Next Article in Journal
Effect of Total Dissolved Gas Supersaturation on the Survival of Bighead Carp (Hypophthalmichthys Nobilis)
Previous Article in Journal
Social Referencing in the Domestic Horse
Open AccessArticle

Measurement of Fecal Testosterone Metabolites in Mice: Replacement of Invasive Techniques

1
Department for Biomedical Sciences, Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
2
Department for Biomedical Sciences, Unit of Physiology, Pathophysiology and Experimental Endocrinology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
3
Department of Veterinary Medicine, Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Königsweg 67, 14163 Berlin, Germany
*
Author to whom correspondence should be addressed.
Animals 2020, 10(1), 165; https://doi.org/10.3390/ani10010165
Received: 8 December 2019 / Revised: 11 January 2020 / Accepted: 15 January 2020 / Published: 18 January 2020
(This article belongs to the Section Animal Physiology)
Testosterone is the main reproductive hormone in male vertebrates. Conventional methods to assess testosterone rely on invasive blood sampling procedures, which can induce pain and distress to the animals. Here we successfully validated a non-invasive method to determine testosterone levels by assessing testosterone metabolites (TMs) in excreta of mice. We investigated the effects of sex and daytime on the metabolism and the excretion of TMs and validated the applied EIA to measure TMs. Further, we assessed diurnal fluctuations in TM excretions in both sexes and across strains. We found that males excreted more radiolabeled TMs via their feces compared to females. TM excretion patterns did not differ between sexes but TM excretion occurred faster in urinary than fecal samples. Animals excreted TM faster during the night than during the day. Daytime had no effect on the formed TMs; however, males and females formed different TMs. As expected, males showed higher fecal TM levels than females. Males also showed diurnal fluctuations in their TM levels but we found no differences between mouse strains. Our non-invasive method to assess fecal TMs can be widely used and will benefit various research disciplines.
Testosterone is the main reproductive hormone in male vertebrates and conventional methods to measure testosterone rely on invasive blood sampling procedures. Here, we aimed to establish a non-invasive alternative by assessing testosterone metabolites (TMs) in fecal and urinary samples in mice. We performed a radiometabolism study to determine the effects of daytime and sex on the metabolism and excretion pattern of radiolabeled TMs. We performed physiological and biological validations of the applied EIA to measure TMs and assessed diurnal fluctuations in TM excretions in male and female mice and across strains. We found that males excreted significantly more radiolabeled TMs via the feces (59%) compared to females (49.5%). TM excretion patterns differed significantly between urinary and fecal samples and were affected by the daytime of ³H-testosterone injection. Overall, TM excretion occurred faster in urinary than fecal samples. Peak excretion of fecal TMs occurred after 8 h when animals received the 3H-testosterone in the morning, or after 4 h when they received the 3H-testosterone injection in the evening. Daytime had no effect on the formed TMs; however, males and females formed different types of TMs. As expected, males showed higher fecal TM levels than females. Males also showed diurnal fluctuations in their TM levels but we found no differences in the TM levels of C57BL/6J and B6D2F1 hybrid males. Finally, we successfully validated our applied EIA (measuring 17β-hydroxyandrostane) by showing that hCG (human chorionic gonadotropin) administration increased TM levels, whereas castration reduced them. In conclusion, our EIA proved suitable for measuring fecal TMs in mice. Our non-invasive method to assess fecal TMs can be widely used in various research disciplines like animal behavior, reproduction, animal welfare, ecology, conservation, and biomedicine. View Full-Text
Keywords: testosterone; mice; androgens; non-invasive; feces testosterone; mice; androgens; non-invasive; feces
Show Figures

Figure 1

MDPI and ACS Style

Auer, K.E.; Kußmaul, M.; Möstl, E.; Hohlbaum, K.; Rülicke, T.; Palme, R. Measurement of Fecal Testosterone Metabolites in Mice: Replacement of Invasive Techniques. Animals 2020, 10, 165.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop