Economic Viability of Adoption of Automated Oestrus Detection Technologies on Dairy Farms: A Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Overview of AOD Technologies
2.1. Pedometer
2.2. Accelerometers
3. Methodology
4. Returns to Investing in AOD Technologies
5. Cost of Investing in AOD Technologies
6. Factors Influencing the Decision to Invest in AOD Technologies
6.1. Oestrus Detection Rates of the Technology AOD
6.2. Labour Costs
6.3. Environmental Conditions
6.4. Herd Size and Milk Price
6.5. Data Management Proficiency
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Roelofs, J.B.; van Eerdenburg, F.J.C.M.; Soede, N.M.; Kemp, B. Pedometer readings for estrous detection and as predictor for time of ovulation in dairy cattle. Theriogenology 2005, 64, 1690–1703. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Spahr, S.L. Automated Electronic Activity Measurement for Detection of Estrus in Dairy Cattle1. J. Dairy Sci. 1993, 76, 2906–2912. [Google Scholar] [CrossRef]
- Lucy, M.C. Reproductive Loss in High-Producing Dairy Cattle: Where Will It End? J. Dairy Sci. 2001, 84, 1277–1293. [Google Scholar] [CrossRef]
- Schefers, J.M.; Weigel, K.A.; Rawson, C.L.; Zwald, N.R.; Cook, N.B. Management practices associated with conception rate and service rate of lactating Holstein cows in large, commercial dairy herds. J. Dairy Sci. 2010, 93, 1459–1467. [Google Scholar] [CrossRef]
- Reith, S.; Hoy, S. Behavioral signs of estrus and the potential of fully automated systems for detection of estrus in dairy cattle. Animal 2017, 12, 398–407. [Google Scholar] [CrossRef] [Green Version]
- Galvão, K.N.; Federico, P.; De Vries, A.; Schuenemann, G.M. Economic comparison of reproductive programs for dairy herds using estrus detection, timed artificial insemination, or a combination. J. Dairy Sci. 2013, 96, 2681–2693. [Google Scholar] [CrossRef]
- Firk, R.; Stamer, E.; Junge, W.; Krieter, J. Automation of oestrus detection in dairy cows: A review. Livest. Prod. Sci. 2002, 75, 219–232. [Google Scholar] [CrossRef]
- Hurnik, J.F.; King, G.J.; Robertson, H.A. Estrous and related behaviour in postpartum Holstein cows. Appl. Anim. Ethol. 1975, 2, 55–68. [Google Scholar] [CrossRef]
- Mayo, L.M.; Silvia, W.J.; Ray, D.L.; Jones, B.W.; Stone, A.E.; Tsai, I.C.; Clark, J.D.; Bewley, J.M.; Heersche, G. Automated estrous detection using multiple commercial precision dairy monitoring technologies in synchronized dairy cows. J. Dairy Sci. 2019, 102, 2645–2656. [Google Scholar] [CrossRef]
- Dijkhuizen, A.A.; Stelwagen, J.; Renkema, J.A. Economic aspects of reproductive failure in dairy cattle. I. Financial loss at farm level. Prev. Vet. Med. 1985, 3, 251–263. [Google Scholar] [CrossRef]
- Van Eerdenburg, F.J.C.M.; Karthaus, D.; Taverne, M.A.M.; Mercis, I.; Szenci, O. The Relationship between Estrous Behavioral Score and Time of Ovulation in Dairy Cattle. J. Dairy Sci. 2002, 85, 1150–1156. [Google Scholar] [CrossRef]
- Chanvallon, A.; Coyral-Castel, S.; Gatien, J.; Lamy, J.-M.; Ribaud, D.; Allain, C.; Clément, P.; Salvetti, P. Comparison of three devices for the automated detection of estrus in dairy cows. Theriogenology 2014, 82, 734–741. [Google Scholar] [CrossRef]
