P.; Haung, Y.; Dong, J.Y.; Wang, X.X.; Cheng, K.K.; Feng, J.H.; Xu, J.J.; Ye, J.D. Metabolic effect of dietary taurine supplementation on Nile tilapia (Oreochromis nilotictus) evaluated by NMR-based metabolomics. J. Agric. Food Chem. 2018, 66, 368–377. [Google Scholar] [CrossRef]
- Gaylord, T.G.; Teague, A.M.; Barrows, F.T. Taurine supplementation of all-plant protein diets for rainbow trout (Oncorhynchus mykiss). J. World Aquac. Soc. 2006, 37, 509–517. [Google Scholar] [CrossRef]
- Shiau, S.; Chou, B. Grass shrimp, Penaeus monodon, growth as influenced by dietary taurine supplementation. Comp. Biochem. Physiol. Part A Physiol. 1994, 108, 137–142. [Google Scholar]
- Murata, H. The green liver syndrome is caused by taurine deficiency in yellowtail, Seriola quinqueradiata fed diets without fishmeal. Aquac. Sci. 2005, 53, 279–290. [Google Scholar]
- Takagi, S.; Murata, H.; Goto, T.; Ichiki, T.; Endo, M.; Hatate, H.; Ukawa, M. Efficacy of taurine supplementation for preventing green liver syndrome and improving growth performance in yearling red sea bream Pagrus major fed low-fishmeal diet. Fish. Sci. 2006, 72, 1191–1199. [Google Scholar] [CrossRef]
- Yokoyama, M.; Takeuchi, T.; Park, G.S.; Nakazoe, J. Hepatic cysteinesulphinate decarboxylase activity in fish. Aquac. Res. 2001, 32, 216–220. [Google Scholar] [CrossRef]
- Salze, G.P.; Davis, D.A. Taurine: A critical nutrient for future fish feeds. Aquaculture 2015, 437, 215–229. [Google Scholar] [CrossRef]
- Spitze, A.R.; Wong, D.L.; Rogers, Q.R.; Fascetti, A.J. Taurine concentrations in animal feed ingredients; cooking influences taurine content. J. Anim. Physiol. Anim. Nutr. 2003, 87, 251–262. [Google Scholar] [CrossRef]
- Schaffer, S.; Kim, H. Effects and mechanisms of taurine as a therapeutic agent. Bimol. Ther. 2018, 26, 225–241. [Google Scholar] [CrossRef]
- Wu, G. Important roles of dietary taurine, creatine, carnosine, anserine and 4-hydroxyproline in human nutrition and health. Amino Acid 2020, 52, 329–360. [Google Scholar] [CrossRef] [Green Version]
- Hou, Y.; He, W.; Hu, S.; Wu, G. Composition of polyamines and amino acids in plant-source foods for human consumption. Amino Acid 2019, 51, 1153–1165. [Google Scholar] [CrossRef]
- McCusker, S.; Buff, P.R.; Yu, Z.; Fascetti, A.J. Amino acid content of selected plant, algae and insect species: A search for alternative protein sources for use in pet foods. J. Nutr. Sci. 2014, 3, e39. [Google Scholar] [CrossRef] [Green Version]
- Ra, S.G.; Choi, Y.; Akazawa, N.; Kawanaka, K.; Ohmori, H.; Maeda, S. Effects of taurine supplementation on vascular endothelial function at rest and after resistance exercise. Adv. Exp. Med. Biol. 2019, 1155, 407–414. [Google Scholar]
- Sak, D.; Erdenen, F.; Müderrisoglu, C.; Altunoglu, E.; Sozer, V.; Gungel, H.; Guler, P.A.; Sak, T.; Uzun, H. The relationship between plasma taurine levels and diabetic complications in patients with Type 2 diabetes mellitus. Biomolecules 2019, 11, 96. [Google Scholar] [CrossRef] [Green Version]
