Antibacterial Effectiveness of Fecal Water and In Vitro Activity of a Multi-Strain Probiotic Formulation against Multi-Drug Resistant Microorganisms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Demographic Characteristics of the Participants
2.2. Probiotic Formulation
2.3. Tested Strains
2.4. Anti-MDR Microorganism Activity of Fecal Water
2.5. Antibacterial Activity of Probiotic Formulations
2.5.1. Anti-Bacterial Activity of WP and PS
2.5.2. Anti-Bacterial Activity of WP and PS Following 4 h and 24 h of Co-Incubation with the Pathogen
3. Results
3.1. Anti-MDR Microorganism Activity of Fecal Water
3.2. Anti-Bacterial Activity of WP and PS
3.3. Anti-Bacterial Activity of WP and PS Following 4 and 24 h of Co-Incubation with the Pathogen
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Data Availability Statement
References
- Fijan, S. Microorganisms with Claimed Probiotic Properties: An Overview of Recent Literature. Int. J. Environ. Res. Public Health 2014, 11, 4745–4767. [Google Scholar] [CrossRef] [PubMed]
- Faecalibacterium Prausnitzii Is Another Commensal that Can Increase IL-10 Production by Peripheral Mononuclear Cells and Is Associated with Improved Clinical Outcome in Patients with Crohn Disease (Sokol et al., 2008). Available online: https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/faecalibacterium-prausnitzii (accessed on 12 February 2020).
- Becattini, S.; Taur, Y.; Pamer, E.G. Antibiotic-Induced Changes in the Intestinal Microbiota and Disease. Trends Mol. Med. 2016, 22, 458–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martens, E.; Demain, A. The antibiotic resistance crisis, with a focus on the United States. J. Antibiot. 2017, 70, 520–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Ramírez, C.; Hípola-Escalada, S.; Cabrera-Santana, M.; Hernández-Viera, M.A.; Caipe-Balcázar, L.; Saavedra, P.; Artiles-Campelo, F.; Sangil-Monroy, N.; Lübbe-Vázquez, C.F.; Ruiz-Santana, S. Long-term use of selective digestive decontamination in an ICU highly endemic for bacterial resistance. Crit. Care 2018, 22, 141. [Google Scholar]
- Oudhuis, G.J.; Bergmans, D.C.; Dormans, T.; Zwaveling, J.-H.; Kessels, A.; Prins, M.H.; Stobberingh, E.E.; Verbon, A. Probiotics versus antibiotic decontamination of the digestive tract: Infection and mortality. Intensive Care Med. 2011, 37, 110–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gargiullo, L.; Del Chierico, F.; D’Argenio, P.; Putignani, L. Gut Microbiota Modulation for Multidrug-Resistant Organism Decolonization: Present and Future Perspectives. Front Microbiol. 2019, 10, 1704. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6671974/ (accessed on 26 February 2020). [CrossRef]
- Gopalsamy, S.N.; Woodworth, M.H.; Wang, T.; Carpentieri, C.T.; Mehta, N.; Friedman-Moraco, R.J.; Mehta, A.K.; Larsen, C.P.; Kraft, C.S. The Use of Microbiome Restoration Therapeutics to Eliminate Intestinal Colonization with Multidrug-Resistant Organisms. Am. J. Med. Sci. 2018, 356, 433–440. [Google Scholar] [CrossRef]
- Ljungquist, O.; Kampmann, C.; Resman, F.; Riesbeck, K.; Tham, J. Probiotics for intestinal decolonization of ESBL-producing Enterobacteriaceae: A randomized, placebo-controlled clinical trial. Clin. Microbiol. Infect. 2019. [Google Scholar] [CrossRef]