- Steeneveld, W.; Hogeveen, H. Characterization of Dutch dairy farms using sensor systems for cow management. J. Dairy Sci. 2015, 98, 709–717. [Google Scholar] [CrossRef] [PubMed]
- Diskin, M.; Sreenan, J. Expression and detection of oestrus in cattle. Reprod. Nutr. Dev. 2000, 40, 481–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roelofs, J.; López-Gatius, F.; Hunter, R.H.F.; van Eerdenburg, F.J.C.M.; Hanzen, C. When is a cow in estrus? Clinical and practical aspects. Theriogenology 2010, 74, 327–344. [Google Scholar] [CrossRef] [PubMed]
- Valenza, A.; Giordano, J.O.; Lopes, G.; Vincenti, L.; Amundson, M.C.; Fricke, P.M. Assessment of an accelerometer system for detection of estrus and treatment with gonadotropin-releasing hormone at the time of insemination in lactating dairy cows. J. Dairy Sci. 2012, 95, 7115–7127. [Google Scholar] [CrossRef] [PubMed]
- Saint-Dizier, M.; Chastant-Maillard, S. Towards an Automated Detection of Oestrus in Dairy Cattle. Reprod. Domest. Anim. 2012, 47, 1056–1061. [Google Scholar] [CrossRef] [Green Version]
- Rutten, C.J.; Steeneveld, W.; Inchaisri, C.; Hogeveen, H. An ex ante analysis on the use of activity meters for automated estrus detection: To invest or not to invest? J. Dairy Sci. 2014, 97, 6869–6887. [Google Scholar] [CrossRef]
- Olynk, N.J.; Wolf, C.A. Economic Analysis of Reproductive Management Strategies on US Commercial Dairy Farms. J. Dairy Sci. 2008, 91, 4082–4091. [Google Scholar] [CrossRef]
- Senger, P.L. The Estrus Detection Problem: New Concepts, Technologies, and Possibilities. J. Dairy Sci. 1994, 77, 2745–2753. [Google Scholar] [CrossRef]
- Mbehoma, P.M.; Mutasa, F. Determinants of Technical Efficiency of Smallholders Dairy Farmers in Njombe District, Tanzania. Afr. J. Econ. Rev. 2013, 1, 15–29. [Google Scholar]
- Pfeiffer, J.; Gandorfer, M.; Ettema, J.F. Evaluation of activity meters for estrus detection: A stochastic bioeconomic modeling approach. J. Dairy Sci. 2020, 103, 492–506. [Google Scholar] [CrossRef] [PubMed]
- Wathes, C.M.; Kristensen, H.H.; Aerts, J.M.; Berckmans, D. Is precision livestock farming an engineer’s daydream or nightmare, an animal’s friend or foe, and a farmer’s panacea or pitfall? Comput. Electron. Agric. 2008, 64, 2–10. [Google Scholar] [CrossRef]
- Borchers, M.R.; Bewley, J.M. An assessment of producer precision dairy farming technology use, prepurchase considerations, and usefulness. J. Dairy Sci. 2015, 98, 4198–4205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamphuis, C.; DelaRue, B.; Burke, C.R.; Jago, J. Field evaluation of 2 collar-mounted activity meters for detecting cows in estrus on a large pasture-grazed dairy farm. J. Dairy Sci. 2012, 95, 3045–3056. [Google Scholar] [CrossRef] [PubMed]
- Rutten, C.J.; Velthuis, A.G.J.; Steeneveld, W.; Hogeveen, H. Invited review: Sensors to support health management on dairy farms. J. Dairy Sci. 2013, 96, 1928–1952. [Google Scholar] [CrossRef]
- Michaelis, I.; Hasenpusch, E.; Heuwieser, W. Estrus detection in dairy cattle: Changes after the introduction of an automated activity monitoring system? Tierarztl Prax Ausg G Grosstiere Nutztiere 2013, 41, 159–165. [Google Scholar] [CrossRef]
- Russell, R.A.; Bewley, J.M. Characterization of Kentucky dairy producer decision-making behavior. J. Dairy Sci. 2013, 96, 4751–4758. [Google Scholar] [CrossRef]