- Nikkhah, E.; Shirani, K.; Rezaee, R.; Karimi, G. Protective effects of taurine against hepatotoxicity induced by pharmaceuticals and Environmental chemicals. Toxicol. Environ. Chem. 2021, 103, 56–84. [Google Scholar] [CrossRef]
- Backus, R.C.; Ko, K.S.; Fascetti, A.J.; Kittleson, M.D.; Macdonald, K.A.; Maggs, D.J.; Berg, J.R.; Rogers, Q.R. Low plasma taurine concentration in Newfoundland dogs is associated with low plasma methionine and cyst(e)ine concentrations and low taurine synthesis. J. Nutr. 2006, 136, 2525–2533. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, J.L.; Stern, J.A.; Fascetti, A.J.; Larsen, J.A.; Skolnik, H.; Peddle, G.D.; Kienle, R.D.; Waxman, A.; Cocchiaro, M.; Gunther-Harrington, C.T.; et al. Taurine deficiency and dilated cardiomyopathy in golden retrievers fed commercial diets. PLoS ONE 2018, 13, e0210233. [Google Scholar]
- Quilliam, C.; Ren, Y.; Morris, T.; Ai, Y.; Weber, L.P. The Effects of 7 days of feeding pulse-based diets on digestibility, glycemic response and taurine levels in domestic dogs. Front. Vet. Sci. 2021, 8, 654223. [Google Scholar] [CrossRef] [PubMed]
- Basili, M.; Pedro, B.; Hodgkiss-Geere, H.; Navarro-Cubas, X.; Graef, N.; Dukes-McEwan, J. Low plasma taurine levels in English cocker spaniels diagnosed with dilated cardiomyopathy. J. Small Anim. Pract. 2021, 62, 570–579. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.A.; Masayuki Furuichi, M. Essentiality of dietary calcium supplement in fingerling scorpion fish Sebastiscus marmoratus. Aquaculture 2000, 189, 155–163. [Google Scholar] [CrossRef]
- Sugiura, S.H.; Hardy, R.W.; Roberts, R.J. The pathology of phosphorus deficiency in fish—A review. J. Fish Dis. 2004, 27, 255–265. [Google Scholar] [CrossRef]
- Hossai, M.A.; Furuichi, M. Essentiality of dietary calcium supplement in redlip mullet Liza haemmatocheila. Aquacul. Nutr. 2000, 6, 33–38. [Google Scholar] [CrossRef]
- Bury, N.; Grosell, M. Iron acquisition by teleost fish. Comp. Biochem. Physiol. 2003, 135, 97–105. [Google Scholar] [CrossRef]
- Ueki, T.; Yamaguchi, N.; Isago, Y.R.; Tanahashi, H. Vanadium accumulation in ascidians: A system overview. Coord. Chem. Rev. 2015, 301, 300–308. [Google Scholar] [CrossRef] [Green Version]
- Sepe, A.; Ciaralli, L.; Ciprotti, M.; Giordano, R.; Funari, E.; Costantini, S. Determination of cadmium, chromium, lead and vanadium in six fish species from the Adriatic Sea. Food Addit. Contam. 2003, 20, 543–552. [Google Scholar] [CrossRef]
- Helaly, O.; Abd El-Ghany, M.; Borai, E.; Aly, H.F.; Fattah, T.M.A. Separation of cerium, light and heavy rare earth concentrates from Egyptian crude monazite. Chem. Tech. Ind. J. 2015, 10, 184–192. [Google Scholar]
- Ryabchikov, D.I.; Gol’Braikh, E.K. The Analytical Chemistry of Thorium: International Series of Monographs on Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2013; Volume 10. [Google Scholar]
- Veado, M.A.R.V.; Abrantes, I.A.; Oliveira, A.H.; Almeida, M.R.M.G.; Miguel, R.A.; Severo, M.I.; Cabaleiro, H.L. Metal pollution in the Environment of Minas Gerais state—Brazil. Environ. Monit. Assess. 2006, 117, 157–172. [Google Scholar] [CrossRef]
