Fused Omics Data Models Reveal Gut Microbiome Signatures Specific of Inactive Stage of Juvenile Idiopathic Arthritis in Pediatric Patients
Abstract
:1. Introduction
2. Materials and Methods
Patient Enrollment and Omics Procedures
3. Results
3.1. Patients
3.2. Omics Data and Fused Model Analysis
3.3. Univariate Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
JIA | Juvenile idiopathic arthritis |
GM | Gut microbiome |
CTRLs | Controls |
OTUs | Operational taxonomic units |
SPME/GC-MS | Solid phase microextraction/Gas-chromatography-mass spectrometry |
1H-NMR | Proton nuclear magnetic resonance spectroscopy |
VOCs | Volatile organic compounds |
JADAS | Juvenile Arthritis Disease Activity Score |
CRP | C- reactive protein level |
ESR | Erythrocyte sedimentation rate |
NSAIDs | Nonsteroidal anti-inflammatory drugs |
MSC | Number of misclassifications |
ROC | Receiver operating characteristic |
PLS-DA | Partial least squares discriminant analysis |
RP | Rank product |
CCR | Correct classification rate |
DCV | Double cross-validation |
ERA | Enthesitis-related arthritis patients |
NAFLD | Non-alcoholic fatty liver disease |
OPGG | Ospedale Pediatrico Giannina Gaslini |
OPBG | Ospedale Pediatrico Bambino Gesù |
ILAR | International League Against Rheumatism |
References
- Yeoh, N.; Burton, J.P.; Suppiah, P.; Reid, G.; Stebbings, S. The role of the microbiome in rheumatic diseases. Curr. Rheumatol. Rep. 2013, 15, 314. [Google Scholar] [CrossRef] [PubMed]
- Verwoerd, A.; Ter Haar, N.M.; de Roock, S.; Vastert, S.J.; Bogaert, D. The human microbiome and juvenile idiopathic arthritis. Pediatr. Rheumatol. 2016, 14, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Dijkhuizen, E.H.P.; Del Chierico, F.; Malattia, C.; Russo, A.; Pires Marafon, D.; Ter Haar, N.M.; Magni-Manzoni, S.; Vastert, S.J.; Dallapiccola, B.; Prakken, B.; et al. Microbiome Analytics of the Gut Microbiota in Patients With Juvenile Idiopathic Arthritis: A Longitudinal Observational Cohort Study. Arthritis Rheumatol. 2019, 71, 1000–1010. [Google Scholar] [CrossRef] [PubMed]
- Stoll, M.L.; Kumar, R.; Morrow, C.D.; Lefkowitz, E.J.; Cui, X.; Genin, A.; Cron, R.Q.; Elson, C.O. Altered microbiota associated with abnormal humoral immune responses to commensal organisms in enthesitis-related arthritis. Arthritis Res. Ther. 2014, 16, 486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tejesvi, M.V.; Arvonen, M.; Kangas, S.M.; Keskitalo, P.L.; Pirttilä, A.M.; Karttunen, T.J.; Vähäsalo, P. Faecal microbiome in new-onset juvenile idiopathic arthritis. Eur. J. Clin. Microbiol. Infect. Dis. 2016, 35, 363–370. [Google Scholar] [CrossRef]
- Aggarwal, A.; Sarangi, A.N.; Gaur, P.; Shukla, A.; Aggarwal, R. Gut microbiome in children with enthesitis-related arthritis in a developing country and the effect of probiotic administration. Clin. Exp. Immunol. 2017, 187, 480–489. [Google Scholar] [CrossRef] [Green Version]
- Arvonen, M.; Vänni, P.; Sarangi, A.N.; V Tejesvi, M.; Vähäsalo, P.; Aggarwal, A.; Stoll, M.L. Microbial orchestra in juvenile idiopathic arthritis: Sounds of disarray? Immunol. Rev. 2020, 294, 9–26. [Google Scholar] [CrossRef]