- Abeni, F.; Petrera, F.; Galli, A. A Survey of Italian Dairy Farmers’ Propensity for Precision Livestock Farming Tools. Animals 2019, 9, 202. [Google Scholar] [CrossRef] [Green Version]
- Rehman, T.; McKemey, K.; Yates, C.M.; Cooke, R.J.; Garforth, C.J.; Tranter, R.B.; Park, J.R.; Dorward, P.T. Identifying and understanding factors influencing the uptake of new technologies on dairy farms in SW England using the theory of reasoned action. Agric. Syst. 2007, 94, 281–293. [Google Scholar] [CrossRef]
- Ayinde, O.; Muchie, M.; Olatinwo, K.; Adenuga, A.; Oyewole, A. Analysis of adoption and risk perception in innovation system in Kwara state Nigeria: A case study of improved rice. Int. J. Agric. Sci. 2014, 10, 816–822. [Google Scholar] [CrossRef]
- Neves, R.C.; LeBlanc, S.J. Reproductive management practices and performance of Canadian dairy herds using automated activity-monitoring systems. J. Dairy Sci. 2015, 98, 2801–2811. [Google Scholar] [CrossRef] [PubMed]
- Rorie, R.W.; Bilby, T.R.; Lester, T.D. Application of electronic estrus detection technologies to reproductive management of cattle. Theriogenology 2002, 57, 137–148. [Google Scholar] [CrossRef]
- Galon, N. The Use of Pedometry for Estrus Detection in Dairy Cows in Israel. J. Reprod. Dev. 2010, 56 (Suppl.), S48–S52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahriar, M.S.; Smith, D.; Rahman, A.; Freeman, M.; Hills, J.; Rawnsley, R.; Henry, D.; Bishop-Hurley, G. Detecting heat events in dairy cows using accelerometers and unsupervised learning. Comput. Electron. Agric. 2016, 128, 20–26. [Google Scholar] [CrossRef]
- Holman, A.; Williams, J.; Routly, J.; Cameron, J.; Jones, D.; Grove-White, D.; Smith, R.; Dobson, H. Comparison of oestrus detection methods in dairy cattle. Vet. Rec. 2011, 169, 47. [Google Scholar] [CrossRef]
- Dransfield, M.B.G.; Nebel, R.L.; Pearson, R.E.; Warnick, L.D. Timing of Insemination for Dairy Cows Identified in Estrus by a Radiotelemetric Estrus Detection System. J. Dairy Sci. 1998, 81, 1874–1882. [Google Scholar] [CrossRef]
- Aungier, S.P.M.; Roche, J.F.; Duffy, P.; Scully, S.; Crowe, M.A. The relationship between activity clusters detected by an automatic activity monitor and endocrine changes during the periestrous period in lactating dairy cows. J. Dairy Sci. 2015, 98, 1666–1684. [Google Scholar] [CrossRef] [Green Version]
- Peralta, O.A.; Pearson, R.E.; Nebel, R.L. Comparison of three estrus detection systems during summer in a large commercial dairy herd. Anim. Reprod. Sci. 2005, 87, 59–72. [Google Scholar] [CrossRef]
- Fricke, P.M.; Carvalho, P.D.; Giordano, J.O.; Valenza, A.; Lopes, G., Jr.; Amundson, M.C. Expression and detection of estrus in dairy cows: The role of new technologies. Animal 2014, 8 (Suppl. 1), 134–143. [Google Scholar] [CrossRef] [Green Version]
- Fricke, P.M.; Giordano, J.O.; Valenza, A.; Lopes, G.; Amundson, M.C.; Carvalho, P.D. Reproductive performance of lactating dairy cows managed for first service using timed artificial insemination with or without detection of estrus using an activity-monitoring system. J. Dairy Sci. 2014, 97, 2771–2781. [Google Scholar] [CrossRef] [PubMed]