- Yang, E.; Fan, L.; Yan, J.; Jiang, Y.; Doucette, C.; Fillmore, S.; Walker, B. Influence of culture media, pH and temperature on growth and bacteriocin production of bacteriocinogenic lactic acid bacteria. AMB Express 2018, 8, 10. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5783981/ (accessed on 2 February 2020). [CrossRef] [Green Version]
- De Angelis, M.; Scagnolari, C.; Oliva, A.; Cavallari, E.N.; Celani, L.; Santinelli, L.; Innocenti, G.P.; Borrazzo, C.; Ceccarelli, G.; Vullo, V.; et al. Short-Term Probiotic Administration Increases Fecal-Anti Candida Activity in Healthy Subjects. Microorganisms 2019, 7, 162. [Google Scholar] [CrossRef] [Green Version]
- Bayoumi, M.A.; Griffiths, M.W. In vitro inhibition of expression of virulence genes responsible for colonization and systemic spread of enteric pathogens using Bifidobacterium bifidum secreted molecules. Int. J. Food Microbiol. 2012, 156, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Cazorla, S.I.; Maldonado-Galdeano, C.; Weill, R.; De Paula, J.; Perdigón, G.D.V. Oral Administration of Probiotics Increases Paneth Cells and Intestinal Antimicrobial Activity. Front Microbiol. 2018, 9, 736. [Google Scholar] [CrossRef] [PubMed]
- Gaspar, C.; Donders, G.G.; Palmeira-de-Oliveira, R.; Queiroz, J.A.; Tomaz, C.; Martinez-de-Oliveira, J.; Palmeira-de-Oliveira, A. Bacteriocin production of the probiotic Lactobacillus acidophilus KS400. AMB Express 2018, 8, 153. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6160374/ (accessed on 26 February 2020). [CrossRef] [PubMed]
- Suez, J.; Zmora, N.; Zilberman-Schapira, G.; Mor, U.; Dori-Bachash, M.; Bashiardes, S.; Zur, M.; Regev-Lehavi, D.; Ben-Zeev Brik, R.; Federici, S.; et al. Post-Antibiotic Gut Mucosal Microbiome Reconstitution Is Impaired by Probiotics and Improved by Autologous FMT. Cell 2018, 174, 1406–1423.e16. [Google Scholar] [CrossRef] [Green Version]
- Salomão, M.C.C.; Heluany-Filho, M.A.; Menegueti, M.G.; Kraker, M.; Martinez, R.; Bellissimo-Rodrigues, F. A randomized clinical trial on the effectiveness of a symbiotic product to decolonize patients harboring multidrug-resistant Gram-negative bacilli. Rev. Soc. Bras. Med. Trop. 2016, 49, 559–566. [Google Scholar]
- Allan Walker, W. Mechanisms of Action of Probiotics. Clin. Infect. Dis. 2008, 46 (Suppl. 2), S87–S91. [Google Scholar] [CrossRef]
- Ebner, P.; Reichert, S.; Luqman, A.; Krismer, B.; Popella, P.; Götz, F. Lantibiotic production is a burden for the producing staphylococci. Sci. Rep. 2018, 8, 7471. [Google Scholar] [CrossRef]
- Tachedjian, G.; Aldunate, M.; Bradshaw, C.S.; Cone, R.A. The role of lactic acid production by probiotic Lactobacillus species in vaginal health. Res. Microbiol. 2017, 168, 782–792. [Google Scholar] [CrossRef]
- Baskett, R.C.; Hentges, D.J. Shigella flexneri Inhibition by Acetic Acid. Infect. Immun. 1973, 8, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; O’Riordan, M.X.D. Regulation of bacterial pathogenesis by intestinal short-chain Fatty acids. Adv. Appl. Microbiol. 2013, 85, 93–118. [Google Scholar]
