Effect of Harvest Time and Packing Density on the Quality and Clostridium in Maize Silage
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Experimental Methods
2.2.1. Determination of Nutritional Composition
2.2.2. Determination of Fermentation Quality
2.3. Microbiological Analysis Methods
2.3.1. Determination of Viable Microbial Counts
2.3.2. Determination of Microbial Community Diversity
3. Results
3.1. Effects of Harvest Stage on Nutritional Quality and Clostridia of Whole-Plant Maize
3.1.1. Effects of Harvest Stage on Nutritional Quality of Whole-Plant Maize
3.1.2. Impact of Harvest Stage on the Number of Clostridium in Whole-Plant Corn
3.1.3. Impact of Harvest Stage on the Relative Abundance of Clostridium in Whole-Plant Corn
3.2. Impact of Compaction Density on Whole-Plant Corn Silage Quality and Clostridium
3.2.1. Impact of Compaction Density on the Nutritional Composition of Whole-Plant Corn Silage
3.2.2. Impact of Compaction Density on the Fermentation Quality of Whole-Plant Corn Silage
3.2.3. Impact of Compaction Density on the Number of Clostridium in Whole-Plant Corn Silage
3.2.4. Impact of Compaction Density on the Relative Abundance of Clostridium in Whole-Plant Corn Silage
3.2.5. Analysis of the Correlation Between Whole-Plant Corn Silage Fermentation Quality and Clostridium
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Temudo, M.F.; Muyzer, G.; Kleerebezem, R.; van Loosdrecht, M.C. Diversity of microbial communities in open mixed culture fermentations: Impact of the pH and carbon source. Appl. Microbiol. Biotechnol. 2008, 80, 1121–1130. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, R.; Wang, C.; Dong, W.; Zhang, Z.; Zhao, L.; Zhang, X. Effects of cellulase and Lactobacillus plantarum on fermentation quality, chemical composition, and microbial community of mixed silage of whole-plant corn and peanut vines. Appl. Biochem. Biotechnol. 2022, 194, 2465–2480. [Google Scholar] [CrossRef]
- Yousef, A.E.; Carlström, C. Food Microbiology: A Laboratory Manual, 2nd ed.; Marcel Dekker: New York, NY, USA, 2003; pp. 1–250. [Google Scholar]
- Li, L.; Xie, Z.; Ning, J.; Zhang, Y.; Sang, Y.; Zhang, L.; Liu, F. An acid-tolerant Clostridium sp. BLY-1 strain with high biohydrogen production rate. Bioresour. Technol. 2024, 409, 131227. [Google Scholar] [CrossRef]
- Li, Y.; Shao, X.; Li, Y.; Xiao, M. Dynamics of physiological characteristics and dry matter accumulation under rain-water storage irrigation. Int. J. Agric. Biol. Eng. 2021, 14, 123–131. [Google Scholar] [CrossRef]
- Liye, C.; Zhenwen, Z. Research of the relationship between photosynthesis and dry matter accumulation in Cabernet Sauvignon leaves. Acta Agric. Boreali-Occident. Sin. 2013, 22, 45–50. [Google Scholar]
- Chen, B.; Feng, S.L.; Hou, J.F.; Zhu, Y.; Bao, F.; Han, H.L.; Tan, H.P.; Wang, G.Y.; Zhao, F.C. Genome-wide transcriptome analysis revealing the genes related to sugar metabolism in kernels of sweet corn. Metabolites 2022, 12, 1254. [Google Scholar] [CrossRef]
- Zhao, H.; Su, T.; Huo, L.; Wei, H.; Jiang, Y.; Xu, L.; Ma, F. Unveiling the mechanism of melatonin impacts on maize seedling growth: Sugar metabolism as a case. J. Pineal Res. 2015, 59, 255–266. [Google Scholar] [CrossRef]