- Van Eerdenburg, F.J.; Loeffler, H.S.; van Vliet, J.H. Detection of oestrus in dairy cows: A new approach to an old problem. Vet. Q. 1996, 18, 52–54. [Google Scholar] [CrossRef] [PubMed]
- Mazrier, H.; Tal, S.; Aizinbud, E.; Bargai, U. A field investigation of the use of the pedometer for the early detection of lameness in cattle. Can. Vet. J. 2006, 47, 883–886. [Google Scholar]
- Gaillard, C.; Barbu, H.; Sørensen, M.T.; Sehested, J.; Callesen, H.; Vestergaard, M. Milk yield and estrous behavior during eight consecutive estruses in Holstein cows fed standardized or high energy diets and grouped according to live weight changes in early lactation. J. Dairy Sci. 2016, 99, 3134–3143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yániz, J.L.; Santolaria, P.; Giribet, A.; López-Gatius, F. Factors affecting walking activity at estrus during postpartum period and subsequent fertility in dairy cows. Theriogenology 2006, 66, 1943–1950. [Google Scholar] [CrossRef] [PubMed]
- Madureira, A.M.L.; Silper, B.F.; Burnett, T.A.; Polsky, L.; Cruppe, L.H.; Veira, D.M.; Vasconcelos, J.L.M.; Cerri, R.L.A. Factors affecting expression of estrus measured by activity monitors and conception risk of lactating dairy cows. J. Dairy Sci. 2015, 98, 7003–7014. [Google Scholar] [CrossRef] [Green Version]
- Dolecheck, K.A. Assessment of the Technical and Economic Potential of Automated Estrus Detection Technologies for Dairy Cattle; University of Kentucky: Lexington, KY, USA, 2015. [Google Scholar]
- Dulyala, R.; Kuankid, S.; Rattanawong, T.; Aurasopon, A. Classification system for estrus behavior of cow using an accelerometer. In Proceedings of the Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific, Chiang Mai, Thailand, 9–12 December 2014; p. 14. [Google Scholar]
- Yang, C.-C.; Hsu, Y.-L. A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors 2010, 10, 7772–7788. [Google Scholar] [CrossRef]
- Halsey, L.G.; Shepard, E.L.C.; Hulston, C.J.; Venables, M.C.; White, C.R.; Jeukendrup, A.E.; Wilson, R.P. Acceleration versus heart rate for estimating energy expenditure and speed during locomotion in animals: Tests with an easy model species, Homo sapiens. Zoology 2008, 111, 231–241. [Google Scholar] [CrossRef]
- Miwa, M.; Oishi, K.; Nakagawa, Y.; Maeno, H.; Anzai, H.; Kumagai, H.; Okano, K.; Tobioka, H.; Hirooka, H. Application of overall dynamic body acceleration as a proxy for estimating the energy expenditure of grazing farm animals: Relationship with heart rate. PLoS ONE 2015, 10, e0128042. [Google Scholar] [CrossRef]
- Bidder, O.R.; Soresina, M.; Shepard, E.L.C.; Halsey, L.G.; Quintana, F.; Gómez-Laich, A.; Wilson, R.P. The need for speed: Testing acceleration for estimating animal travel rates in terrestrial dead-reckoning systems. Zoology 2012, 115, 58–64. [Google Scholar] [CrossRef]
- Robert, B.; White, B.J.; Renter, D.G.; Larson, R.L. Evaluation of three-dimensional accelerometers to monitor and classify behavior patterns in cattle. Comput. Electron. Agric. 2009, 67, 80–84. [Google Scholar] [CrossRef]
- Moreau, M.; Siebert, S.; Buerkert, A.; Schlecht, E. Use of a tri-axial accelerometer for automated recording and classification of goats’ grazing behaviour. Appl. Anim. Behav. Sci. 2009, 119, 158–170. [Google Scholar] [CrossRef]