- Petty, R.E.; Southwood, T.R.; Manners, P.; Baum, J.; Glass, D.N.; Goldenberg, J.; He, X.; Maldonado-Cocco, J.; Orozco-Alcala, J.; Prieur, A.-M.; et al. International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: Second revision, Edmonton, 2001. J. Rheumatol. 2004, 31, 390–392. [Google Scholar]
- Consolaro, A.; Ruperto, N.; Bracciolini, G.; Frisina, A.; Gallo, M.C.; Pistorio, A.; Verazza, S.; Negro, G.; Gerloni, V.; Goldenstein-Schainberg, C.; et al. Defining criteria for high disease activity in juvenile idiopathic arthritis based on the juvenile arthritis disease activity score. Ann. Rheum. Dis. 2014, 73, 1380–1383. [Google Scholar] [CrossRef]
- Wallace, C.A.; Giannini, E.H.; Huang, B.; Itert, L.; Ruperto, N.; Childhood Arthritis Rheumatology Research Alliance; Pediatric Rheumatology Collaborative Study Group; Paediatric Rheumatology International Trials Organisation. American College of Rheumatology provisional criteria for defining clinical inactive disease in select categories of juvenile idiopathic arthritis. Arthritis Care Res. 2011, 63, 929–936. [Google Scholar] [CrossRef]
- Di Paola, M.; Cavalieri, D.; Albanese, D.; Sordo, M.; Pindo, M.; Donati, C.; Pagnini, I.; Giani, T.; Simonini, G.; Paladini, A.; et al. Alteration of Fecal Microbiota Profiles in Juvenile Idiopathic Arthritis. Associations with HLA-B27 Allele and Disease Status. Front. Microbiol. 2016, 7, 1703. [Google Scholar] [CrossRef] [PubMed]
- Oliphant, K.; Allen-Vercoe, E. Macronutrient metabolism by the human gut microbiome: Major fermentation by-products and their impact on host health. Microbiome 2019, 7, 91. [Google Scholar] [CrossRef] [PubMed]
- Vernocchi, P.; Del Chierico, F.; Russo, A.; Majo, F.; Rossitto, M.; Valerio, M.; Casadei, L.; La Storia, A.; De Filippis, F.; Rizzo, C.; et al. Gut microbiota signatures in cystic fibrosis: Loss of host CFTR function drives the microbiota enterophenotype. PLoS ONE 2018, 13, e0208171. [Google Scholar] [CrossRef]
- Szymańska, E.; Saccenti, E.; Smilde, A.K.; Westerhuis, J.A. Double-check: Validation of diagnostic statistics for PLS-DA models in metabolomics studies. Metabolomics 2012, 8, 3–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Carratore, F.; Jankevics, A.; Eisinga, R.; Heskes, T.; Hong, F.; Breitling, R. RankProd 2.0: A refactored bioconductor package for detecting differentially expressed features in molecular profiling datasets. Bioinformatics 2017, 33, 2774–2775. [Google Scholar] [CrossRef] [Green Version]
- Consolaro, A.; Ruperto, N.; Bazso, A.; Pistorio, A.; Magni-Manzoni, S.; Filocamo, G.; Malattia, C.; Viola, S.; Martini, A.; Ravelli, A.; et al. Development and validation of a composite disease activity score for juvenile idiopathic arthritis. Arthritis Rheum. 2009, 61, 658–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forbes, J.D.; Van Domselaar, G.; Bernstein, C.N. The Gut Microbiota in Immune-Mediated Inflammatory Diseases. Front. Microbiol. 2016, 7, 1081. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Baker, S.S.; Gill, C.; Liu, W.; Alkhouri, R.; Baker, R.D.; Gill, S.R. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: A connection between endogenous alcohol and NASH. Hepatology 2013, 57, 601–609. [Google Scholar] [CrossRef]