- Peng, C.; Ma, Y.; Ding, Y.; He, X.; Zhang, P.; Lan, T.; Wang, D.; Zhang, Z.; Zhang, Z. Influence of speciation of thorium on toxic effects to green algae Chlorella pyrenoidosa. Int. J. Mol. Sci. 2017, 18, 795. [Google Scholar] [CrossRef] [Green Version]
- Stricht, E.V.D.; Kirchmann, R. Radioecology; Radioactivity & Ecosystems: Liege, Belgium, 2001; pp. 219–303. [Google Scholar]
- Yilmaz, M.; Ozmen, S.F. Radiological risk assessment of fish feed and feed raw materials. Aquac. Res. 2020, 51, 2190–2196. [Google Scholar] [CrossRef]
- Szefer, P.; Wenne, R. Concentration of uranium and thorium in molluscs inhabiting Gdansk bay, Baltic sea. Sci. Total Environ. 1987, 65, 191–202. [Google Scholar] [CrossRef]
- Szefer, P.; Szefer, K.; Falandysz, J. Uranium and thorium in muscle tissue of fish taken from the southern Baltic. Helgoländer Meeresunters. 1990, 44, 31–38. [Google Scholar] [CrossRef]
- Giangrande, A.; Cavallo, A.; Licciano, M.; Mola, E.; Pierri, C.; Trianni, L. Utilization of the filter feeder polychaete Sabella spallanzanii Gmelin (Sabellidae) as bioremediator in aquaculture. Aquac. Int. 2005, 13, 129–136. [Google Scholar] [CrossRef]
- Carvalho, C.C.C.R.; Caramujo, M.J. The various roles of fatty acids. Molecules 2018, 23, 2583. [Google Scholar] [CrossRef] [Green Version]
- Betancor, M.B.; MacEwan, A.; Sprague, M.; Gong, X.; Montero, D.; Han, L.; Napier, J.A.; Norambuena, F.; Izquierdo, M.; Tocher, D.R. Oil from transgenic Camelina sativa as a source of EPA and DHA in feed for European sea bass (Dicentrarchus labrax L.). Aquaculture 2021, 530, 735759. [Google Scholar] [CrossRef]
- Wijendram, V.; Hayes, K.C. Dietary n-6 and n-3 fatty acid balance and cardiovascular health. Annu. Rev. Nutr. 2004, 24, 597–615. [Google Scholar] [CrossRef]
- Lee, S.; Lee, J.; Choi, I.J.; Kim, Y.-W.; Ryu, K.W.; Kim, Y.-I.; Kim, J. Dietary n-3 and n-6 polyunsaturated fatty acids, the FADS gene, and the risk of gastric cancer in a Korean population. Sci. Rep. 2018, 8, 3823. [Google Scholar] [CrossRef] [Green Version]
- Russo, E.; Giudici, F.; Fiorindi, C.; Ficari, F.; Scaringi, S.; Amedei, A. Immunomodulating activity and therapeutic effects of short chain fatty acids and tryptophan post-biotics in inflammatory bowel disease. Front. Immunol. 2019, 10, 2754. [Google Scholar] [CrossRef] [Green Version]
- Wall, R.; Ross, R.P.; Fitzgerald, G.F.; Stanton, C. Fatty acids from fish: The anti-inflammatory potential of long-chain omega-3 fatty acids. Nutr. Rev. 2010, 68, 280–289. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Evolutionary aspects of the dietary omega-6:omega-3 fatty acid ratio: Medical implications. World Rev. Nutr. Diet. 2009, 100, 1–21. [Google Scholar]
- WHO. Fats and Fatty Acids in Human in Nutrition. 2008. Available online: https://apps.who.int/nutrition/publications/nutrientrequirements/anm_fatsandfattyacids_human_nut/en/index.html (accessed on 2 September 2021).