- Abdelgawad, H.; Avramova, V.; Baggerman, G.; Van Raemdonck, G.; Valkenborg, D.; Van Ostade, X.; Guisez, Y.; Prinsen, E.; Asard, H.; Van den Ende, W. Starch biosynthesis contributes to the maintenance of photosynthesis and leaf growth under drought stress in maize. Plant Cell Environ. 2020, 43, 2254–2271. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, G.; Wu, H.; Meng, Q.; Khan, M.Z.; Zhou, Z. Effect of hybrid type on fermentation and nutritional parameters of whole plant corn silage. Animals 2021, 11, 1587. [Google Scholar] [CrossRef]
- Li, X.X.; Li, J.Z. Optimization of anthrone colorimetric method for determination of soluble sugar content in sweet corn. Storage Process. 2013, 17, 24–27. [Google Scholar]
- Cai, K.K.; Huang, Z.W.; Shen, Z.Y.; Sun, C.T. Study on enzymatic hydrolysis of rice bran starch by double enzymes. Chin. J. Cereals Oils 2013, 18, 17–23. [Google Scholar]
- Chen, Y.; Yu, W.Q.; Yang, D.F.; He, Z.G.; Lin, W.Z.; Wei, W.; Xie, H.G. Simultaneous determination of organic acid content in fruits and fruit wine by high performance liquid chromatography. In Proceedings of the 16th Annual Conference of Fujian Association for Science and Technology—Agricultural Branch, Fuzhou, China, 15–17 October 2016. [Google Scholar]
- Maitisaiyidi, T.N.; Yibureyimu, A.G.; Ayishaira, A.; Yang, K.L. Determination of ammonia nitrogen concentration in rumen fluid treated with methanol by alkaline sodium hypochlorite-phenol spectrophotometry. Xinjiang Agric. Sci. 2012, 49, 6–10. [Google Scholar]
- Chen, G.; Liu, M.; Zhao, X.; Bawa, G.; Liang, B.; Feng, L.; Pu, T.; Yong, T.; Liu, W.; Liu, J.; et al. Improved photosynthetic performance under unilateral weak light conditions in a wide-narrow-row intercropping system is associated with altered sugar transport. J. Exp. Bot. 2024, 75, 258–273. [Google Scholar] [CrossRef]
- Yu, H.L.; Wu, Y.Q.; Zhang, Y.; Wang, Y.B. Analysis of key biological pathways for sugar accumulation during kernel development in different genotypes of sweet corn. Pak. J. Bot. 2022, 55, 1001–1012. [Google Scholar] [CrossRef]
- Cardinal, A.; Lee, M.; Moore, K. Genetic mapping and analysis of quantitative trait loci affecting fiber and lignin content in maize. Theor. Appl. Genet. 2003, 106, 866–874. [Google Scholar] [CrossRef]
- Ferreira, G.; Martin, L.L.; Teets, C.L.; Corl, B.A.; Hines, S.L.; Shewmaker, G.E.; de Haro-Marti, M.E.; Chahine, M. Effect of drought stress on in vitro neutral detergent fiber digestibility of corn for silage. Anim. Feed Sci. Technol. 2021, 273, 114803. [Google Scholar] [CrossRef]
- Krakowsky, M.D.; Lee, M.; Coors, J.G. Quantitative trait loci for cell-wall components in recombinant inbred lines of maize (Zea mays L.) I: Stalk tissue. Theor. Appl. Genet. 2005, 111, 337–346. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, X.; Zhang, G.; Fang, Y.; Hou, H.; Lei, K.; Ma, Y. Regulation of Density and Fertilization on Crude Protein Synthesis in Forage Maize in a Semiarid Rain-Fed Area. Agriculture 2023, 13, 715. [Google Scholar] [CrossRef]