- Watanabe, N.; Sakanoue, S.; Kawamura, K.; Kozakai, T. Development of an automatic classification system for eating, ruminating and resting behavior of cattle using an accelerometer. Grassl. Sci. 2008, 54, 231–237. [Google Scholar] [CrossRef]
- Reith, S.; Brandt, H.; Hoy, S. Simultaneous analysis of activity and rumination time, based on collar-mounted sensor technology, of dairy cows over the peri-estrus period. Livest. Sci. 2014, 170, 219–227. [Google Scholar] [CrossRef]
- Silper, B.F.; Madureira, A.M.L.; Kaur, M.; Burnett, T.A.; Cerri, R.L.A. Short communication: Comparison of estrus characteristics in Holstein heifers by 2 activity monitoring systems. J. Dairy Sci. 2015, 98, 3158–3165. [Google Scholar] [CrossRef] [PubMed]
- Bar, D. Optimal timing of insemination using activity collars. In Proceedings of the 1st North Am. Conf. Precision Dairy Management, Toronto, ON, Canada, 2–5 March 2010; Progressive Dairy Operators: Elora, ON, Canada, 2010; p. 100. [Google Scholar]
- Bewley, J.M.; Russell, R.A.; Dolecheck, K.A.; Borchers, M.R.; Stone, A.E.; Wadsworth, B.A.; Mayo, L.M.; Tsai, I.-C. Precision Dairy Monitoring Opportunities, Limitations, and Considerations. In Proceedings of the Western Dairy Management Conference, Reno, NV, USA, 3–5 March 2015. [Google Scholar]
- Giordano, J.O. Use of technologies in reproductive management: Economics of automated activity monitoring systems for detection of oestrus. In Proceedings of the Western Dairy Management Conference, Reno, NV, USA, 3–5 March 2015; pp. 51–66. [Google Scholar]
- Bekara, M.E.; Bareille, N.; Bidan, F.; Allain, C.; Disenhaus, C. An ex ante analysis of the economic profitability of automatic oestrus detection devices in different dairy farming systems in France. Proceedings of European Conference on Precision Livestock Farming (ECPLF), Nantes, France, 12–14 September 2017. [Google Scholar]
- van Asseldonk, M.A.P.M.; Jalvingh, A.W.; Huirne, R.B.M.; Dijkhuizen, A.A. Potential economic benefits from changes in management via information technology applications on Dutch dairy farms: A simulation study. Livest. Prod. Sci. 1999, 60, 33–44. [Google Scholar] [CrossRef]
- Giovanetti, V.; Decandia, M.; Molle, G.; Acciaro, M.; Mameli, M.; Cabiddu, A.; Cossu, R.; Serra, M.G.; Manca, C.; Rassu, S.P.G.; et al. Automatic classification system for grazing, ruminating and resting behaviour of dairy sheep using a tri-axial accelerometer. Livest. Sci. 2017, 196, 42–48. [Google Scholar] [CrossRef]
- Arendzen, I.; Scheppingen, A.T.J. Economical sensitivity of four main parameters defining the room for investment of automatic milking systems on dairy farms. Robot. Milk. 2000, 2000, 201–211. [Google Scholar]
- Vandeplas, A.; Arpaia, A.; Cardoso, P.; Silva, A.; Duiella, M.; Kiss, A.; Marzinotto, B.; Palvolgyi, B.; Pierini, F.; Rosini, S.; et al. Labour Market and Wage Developments in Europe 2015; European Commission: Brussels, Belgium, 2015. [Google Scholar]
- Cavalieri, J.; Eagles, V.E.; Ryan, M.; Macmillan, K.L. Comparison of four methods for detection of oestrus in dairy cows with resynchronised oestrous cycles. Aust. Vet. J. 2003, 81, 422–425. [Google Scholar] [CrossRef]
- Bijl, R.; Kooistra, S.R.; Hogeveen, H. The Profitability of Automatic Milking on Dutch Dairy Farms. J. Dairy Sci. 2007, 90, 239–248. [Google Scholar] [CrossRef]