- Galasso, C.; Corinaldesi, C.; Sansone, C. Carotenoids from marine organisms: Biological functions and industrial applications. Antioxidants 2017, 6, 96. [Google Scholar] [CrossRef] [Green Version]
- Matsuno, T. Aquatic animal carotenoids. Fish. Sci. 2001, 67, 771–783. [Google Scholar] [CrossRef]
- Tsushima, M.; Matsuno, T. Comparative biochemical studies of carotenoids in sea-urchins-I. Comp. Biochem. Physiol. Part B Comp. Biochem. 1990, 96, 801–810. [Google Scholar] [CrossRef]
- D’Orazio, N.; Gemello, E.; Gammone, M.A.; de Girolamo, M.; Ficoneri, C.; Riccioni, G. Fucoxantin: A treasure from the sea. Mar. Drugs 2012, 10, 604–616. [Google Scholar] [CrossRef] [Green Version]
- Terasaki, M.; Inoue, T.; Murase, W.; Kubota, A.; Kojima, H.; Kojoma, M.; Ohta, T.; Maeda, H.; Miyashita, K.; Mutoh, M.; et al. Fucoxanthinol induces apoptosis in a pancreatic intraepithelial neoplasia cell line. Cancer Genom. Proteom. 2021, 18, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Borodina, A.V.; Maoka, T. The composition of carotenoids in tissues of the ascidian Botryllus schlosseri (Pallas, 1766) from the Black Sea. Russia J. Mar. Biol. 2018, 44, 226–231. [Google Scholar] [CrossRef]
- Kotake-Nara, E.; Kushiro, M.; Zhang, H.; Sugawara, T.; Miyashita, K.; Nagao, A. Carotenoids affect proliferation of human prostate cancer cells. J. Nutr. 2001, 131, 3303–3306. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Wong, C.-C.; Li, Y.; He, Y.; Mao, X.; Wu, T.; Ren, Y.; Chen, F. A novel strategy for isolation and purification of fucoxanthinol and fucoxanthin from the diatom Nitzschia laevis. Food Chem. 2019, 277, 566–572. [Google Scholar] [CrossRef]
- Lu, X.; Sun, H.; Zhao, W.; Cheng, K.-W.M.; Chen, F.; Liu, B. A hetero-photoautotrophic two-stage cultivation process for production of fucoxanthin by the marine diatom Nitzschia laevis. Mar. Drugs 2018, 16, 219. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Liu, L.; Sun, P.; Zhang, Y.; Wu, T.; Sun, H.; Cheng, K.-W.; Chen, F. Fucoxanthinol from the diatom Nitzschia Laevis ameliorates neuroinflammatory responses in lipopolysaccharide-stimulated BV-2 microglia. Mar. Drugs 2020, 18, 116. [Google Scholar]
- MarketsandMarkets. 2021. Available online: https://www.marketsandmarkets.com (accessed on 10 September 2021).
- Nakano, T.; Wiegertjes, G. Properties of carotenoids in fish fitness: A Review. Mar. Drugs 2020, 18, 568. [Google Scholar] [CrossRef]
- Livingstone, D.R. Oxidative stress in aquatic organisms in relation to pollution and aquaculture. Rev. Med. Vet. 2003, 154, 427–430. [Google Scholar]