- Liu, J.; He, Q.; Wu, Y.; Xiao, X.; Sun, W.; Lin, Y.; Yi, R.; Pan, X. The Effect of Sowing Date on the Nutritional Quality of Kernels of Various Maize Varieties in Northeast China. Agronomy 2023, 13, 2543. [Google Scholar] [CrossRef]
- Wilhelm, E.P.; Mullen, R.E.; Keeling, P.L.; Singletary, G.W. Heat stress during grain filling in maize: Effects on kernel growth and metabolism. Crop Sci. 1999, 39, 1733–1741. [Google Scholar] [CrossRef]
- Kim, J.T.; Yi, G.; Kim, M.J.; Son, B.Y.; Bae, H.H.; Go, Y.S.; Kim, S.L.; Baek, S.B.; Kim, S.H.; Chung, I.M. Glycolysis stimulation and storage protein accumulation are hallmarks of maize (Zea mays L.) grain filling. Appl. Biol. Chem. 2020, 63, 54. [Google Scholar] [CrossRef]
- Yang, J.; Wei, J.; Ran, L.; Liu, P.; Xiong, F.; Yu, X. The accumulation and properties of starch are associated with the development of nutrient transport tissues at grain positions in the spikelet of wheat. Int. J. Biol. Macromol. 2024, 282, 137048. [Google Scholar] [CrossRef]
- Liu, S.; Du, C.; Feng, J.; Jia, Y.; Hao, Z.; Xie, Y.; Wang, C.; Ma, D. Characterization of Starch Physicochemical Properties and Grain Transcriptome Reveal the Mechanism for Resistant Starch Accumulation. Agronomy 2023, 13, 1482. [Google Scholar] [CrossRef]
- Guan, H.; Yan, Y.; Li, X.; Li, X.; Shuai, Y.; Feng, G.; Ran, Q.; Cai, Y.; Li, Y.; Zhang, X. Microbial communities and natural fermentation of corn silages prepared with farm bunker-silo in Southwest China. Bioresour. Technol. 2018, 265, 282–290. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Wang, S.; Zhao, L.; Zhang, B.; Jia, W.; Zhai, Z.; Zhao, L.; Li, Y. Effects of antibacterial peptide-producing Bacillus subtilis, gallic acid, and cellulase on fermentation quality and bacterial community of whole-plant corn silage. Front. Microbiol. 2022, 13, 1028001. [Google Scholar] [CrossRef]
- Zhang, F.; Miao, F.; Wang, X.; Lu, W.; Ma, C. Effects of homo- and hetero-fermentative lactic acid bacteria on the quality and aerobic stability of corn silage. Can. J. Anim. Sci. 2021, 101, 761–770. [Google Scholar] [CrossRef]
- Puntillo, M.; Gaggiotti, M.; Oteiza, J.M.; Binetti, A.; Massera, A.; Vinderola, G. Potential of lactic acid bacteria isolated from different forages as silage inoculants for improving fermentation quality and aerobic stability. Front. Microbiol. 2020, 11, 561235. [Google Scholar] [CrossRef]
- Liu, H.; Li, X.; Hu, J.; Zhao, J.; Xu, G.; Dong, D.; Jia, Y.; Shao, T. Fermentation Quality and Aerobic Stability Evaluation of Rice Straw Silage with Different Ensiling Densities. Fermentation 2024, 10, 20. [Google Scholar] [CrossRef]
- Xu, G.; Yang, F.; Hu, J.; Wang, Y.; Dong, D.; Dong, Z.; Li, J.; Shao, T. Effect of ensiling density on fermentation characteristics and aerobic stability of Pennisetum giganteum silages. Agronomy 2024, 14, 1990. [Google Scholar] [CrossRef]
- Bai, C.; Pan, G.; Leng, R.; Ni, W.; Yang, J.; Sun, J.; Yu, Z.; Liu, Z.; Xue, Y. Effect of ensiling density and storage temperature on fermentation quality, bacterial community, and nitrate concentration of sorghum-sudangrass silage. Front. Microbiol. 2022, 13, 828320. [Google Scholar] [CrossRef]