- Del Chierico, F.; Nobili, V.; Vernocchi, P.; Russo, A.; De Stefanis, C.; Gnani, D.; Furlanello, C.; Zandonà, A.; Paci, P.; Capuani, G.; et al. Gut microbiota profiling of pediatric nonalcoholic fatty liver disease and obese patients unveiled by an integrated meta-omics-based approach. Hepatology 2017, 65, 451–464. [Google Scholar] [CrossRef]
- Zhang, A.; Sun, H.; Wang, X. Saliva metabolomics opens door to biomarker discovery, disease diagnosis, and treatment. Appl. Biochem. Biotechnol. 2012, 168, 1718–1727. [Google Scholar] [CrossRef]
- Dong, Y.-Q.; Wang, W.; Li, J.; Ma, M.-S.; Zhong, L.-Q.; Wei, Q.-J.; Song, H.-M. Characterization of microbiota in systemic-onset juvenile idiopathic arthritis with different disease severities. World J. Clin. Cases 2019, 7, 2734–2745. [Google Scholar] [CrossRef] [PubMed]
Subjects | Females | Mean Age (S.D) * | Mean JADAS-71 (S.D) | Mean CRP (mg/L) (S.D) | Mean ESR (mm/hour) (S.D) | Use of NSAIDs | Use of MTX | Use of Biologicals |
---|---|---|---|---|---|---|---|---|
JIA Baseline | 17/20 (85%) | 6.4 (±4.07) | 15.95 (±9.76) | 1.38 (±1.61) | 24.6 (±20.41) | 15/20 (75%) | 0/20 (0%) | 0/20 (0%) |
JIA Inactive | 14/19 (73.6%) | 7.6 (±3.98) | 0.34 (±0.70) | 0.24 (±0.29) | 11.10 (±5.76) | 3/19 (15.8%) | 14/19 (73.7%) | 3/19 (15.8%) |
JIA Persistent | 13/21 (61.9%) | 6.9 (±4.42) | 7.19 (±2.28) | 0.98 (±1.43) | 18.43 (±14.15) | 7/21 (33.3%) | 12/21 (57.1%) | 3/21 (14.3%) |
CTRLs | 14/25 (56%) | 9.76 (±2.86) | Nda ** | Nda | Nda | Nda | Nda | Nda |
Groups | CCR* 1 (%JIA) | CCR 2 (%Control) | CCR 3 Average (%Total) |
---|---|---|---|
CTRL vs. JIA ALL | 48.6 ± 3.7 | 99.22 ± 2.0 | 62.9 ± 2.7 |
CTRL vs. JIA Baseline | 55.9 ± 4.8 | 98.3 ± 2.3 | 78.5 ± 2.6 |
CTRL vs. JIA Inactive | 54.2 ± 8.3 | 93.1 ± 3.7 | 75.9 ± 4.9 |
CTRL vs. JIA Persistent | 55.4 ± 4.4 | 96.8 ± 3.0 | 77.5 ± 3.2 |
CTRL vs. JIA All | CTRL vs. JIA Baseline | CTRL vs. JIA Inactive | CTRL vs. JIA Persistent |
---|---|---|---|
Methyl-Isobutyl Ketone | 1-Pentanol | Methyl-isobutyl ketone | Methyl-isobutyl ketone |
1-Butanol | Methyl-isobutyl ketone | 1-Hexanol | 1-Butanol |
Ethanol | 1-Butanol | Ethanol | 2-Pentanone |
Benzaldehyde | 2,6-Dimethyl 4 heptanone | 2,6-Dimethyl 4 heptanone | 1-Pentanol |
2-Octanone | 1-Hexanol | 2-Octanone | Ethanol |
2-Nonanone | Acetic Acid | 1H-indole | 4-Methyl phenol |
6-Methyl-5-hepten-2-one | Ethanol | Benzaldehyde | Acetone |
1H-indole | Phenol | Phenol | 2-Butanone |
2-Pentanone | 4-Methyl phenol | Acetic Acid | 2-Octanone |
1-Hexanol | Benzaldehyde | 6-Methyl-5-hepten-2-one | Benzaldehyde |
Groups | CCR * 1 (%JIA) | CCR 2 (%Control) | CCR 3 Average (%Total) |
---|---|---|---|
CTRL vs. JIA ALL | 60.9 ± 4.2 | 61.2 ± 6.0 | 61.0 ± 3.4 |
CTRL vs. JIA Baseline | 48.7 ± 7.1 | 57.4 ± 5.1 | 53.3 ± 4.2 |
CTRL vs. JIA Inactive | 67.2 ± 5.1 | 71.1 ± 5.7 | 69.4 ± 4.0 |
CTRL vs. JIA Persistent | 58.4 ± 6.2 | 57.8 ± 6.6 | 58.1 ± 4.7 |
CTRL vs. JIA All | CTRL vs. JIA Baseline | CTRL vs. JIA Inactive | CTRL vs. JIA Persistent |