- Sinha, A.K.; Matey, V.; Giblen, T.; Blust, R.; De Boeck, G. Gill remodeling in three freshwater teleosts in response to high Environmental ammonia. Aquat. Toxicol. 2014, 155, 166–180. [Google Scholar] [CrossRef]
- Abdel-Tawwab, M.; El-Sayed, G.O.; Monier, M.N.; Shady, S.H. Dietary EDTA supplementation improved growth performance, biochemical variables, antioxidant response, and resistance of Nile tilapia, Oreochromis niloticus (L.) to Env ironmental heavy metals exposure. Aquaculture 2017, 473, 478–486. [Google Scholar] [CrossRef]
- Mamelona, J.; Pelletier, É.; Girard-Lalancette, K.; Legault, J.; Karboune, S.; Kermasha, S. Quantification of phenolic contents and antioxidant capacity of Atlantic sea cucumber, Cucumaria frondosa. Food Chem. 2007, 104, 1040–1047. [Google Scholar] [CrossRef]
- Aklakur, M. Natural antioxidants from sea: A potential industrial perspective in aquafeed formulation. Rev. Aquac. 2018, 10, 385–399. [Google Scholar] [CrossRef]
- Chen, Y.J.; Liu, Y.J.; Tian, L.X.; Niu, J.; Liang, G.Y.; Yang, H.J.; Zhang, Y.Q. Effect of dietary vitamin and selenium supplementation on growth, body composition, and antioxidant defense mechanism in juvenile largemouth bass (Micropterus salmoide) fed oxidized fish oil. Fish Physiol. Biochem. 2013, 39, 593–604. [Google Scholar] [CrossRef]
- Wawrzyniak, M.K.; Serrato, L.A.M.; Blanchoud, S. Artificial seawater based long-term culture of colonial ascidians. Dev. Biol. 2021, 480, 91–104. [Google Scholar] [CrossRef]
Item | S. spallanzanii | M. squamiger |
---|---|---|
Moisture (%) | 70.7 ± 1.0 | 88.9 ± 0.8 |
Ash (%) | 53.1 ± 4.8 | 36.2 ± 4.6 |
Protein (%, dw) | 47.2 ± 0.3 | 53.9 ± 2.6 |
Fat (%, dw) | 11.7 ± 1.7 | 5.3 ± 0.1 |
Carbohydrates (%, dw) | 41.1 ± 1.4 | 40.8 ± 2.6 |
Energetic value (kcal/100 g, dw) | 475.8 ± 8.1 | 445.6 ± 0.4 |
Amino Acid | Abbreviation | S. spallanzanii | M. squamiger |
---|---|---|---|
Arginine | Arg | 68.5 ± 0.33 | 1.65 ± 0.01 |
Histidine | His | 0.27 ± 0.00 | 0.75 ± 0.01 |
Lysine | Lys | 0.25 ± 0.00 | 1.29 ± 0.02 |
Threonine | Thr | 0.69 ± 0.00 | 1.31 ± 0.02 |
Isoleucine | Ile | 0.12 ± 0.00 | 0.17 ± 0.00 |
Leucine | Leu | 0.20 ± 0.00 | 0.27 ± 0.00 |
Valine | Val | 0.21 ± 0.01 | 0.73 ± 0.00 |
Tryptophan | Trp | 0.03 ± 0.00 | 0.23 ± 0.00 |
Methionine | Met | 0.19 ± 0.00 | 0.85 ± 0.01 |
Phenylalanine | Phe | 0.19 ± 0.00 | 0.25 ± 0.00 |
Cysteine | Cys | 0.08 ± 0.00 | 0.15 ± 0.00 |
Tyrosine | Tyr | 0.14 ± 0.00 | 0.33 ± 0.00 |
Aspartic acid | Asp | 1.39 ± 0.01 | 0.92 ± 0.03 |
Asparagine | Asn | 0.61 ± 0.01 | 0.67 ± 0.01 |
Glutamic acid | Glu | 2.02 ± 0.02 | 2.41 ± 0.05 |
Glutamine | Gln | 1.71 ± 0.01 | 0.88 ± 0.00 |
Alanine | Ala | 1.06 ± 0.00 | 2.94 ± 0.03 |