- Liu, J.; Hao, J.; Zhao, M.; Yan, X.; Jia, Y.; Wang, Z.; Ge, G. Effects of different temperature and density on quality and microbial population of wilted alfalfa silage. BMC Microbiol. 2024, 24, 380. [Google Scholar] [CrossRef]
- Sim, X.Y.; Tan, J.P.; He, N.; Yeap, S.K.; Hui, Y.W.; Luthfi, A.A.I.; Manaf, S.F.A.; Bukhari, N.A.; Jamali, N.S. Unraveling the effect of redox potential on dark fermentative hydrogen production. Renew. Sustain. Energy Rev. 2023, 187, 113755. [Google Scholar] [CrossRef]
- Wang, X.N.; Sun, G.X.; Zhu, Y.G. Thermodynamic energy of anaerobic microbial redox reactions couples elemental biogeochemical cycles. J. Soils Sediments 2017, 17, 2831–2846. [Google Scholar] [CrossRef]
- Lund, P.A.; De Biase, D.; Liran, O.; Scheler, O.; Mira, N.P.; Cetecioglu, Z.; Noriega Fernández, E.; Bover-Cid, S.; Hall, R.; Sauer, M. Understanding how microorganisms respond to acid pH is central to their control and successful exploitation. Front. Microbiol. 2020, 11, 556140. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Yuan, X. Effect of lactic acid bacteria on the fermentation quality and mycotoxins concentrations of corn silage infested with mycotoxigenic fungi. Toxins 2021, 13, 699. [Google Scholar] [CrossRef]
- Ward, R.T. Fermentation Analysis of Silage: Use and Interpretation; Forage Lab: Waynesboro, PA, USA, 2012; pp. 1–20. [Google Scholar]
Treatment | Fermenter Volume (m3) | Loading Density (kg/m3) | Filling Quantity (kg) |
---|---|---|---|
Low packing density (MLF) | 25.00 | 350 | 8.75 |
High packing density (MHF) | 25.00 | 700 | 17.5 |
Items | 1/3 ML (Mean ± SD) | 2/3 ML (Mean ± SD) | ML (Mean ± SD) |
---|---|---|---|
DM, g/kg FW | 27.39 ± 6.64 | 31.50 ± 2.06 | 33.21 ± 0.67 |
WSC, g/kg DM | 40.56 ± 2.78 A | 30.12 ± 3.82 B | 15.58 ± 2.35 C |
NDF, g/kg DM | 40.17 ± 1.03 | 42.77 ± 1.06 | 45.12 ± 2.14 |
ADF, g/kg DM | 22.44 ± 2.10 | 23.95 ± 0.55 | 25.00 ± 0.71 |
Starch, g/kg DM | 20.87 ± 0.83 C | 27.96 ± 0.42 B | 31.70 ± 0.62 A |
CP, g/kg DM | 9.16 ± 0.44 | 8.78 ± 0.23 | 7.78 ± 0.34 |
Items | Period | ||
---|---|---|---|
Microbial Count (log10 CFU/g FW) | 1/3 ML (Mean ± SD) | 2/3 ML (Mean ± SD) | ML (Mean ± SD) |
Lactic acid bacteria | 4.74 ± 0.22 | 4.64 ± 0.29 | 4.44 ± 0.48 |
Aerobic bacteria | 6.51 ± 0.29 | 6.52 ± 0.28 | 6.26 ± 0.29 |
Yeasts | 4.82 ± 0.19 | 4.83 ± 0.18 | 4.68 ± 0.15 |
Clostridium | 2.62 ± 0.12 | 2.63 ± 0.11 | 2.67 ± 0.07 |
Molds | 2.44 ± 0.28 | 2.45 ± 0.29 | 2.45 ± 0.30 |
Item | Treatment | Days of Ensiling | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 7 | 15 | 30 | 60 | Day | ρ | D × ρ | |||
DM | 350 kg/m3 | 31.27 B | 29.51 B | 28.29 B | 28.25 B | 28.33 B | 0.52 | <0.326 | <0.01 | <0.01 |
700 kg/m3 | 31.37 A | 30.58 A | 30.47 A | 30.46 A | 30.20 A | |||||
CP (g/kg DM) | 350 kg/m3 | 7.34 | 7.34 | 7.26 | 7.29 | 7.20 | 0.03 | <0.425 | 0.915 | <0.01 |
700 kg/m3 | 7.32 | 7.34 | 7.27 | 7.30 | 7.21 | |||||
NDF (g/kg DM) | 350 kg/m3 | 42.72 | 42.26 | 41.57 | 42.13 | 41.13 | 0.28 | <0.426 | 0.360 | <0.01 |
700 kg/m3 | 42.68 | 42.25 | 41.33 | 41.50 | 41.02 | |||||
ADF (g/kg DM) | 350 kg/m3 | 22.87 | 22.90 | 21.78 | 19.46 | 17.95 | 0.98 | <0.125 | 0.484 | <0.01 |
700 kg/m3 | 22.47 | 21.95 | 20.83 | 19.12 | 18.16 | |||||
WSC (g/kg DM) | 350 kg/m3 | 18.88 a | 11.12 bc | 8.56 bd | 7.76 bd | 7.31 bd | 2.14 | <0.01 | 0.408 | <0.01 |