---|---|---|---|
Coriobacteriaceae | Clostridiaceae | Ruminococcaceae | Rikenellaceae |
Rikenellaceae | Coriobacteriaceae | Lachnospiraceae | Coriobacteriaceae |
Clostridiaceae | Streptococcaceae | Clostridiaceae | Others |
Lachnospiraceae | Enterobacteriaceae | Veillonellaceae | Enterobacteriaceae |
Enterobacteriaceae | Rikenellaceae | Erysipelotrichaceae | Clostridiaceae |
Verrucomicrobiaceae | Peptostreptococcaceae | Coriobacteriaceae | Peptostreptococcaceae |
Veillonellaceae | Others | Porphyromonadaceae | Mogibacteriaceae |
Streptococcaceae | Alcaligenaceae | Enterobacteriaceae | Lachnospiraceae |
Ruminococcaceae | Mogibacteriaceae | Streptococcaceae | Porphyromonadaceae |
Erysipelotrichaceae | Lachnospiraceae | Others | Veillonellaceae |
Groups | CCR * 1 (%JIA) | CCR 2 (%Control) | CCR 3 Average (%Total) |
---|---|---|---|
CTRL vs. JIA ALL | 54.4 ± 4.2 | 52.6 ± 7.0 | 53.9 ± 3.4 |
CTRL vs. JIA Baseline | 57.0 ± 7.6 | 57.5 ± 8.7 | 57.3 ± 6.5 |
CTRL vs. JIA Inactive | 46.1 ± 8.3 | 42.4 ± 9.0 | 44.0 ± 5.3 |
CTRL vs. JIA Persistent | 44.6 ± 7.8 | 63.2 ± 6.9 | 54.5 ± 6.8 |
Groups | CCR * 1 (%JIA) | CCR 2 (%Control) | CCR 3 Average (%Total) |
---|---|---|---|
CTRL vs. JIA ALL | 57.6 ± 4.3 | 77.4 ± 5.2 | 63.2 ± 3.0 |
CTRL vs. JIA Baseline | 61.7 ± 7.0 | 80.3 ± 7.1 | 71.6 ± 4.9 |
CTRL vs. JIA Inactive | 67.4 ± 7.9 | 77.1 ± 7.0 | 72.8 ± 5.1 |
CTRL vs. JIA Persistent | 53.0 ± 5.7 | 81.2 ± 7.3 | 68.1 ± 4.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vernocchi, P.; Marini, F.; Capuani, G.; Tomassini, A.; Conta, G.; Del Chierico, F.; Malattia, C.; De Benedetti, F.; Martini, A.; Dallapiccola, B.; et al. Fused Omics Data Models Reveal Gut Microbiome Signatures Specific of Inactive Stage of Juvenile Idiopathic Arthritis in Pediatric Patients. Microorganisms 2020, 8, 1540. https://doi.org/10.3390/microorganisms8101540
Vernocchi P, Marini F, Capuani G, Tomassini A, Conta G, Del Chierico F, Malattia C, De Benedetti F, Martini A, Dallapiccola B, et al. Fused Omics Data Models Reveal Gut Microbiome Signatures Specific of Inactive Stage of Juvenile Idiopathic Arthritis in Pediatric Patients. Microorganisms. 2020; 8(10):1540. https://doi.org/10.3390/microorganisms8101540
Chicago/Turabian StyleVernocchi, Pamela, Federico Marini, Giorgio Capuani, Alberta Tomassini, Giorgia Conta, Federica Del Chierico, Clara Malattia, Fabrizio De Benedetti, Alberto Martini, Bruno Dallapiccola, and et al. 2020. "Fused Omics Data Models Reveal Gut Microbiome Signatures Specific of Inactive Stage of Juvenile Idiopathic Arthritis in Pediatric Patients" Microorganisms 8, no. 10: 1540. https://doi.org/10.3390/microorganisms8101540
APA StyleVernocchi, P., Marini, F., Capuani, G., Tomassini, A., Conta, G., Del Chierico, F., Malattia, C., De Benedetti, F., Martini, A., Dallapiccola, B., van Dijkhuizen, E. H. P., Miccheli, A., & Putignani, L. (2020). Fused Omics Data Models Reveal Gut Microbiome Signatures Specific of Inactive Stage of Juvenile Idiopathic Arthritis in Pediatric Patients. Microorganisms, 8(10), 1540. https://doi.org/10.3390/microorganisms8101540