- Pollock, W.; Hurnik, J. Effect of two confinement systems on estrous and diestrous behavior in dairy cows. Can. J. Anim. Sci. 1979, 59, 799–803. [Google Scholar] [CrossRef]
- Kiddy, C.A. Variation in Physical Activity as an Indication of Estrus in Dairy Cows. J. Dairy Sci. 1977, 60, 235–243. [Google Scholar] [CrossRef]
- Phillips, C.J.C.; Leaver, J.D. The effect of forage supplementation on the behaviour of grazing dairy cows. Appl. Anim. Behav. Sci. 1986, 16, 233–247. [Google Scholar] [CrossRef]
- Britt, J.H.; Scott, R.G.; Armstrong, J.D.; Whitacre, M.D. Determinants of Estrous Behavior in Lactating Holstein Cows1. J. Dairy Sci. 1986, 69, 2195–2202. [Google Scholar] [CrossRef]
- Vailes, L.; Britt, J. Influence of footing surface on mounting and other sexual behaviors of estrual Holstern cows. J. Anim. Sci. 1990, 68, 2333–2339. [Google Scholar] [CrossRef]
- Roelofs, J.B.; Krijnen, C.; van Erp-van der Kooij, E. The effect of housing condition on the performance of two types of activity meters to detect estrus in dairy cows. Theriogenology 2017, 93, 12–15. [Google Scholar] [CrossRef] [PubMed]
- Schüller, L.K.; Burfeind, O.; Heuwieser, W. Effect of short- and long-term heat stress on the conception risk of dairy cows under natural service and artificial insemination breeding programs. J. Dairy Sci. 2016, 99, 2996–3002. [Google Scholar] [CrossRef]
- Adenuga, A.H.; Davis, J.; Hutchinson, G.; Donnellan, T.; Patton, M. Estimation and determinants of phosphorus balance and use efficiency of dairy farms in Northern Ireland: A within and between farm random effects analysis. Agric. Syst. 2018, 164, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Adenuga, A.H.; Davis, J.; Hutchinson, G.; Donnellan, T.; Patton, M. Modelling regional environmental efficiency differentials of dairy farms on the island of Ireland. Ecol. Indic. 2018, 95, 851–861. [Google Scholar] [CrossRef]
- Gargiulo, J.I.; Eastwood, C.R.; Garcia, S.C.; Lyons, N.A. Dairy farmers with larger herd sizes adopt more precision dairy technologies. J. Dairy Sci. 2018, 101, 5466–5473. [Google Scholar] [CrossRef]
- Steeneveld, W.; Vernooij, J.C.M.; Hogeveen, H. Effect of sensor systems for cow management on milk production, somatic cell count, and reproduction. J. Dairy Sci. 2015, 98, 3896–3905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steeneveld, W.; Hogeveen, H.; Oude Lansink, A. Economic consequences of investing in sensor systems on dairy farms. Comput. Electron. Agric. 2015, 119, 33–39. [Google Scholar] [CrossRef]
- Van Hertem, T.; Rooijakkers, L.; Berckmans, D.; Peña Fernández, A.; Norton, T.; Berckmans, D.; Vranken, E. Appropriate data visualisation is key to Precision Livestock Farming acceptance. Comput. Electron. Agric. 2017, 138, 1–10. [Google Scholar] [CrossRef]
References | Country | Type of AOD | 1 NPV(DR) | 2 IRR (%) | 3 PBP (yrs) | Profit (Per Cow Per Year) | Study Methodologies |
---|---|---|---|---|---|---|---|
Bekara, et al. [61] | France | Activity meter and pedometer | Positive (2.1%) | 0.04 to 33.8 | NF | +€8.5 to +€ 92 | Simulation model |
Rutten, Steeneveld, Inchaisri and Hogeveen [18] | The Netherlands | Activity meter | Positive (5%) | 11 | 8 | €21.74 | Simulation model |