700 kg/m3 | 18.25 a | 8.84 b | 7.10 c | 6.46 d | 5.95 e |
Items | Treatment | Days of Ensiling | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 7 | 15 | 30 | 60 | Day | ρ | D × ρ | |||
pH | 350 kg/m3 | 5.50 a | 4.20 b | 4.00 b | 3.90 b | 3.90 b | 0.26 | <0.01 | 0.537 | <0.01 |
700 kg/m3 | 5.30 a | 4.00 b | 3.90 b | 3.80 b | 3.80 b | |||||
LA (%DM) | 350 kg/m3 | 0.80 b | 3.50 Bb | 5.00 Bb | 6.00 Ba | 6.20 Ba | 0.09 | <0.01 | 0.553 | <0.01 |
700 kg/m3 | 1.03 b | 4.00 Ab | 5.50 Ab | 6.50 Aa | 6.80 Aa | |||||
AC (% DM) | 350 kg/m3 | 0.20 be | 0.50 bd | 0.80 bc | 1.20 b | 1.50 a | 0.59 | <0.01 | 0.572 | <0.01 |
700 kg/m3 | 0.31 bd | 0.40 bd | 0.70 bc | 1.00 b | 1.33 a | |||||
NH3-N (%DM) | 350 kg/m3 | 0.05 bc | 0.15 Ab | 0.18 Ab | 0.20 a | 0.22 a | 0.98 | <0.01 | 0.296 | <0.01 |
700 kg/m3 | 0.03 c | 0.12 Bb | 0.15 Bb | 0.18 a | 0.20 a | |||||
BA (%DM) | 350 kg/m3 | 0.03 d | 0.07 c | 0.12 b | 0.16 Aa | 0.18 Aa | 0.02 | <0.01 | <0.01 | <0.01 |
700 kg/m3 | 0.01 | 0.02 | 0.05 | 0.07 B | 0.09 B | |||||
LA/AC | 350 kg/m3 | 4.00 c | 7.00 a | 6.25 a | 5.00 b | 4.13 c | 0.64 | <0.01 | 0.073 | <0.01 |
700 kg/m3 | 3.32 e | 10.00 a | 7.86 b | 6.50 c | 5.11 d |
Items | Treatment | Days of Ensiling | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 7 | 15 | 30 | 60 | Day | ρ | D × ρ | |||
Microbial count (log10 CFU/g FW) | 350 kg/m3 | 4.80 aD | 6.62 bC | 7.19 bB | 7.83 bB | 8.20 bA | 1.23 | <0.01 | 0.506 | <0.01 |
700 kg/m3 | 4.14 bC | 7.58 aB | 7.69 aB | 8.33 aA | 8.72 aA | |||||
Lactic acid bacteria | 350 kg/m3 | 6.40 aA | 5.23 B | 5.17 B | 5.00 aB | 3.46 bC | 2.56 | <0.01 | 0.995 | <0.01 |
700 kg/m3 | 6.07 bA | 5.74 B | 5.00 B | 4.47 bC | 3.97 aD | |||||
Aerobic bacteria | 350 kg/m3 | 4.24 | 4.48 | 4.24 | 4.30 | 4.17 | 0.63 | <0.01 | 0.079 | <0.01 |
700 kg/m3 | 4.50 A | 4.46 A | 4.10 A | 3.80 B | 3.77 B | |||||
Yeasts | 350 kg/m3 | 2.63 B | 2.60 B | 2.60 B | 3.60 aA | 3.73 aA | 0.55 | <0.01 | 0.048 | <0.01 |
700 kg/m3 | 2.43 B | 2.62 B | 2.70 B | 2.73 bB | 3.12 bA | |||||
Clostridium | 350 kg/m3 | 2.48 B | 3.02 A | 2.57 B | 2.00 B | 1.53 C | 0.82 | <0.01 | 0.357 | <0.01 |
700 kg/m3 | 2.43 B | 2.49 B | 2.57 A | 2.03 C | 1.17 D |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, F.; Fu, D.; Su, L.; Yu, X.; Lv, J.; Ma, C. Effect of Harvest Time and Packing Density on the Quality and Clostridium in Maize Silage. Microorganisms 2025, 13, 2096. https://doi.org/10.3390/microorganisms13092096
Yang F, Fu D, Su L, Yu X, Lv J, Ma C. Effect of Harvest Time and Packing Density on the Quality and Clostridium in Maize Silage. Microorganisms. 2025; 13(9):2096. https://doi.org/10.3390/microorganisms13092096
Chicago/Turabian StyleYang, Fan, Dongqing Fu, Lihe Su, Xue Yu, Jiaying Lv, and Chunhui Ma. 2025. "Effect of Harvest Time and Packing Density on the Quality and Clostridium in Maize Silage" Microorganisms 13, no. 9: 2096. https://doi.org/10.3390/microorganisms13092096
APA StyleYang, F., Fu, D., Su, L., Yu, X., Lv, J., & Ma, C. (2025). Effect of Harvest Time and Packing Density on the Quality and Clostridium in Maize Silage. Microorganisms, 13(9), 2096. https://doi.org/10.3390/microorganisms13092096