- Lambert, R.J.; Stratford, M. Weak-acid preservatives: Modelling microbial inhibition and response. J. Appl. Microbiol. 1999, 86, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Roe, A.J.; O’Byrne, C.; McLaggan, D.; Booth, I.R. Inhibition of Escherichia coli growth by acetic acid: A problem with methionine biosynthesis and homocysteine toxicity. Microbiology 2002, 148, 2215–2222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malashree, L.; Angadi, V.; Yadav, K.S.; Prabha, R. “Postbiotics”-One Step Ahead of Probiotics. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 2049–2053. [Google Scholar] [CrossRef]
- Smith, P.M.; Howitt, M.R.; Panikov, N.; Michaud, M.; Gallini, C.A.; Bohlooly-Y, M.; Glickman, J.N.; Garrett, W.S. The Microbial Metabolites, Short-Chain Fatty Acids, Regulate Colonic Treg Cell Homeostasis. Science 2013, 341, 569–573. [Google Scholar] [CrossRef] [Green Version]
- Ouwehand, A.C.; Forssten, S.; Hibberd, A.A.; Lyra, A.; Stahl, B. Probiotic approach to prevent antibiotic resistance. Ann. Med. 2016, 48, 246–255. [Google Scholar] [CrossRef]
- Wong, A.C.; Levy, M. New Approaches to Microbiome-Based Therapies. mSystems 2019, 4, e00122-19. [Google Scholar] [CrossRef] [Green Version]
Pathogens | MBD (SDN) (T4) | MBD (SDN) (T24) | ||||||
---|---|---|---|---|---|---|---|---|
WP | PS | WP-C | PS-C | WP | PS | WP-C | PS-C | |
CR-Pa | 1:64 (6) | 1:16 (4) | 1:128 (7) | 1:8 (3) | 1:64 (6) | 1:16 (4) | 1:16 (4) | 1:4 (2) |
CR-Ab | 1:128 (7) | 1:16 (4) | 1:128 (7) | 1:4 (2) | 1:16 (4) | 1:8 (3) | 1:8 (3) | NE |
CR-Kp | 1:32 (5) | 1:8 (3) | 1:64 (6) | 1:4 (2) | 1:8 (3) | 1:8 (3) | 1:8 (3) | NE |
MRSA | 1:8 (3) | 1:4 (2) | 1:16 (4) | 1:8 (3) | 1:16 (4) | 1:4 (2) | 1:32 (5) | 1:4 (2) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliva, A.; Miele, M.C.; De Angelis, M.; Costantini, S.; Mascellino, M.T.; Mastroianni, C.M.; Vullo, V.; d’Ettorre, G. Antibacterial Effectiveness of Fecal Water and In Vitro Activity of a Multi-Strain Probiotic Formulation against Multi-Drug Resistant Microorganisms. Microorganisms 2020, 8, 332. https://doi.org/10.3390/microorganisms8030332
Oliva A, Miele MC, De Angelis M, Costantini S, Mascellino MT, Mastroianni CM, Vullo V, d’Ettorre G. Antibacterial Effectiveness of Fecal Water and In Vitro Activity of a Multi-Strain Probiotic Formulation against Multi-Drug Resistant Microorganisms. Microorganisms. 2020; 8(3):332. https://doi.org/10.3390/microorganisms8030332
Chicago/Turabian StyleOliva, Alessandra, Maria Claudia Miele, Massimiliano De Angelis, Silvia Costantini, Maria Teresa Mascellino, Claudio Maria Mastroianni, Vincenzo Vullo, and Gabriella d’Ettorre. 2020. "Antibacterial Effectiveness of Fecal Water and In Vitro Activity of a Multi-Strain Probiotic Formulation against Multi-Drug Resistant Microorganisms" Microorganisms 8, no. 3: 332. https://doi.org/10.3390/microorganisms8030332
APA StyleOliva, A., Miele, M. C., De Angelis, M., Costantini, S., Mascellino, M. T., Mastroianni, C. M., Vullo, V., & d’Ettorre, G. (2020). Antibacterial Effectiveness of Fecal Water and In Vitro Activity of a Multi-Strain Probiotic Formulation against Multi-Drug Resistant Microorganisms. Microorganisms, 8(3), 332. https://doi.org/10.3390/microorganisms8030332