Glycine | Gly | 49.3 ± 0.16 | 1.72 ± 0.03 |
Proline | Pro | 1.14 ± 0.03 | 5.15 ± 0.06 |
Serine | Ser | 0.62 ± 0.00 | 0.82 ± 0.01 |
Taurine | Tau | 2.30 ± 0.07 | 26.6 ± 0.46 |
Ornithine | Orn | 0.19 ± 0.00 | 0.65 ± 0.01 |
gamma-Amino-n-butyric acid | GABA | 0.13 ± 0.00 | 0.45 ± 0.01 |
Hydroxyproline | HPro | 0.18 ± 0.00 | 0.95 ± 0.00 |
beta-Alanine | B-Ala | 0.14 ± 0.00 | 0.23 ± 0.00 |
TOTAL | 131.76 ± 0.66 | 52.42 ± 0.78 |
Mineral | Symbol | S. spallanzanii | M. squamiger |
---|---|---|---|
Macroelements | |||
Sodium | Na | 18.65 ± 0.26 | 36.24 ± 0.64 |
Calcium | Ca | 17.09 ± 0.38 | 14.29 ± 1.11 |
Potassium | K | 15.14 ± 0.10 | 11.88 ± 0.36 |
Magnesium | Mg | 6.66 ± 0.05 | 6.75 ± 0.14 |
Phosphorus | P | 3.97 ± 0.01 | 2.66 ± 0.15 |
Microelements | |||
Iron | Fe | 12.12 ± 0.17 | 4.42 ± 0.30 |
Selenium | Se | nd | nd |
Manganese | Mn | nd | 0.41 ± 0.02 |
Molybdenum | Mo | nd | nd |
Aluminum | Al | 13.10 ± 0.27 | 4.60 ± 0.17 |
Lithium | Li | nd | nd |
Vanadium | V | 11.6 ± 0.43 | 4.63 ± 0.17 |
Toxic elements | |||
Chromium | Cr | nd | nd |
Copper | Cu | nd. | nd |
Zinc | Zn | nd | nd |
Cadmium | Cd | nd | nd |
Nickel | Ni | nd | nd |
Lead | Pb | nd | nd |
Mercury | Hg | nd | nd |
Thorium | Th | 0.28 ± 0.07 | 0.48 ± 0.05 |
TOTAL | 98.61 | 86.36 |
S. spallanzanii | M. squamiger | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Compound | Common Name | Peak | Dichloromethane Extract | Methanol Extract | Dichloromethane Extract | Methanol Extract | ||||
µg/mg, dw | Relative% | µg/mg, dw | Relative% | µg/mg, dw | Relative% | µg/mg, dw | Relative% | |||
SFA | ||||||||||
C11:0 | Undecylic acid | 1 | – | – | 0.06 ± 0.00 | 0.3 | – | – | – | – |
C12:0 | Lauric acid | 2 | nq | nq | nq | nq | – | – | nq | nq |
C13:0 | Tridecyclic acid | 3 | – | – | nq | nq | – | – | nq | nq |
C14:0 | Myristic acid | 5 | 33.71 ± 4.10 | 7.3 | 3.11 ± 0.14 | 17.4 | 8.61 ± 0.22 | 3.3 | 1.00 ± 0.04 | 5.3 |
C15:0 | Pentadecyclic acid | 7 | 5.36 ± 0.09 | 1.2 | 0.56 ± 0.05 | 2.6 | 2.75 ± 0.19 | 1.0 | 0.49 ± 0.02 | 2.6 |
C16:0 | Palmitic acid | 9 | 89.35 ± 7.13 | 19.5 | 5.21 ± 0.13 | 24.2 | 43.55 ± 1.57 | 16.5 | 6.32 ± 0.81 | 33.1 |
C17:0 | Margaric acid | 11 | 3.87 ± 0.26 | 0.8 | 0.52 ± 0.07 | 2.4 | 5.47 ± 0.83 | 2.1 | 0.83 ± 0.11 | 4.3 |
C18:0 | Stearic acid | 16 | 18.54 ± 3.25 | 4.0 | 2.18 ± 0.18 | 10.1 | 15.63 ± 1.31 | 5.9 | 3.02 ± 0.35 | 15.8 |
C20:0 | Arachidic acid | 22 | 0.75 ± 0.08 | 0.2 | 0.43 ± 0.09 | 2.0 | 0.40 ± 0.02 | 0.2 | 0.34 ± 0.07 | 1.8 |
C21:0 | Heneicosylic acid | 23 | nq | – | 0.40 ± 0.01 | 1.8 | nq | nq | 0.74 ± 0.07 | 3.9 |
C22:0 | Behenic acid | 27 | 0.33 ± 0.10 | 0.1 | nq | nq | nq | nq | nq | nq |