Dolecheck [47] ** a | US | AOD | Positive | 3.8 | $55.80 to $94.30 | Simulation model | |
Dolecheck [47] ** b | US | AOD | Positive | NF | 3.5 | $55.80 to $94.30 | Simulation Model |
4 Fricke, Giordano, Valenza, Lopes, Amundson and Carvalho [41] | US | Activity meter | Positive | NF | NF | NF | Experimental combined with simulation model |
Giordano [60] | Northeast U.S. | AAM systems Plus synchronization of and ovulation protocols | NF | 7 | $31 | Simulation model | |
Pfeiffer, Gandorfer and Ettema [22] | Germany | Activity meter | Positive | NF | 7 | +€7 to +€40 (Simmental breed) and +€19 to +€46 (Holstein Friesian breed) | Simulation model |
5 van Asseldonk, et al. [62] | The Netherlands | Activity meter | NF | NF | NF | €43.2 | Simulation model |
References | Calving Interval (Days) | Labour | * ODR (Sensitivity) | Milk Yield |
---|---|---|---|---|
Bekara, Bareille, Bidan, Allain and Disenhaus [61] | −7 to −23 | NF | 50% vs. 90% | 5200 kg to 8450 kg |
Rutten, Steeneveld, Inchaisri and Hogeveen [18] | −16 | −4 h per week | 50% vs. 80% | 8310 kg |
Dolecheck [47] ** a | −15.3 | NF | 48.6% vs. 60% | 10,758 kg |
Dolecheck [47] ** b | −35.3 | NF | 48.6% vs. 80% | 10,758 kg |
Giordano [60] | NF | NF | 30% vs. 80% | 12,700 kg |
Pfeiffer, Gandorfer and Ettema [22] | NF | NF | 55% vs. 92% | 7000 and 11,000 kg a |
van Asseldonk, Jalvingh, Huirne and Dijkhuizen [62] | NF | NF | 50% vs. 90% | 7500 kg |
References | Type of AOD | Cost of Sensor System Data Transmission System and Software Per Unit | Collar (*/Cow) | Annual Maintenance and Replacement Costs (*/Year) | Country |
---|---|---|---|---|---|
Bekara, Bareille, Bidan, Allain and Disenhaus [61] | Pedometer | €6498 | €107 | Guaranteed, not included in estimation | France |
Bekara, Bareille, Bidan, Allain and Disenhaus [61] | Activity meter | €4430 | €120 | Guaranteed, not included in estimation | France |
Rutten, Steeneveld, Inchaisri and Hogeveen [18] | Activity meter | €3600 per herd | €108 | €90 per year | The Netherlands |
Dolecheck [47] | AOD | $US5000 | $US50 | ($US0) | US |
Dolecheck [47] | AOD | $US10,000 | $US100 | ($US0) | US |
Giordano [60] | Activity meter | $US8000 | $US120 | $US1500 per year to account for maintenance and lost tags | US |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adenuga, A.H.; Jack, C.; Olagunju, K.O.; Ashfield, A. Economic Viability of Adoption of Automated Oestrus Detection Technologies on Dairy Farms: A Review. Animals 2020, 10, 1241. https://doi.org/10.3390/ani10071241
Adenuga AH, Jack C, Olagunju KO, Ashfield A. Economic Viability of Adoption of Automated Oestrus Detection Technologies on Dairy Farms: A Review. Animals. 2020; 10(7):1241. https://doi.org/10.3390/ani10071241
Chicago/Turabian StyleAdenuga, Adewale Henry, Claire Jack, Kehinde Oluseyi Olagunju, and Austen Ashfield. 2020. "Economic Viability of Adoption of Automated Oestrus Detection Technologies on Dairy Farms: A Review" Animals 10, no. 7: 1241. https://doi.org/10.3390/ani10071241
APA StyleAdenuga, A. H., Jack, C., Olagunju, K. O., & Ashfield, A. (2020). Economic Viability of Adoption of Automated Oestrus Detection Technologies on Dairy Farms: A Review. Animals, 10(7), 1241. https://doi.org/10.3390/ani10071241