C23:0 | Tricosylic acid | 28 | nq | nq | nq | nq | nq | nq | 0.02 ± 0.00 | 0.1 |
C24:0 | Lignoceric acid | 30 | – | – | nq | nq | nq | nq | 0.02 ± 0.01 | 0.1 |
Σ SFA | 151.91 ± 15.01 | 33.1 | 12.47 ± 1.60 | 57.8 | 76.41 ± 4.13 | 30.4 | 12.78 ± 1.48 | 66.9 | ||
MUFA | ||||||||||
C14:1n-5c | Myristoleic acid | 4 | nq | nq | – | – | – | – | nq | nq |
C15:1n-5c | cis-10-Pentadecenoic acid | 6 | – | – | – | – | – | – | nq | nq |
C16:1n-7c | Palmitoleic acid | 8 | 44.64 ± 3.10 | 9.7 | 1.52 ± 0.12 | 7.0 | 20.46 ± 2.99 | 3.0 | 0.97 ± 0.09 | 5.1 |
C17:1n-7c | cis-10-Heptadecenoic acid | 10 | – | – | – | – | – | – | nq | nq |
C18:1n-9c | Oleic acid | 14 | 20.42 ± 1.25 | 4.4 | 0.33 ± 0.06 | 1.5 | 9.20 ± 0.30 | 3.5 | 0.72 ± 0.06 | 3.8 |
C18:1n-9t | Elaidic acid | 15 | 32.34 ± 1.25 | 7.0 | 1.68 ± 0.13 | 7.8 | 25.65 ± 3.73 | 9.7 | 2.56 ± 0.28 | 13.4 |
C22:1n-9c | Erucic acid | 26 | 0.48 ± 0.06 | 0.1 | nq | nq | nq | nq | nq | nq |
C24:1n-9c | Nervonic acid | 29 | 0.43 ± 0.09 | 0.1 | – | – | – | – | – | – |
Σ MUFA | 98.31 ± 5.75 | 21.4 | 3.53 ± 0.39 | 16.4 | 55.31 ± 7.01 | 22.0 | 4.25 ± 0.43 | 22.3 | ||
PUFA | ||||||||||
C18:2n-6c | Linoleic acid | 13 | 4.35 ± 0.08 | 0.9 | 0.04 ± 0.02 | 0.2 | 8.39 ± 0.34 | 3.2 | 0.68 ± 0.05 | 3.5 |
C18:2n-6t | Linoelaidic acid | 25 | 2.42 ± 0.35 | 0.5 | 0.06 ± 0.01 | 0.3 | 0.24 ± 0.02 | 0.1 | nq | 0 |
C20:2n-6c | Eicosadienoic acid | 20 | 23.27 ± 3.44 | 5.1 | 0.94 ± 0.07 | 4.4 | 0.32 ± 0.08 | 0.1 | 0.06 ± 0.00 | 0.3 |
C18:3n-6c | γ-Linolenic acid | 12 | nq | nq | nq | nq | nq | nq | nq | nq |
C18:3n-3c | α-Linolenic acid | 21 | 10.08 ± 0.86 | 2.2 | 0.44 ± 0.04 | 2.0 | 0.46 ± 0.10 | 0.2 | 0.13 ± 0.02 | 0.7 |
C20:3n-6c | Homo-γ-Linolenic acid | 19 | 124.69 ± 11.8 | 27.2 | nq | nq | nq | nq | nq | nq |
C20:4n-6c | Arachidonic acid | 17 | 21.24 ± 2.69 | 4.6 | 1.17 ± 0.02 | 5.4 | 11.20 ± 0.93 | 4.2 | 0.39 ± 0.04 | 2.1 |
C20:5n-3c | Eicosapentaenoic acid | 18 | * | * | 2.39 ± 0.34 | 11.1 | 59.11 ± 8.87 | 22.4 | 0.56 ± 0.05 | 2.9 |
C22:6n-3c | Docosahexaenoic acid | 24 | 22.97 ± 3.23 | 5.0 | 0.51 ± 0.04 | 2.4 | 39.92 ± 6.67 | 15.1 | 0.23 ± 0.02 | 1.2 |
Σ PUFA | 209.03 ± 22.45 | 45.5 | 5.56 ± 0.69 | 25.8 | 119.64 ± 17.01 | 47.6 | 2.05 ± 0.18 | 10.7 | ||
Σ n-3 | 33.05 ± 4.09 | 7.2 | 3.34 ± 0.58 | 15.5 | 99.48 ± 5.64 | 39.6 | 0.92 ± 0.09 | 4.8 | ||
Σ n-5 | nq | nq | nd | nd | nd | nd | nq | nq | ||
Σ n-6 | 175.98 ± 18.36 | 38.2 | 2.22 ± 0.11 | 10.3 | 20.16 ± 1.37 | 8.0 | 1.13 ± 0.09 | 5.9 | ||
Σ n-7 | 44.64 ± 3.1 | 9.7 | 1.52 ± 0.12 | 7.0 | 20.46 ± 2.99 | 8.1 | 0.97 ± 0.09 | 5.1 | ||
Σ n-9 | 53.67 | 11.7 | 2.01 ± 0.27 | 9.3 | 34.85 ± 4.02 | 13.9 | 3.29 ± 0.34 | 17.2 | ||
n-6/n-3 | 5.33 | 0.67 | 0.20 | 1.23 | ||||||
TOTAL | 459.25 ± 43.20 | 100.0 | 21.56 ± 2.68 | 100.0 | 251.34 ± 28.15 | 100.0 | 19.09 ± 2.09 | 100.0 |
Peak | Compound | M. squamiger | S. spallanzanii | ||
---|---|---|---|---|---|
Dicloromethane Extract | Methanol Extract | Dicloromethane Extract | Methanol Extract | ||
1 | Fucoxanthinol | 2.51 ± 0.28 | nd | nd | nd |
2 | Fucoxanthin | 1.66 ± 0.06 | nd | nd | nd |
3 | Anteraxanthin | nq | nd | nd | nd |
4 | Astaxanthin | 0.03 ± 0.00 | nd | nd | nd |
5 | Lutein | 0.14 ± 0.01 | nd | nd | nd |
6 | Zeaxanthin | nq | nd | nd | nd |
TOTAL | 4.34 ± 0.35 | – | – | – |
Samples | Extract | Yield (%) | DPPH | ICA | CCA |
---|---|---|---|---|---|
S. spallanzanii | Dichloromethane | 5.06 | nr | nr | nr |
Methanol | 6.32 | nr | 4.1 ± 0.1 b | 1.7 ± 0.0 c | |
M. squamiger | Dichloromethane | 2.42 | nr | nr | >1 nr |
Methanol | 15.65 | nr | nr | 7.6 ± 0.2 b | |
BHA * | - | - | 0.1 ± 0.0 | - | - |
EDTA * | - | - | - | 0.1 ± 0.0 a | 0.6 ± 0.0 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Y.-L.; Rodrigues, M.J.; Pereira, C.G.; Engrola, S.; Colen, R.; Mansinhos, I.; Romano, A.; Andrade, P.B.; Fernandes, F.; Custódio, L. Exploring the Biotechnological Value of Marine Invertebrates: A Closer Look at the Biochemical and Antioxidant Properties of Sabella spallanzanii and Microcosmus squamiger. Animals 2021, 11, 3557. https://doi.org/10.3390/ani11123557
Pan Y-L, Rodrigues MJ, Pereira CG, Engrola S, Colen R, Mansinhos I, Romano A, Andrade PB, Fernandes F, Custódio L. Exploring the Biotechnological Value of Marine Invertebrates: A Closer Look at the Biochemical and Antioxidant Properties of Sabella spallanzanii and Microcosmus squamiger. Animals. 2021; 11(12):3557. https://doi.org/10.3390/ani11123557
Chicago/Turabian StylePan, Yu-Lun, Maria João Rodrigues, Catarina G. Pereira, Sofia Engrola, Rita Colen, Inês Mansinhos, Anabela Romano, Paula B. Andrade, Fátima Fernandes, and Luísa Custódio. 2021. "Exploring the Biotechnological Value of Marine Invertebrates: A Closer Look at the Biochemical and Antioxidant Properties of Sabella spallanzanii and Microcosmus squamiger" Animals 11, no. 12: 3557. https://doi.org/10.3390/ani11123557
APA StylePan, Y.-L., Rodrigues, M. J., Pereira, C. G., Engrola, S., Colen, R., Mansinhos, I., Romano, A., Andrade, P. B., Fernandes, F., & Custódio, L. (2021). Exploring the Biotechnological Value of Marine Invertebrates: A Closer Look at the Biochemical and Antioxidant Properties of Sabella spallanzanii and Microcosmus squamiger. Animals, 11(12), 3557. https://doi.org/10.3390/ani11123557