Comparison of Microbiological Profiles of Primary Hip and Knee Peri-Prosthetic Joint Infections Treated at Specialist Centers Around the World
Abstract
1. Introduction
2. Methods
2.1. Study Design and Setting
2.2. Participants
- Diagnosis of PJI in a unilateral primary total hip or knee arthroplasty.
- Revision arthroplasty;
- Bilateral arthroplasty;
- Arthroplasty performed for trauma or tumor reconstruction.
2.3. Data Collection
2.4. Outcome Measures
2.5. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weinstein, E.J.; Stephens-Shields, A.J.; Newcomb, C.W.; Silibovsky, R.; Nelson, C.L.; O’Donnell, J.A.; Glaser, L.J.; Hsieh, E.; Hanberg, J.S.; Tate, J.P.; et al. Incidence, Microbiological Studies, and Factors Associated With Prosthetic Joint Infection After Total Knee Arthroplasty. JAMA Netw. Open 2023, 6, e2340457. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Park, J.W.; Moon, S.Y.; Lee, Y.K.; Ha, Y.C.; Koo, K.H. Current and Future Burden of Periprosthetic Joint Infection from National Claim Database. J. Korean Med. Sci. 2020, 35, e410. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Gallego Luxan, B.; Hanly, M.; Pratt, N.L.; Harris, I.; de Steiger, R.; Graves, S.E.; Jorm, L. Estimating incidence rates of periprosthetic joint infection after hip and knee arthroplasty for osteoarthritis using linked registry and administrative health data. Bone Joint J. 2022, 104-B, 1060–1066. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, S.M.; Lau, E.C.; Son, M.S.; Chang, E.T.; Zimmerli, W.; Parvizi, J. Are We Winning or Losing the Battle With Periprosthetic Joint Infection: Trends in Periprosthetic Joint Infection and Mortality Risk for the Medicare Population. J. Arthroplast. 2018, 33, 3238. [Google Scholar] [CrossRef]
- Gehrke, T.; Alijanipour, P.; Parvizi, J. The management of an infected total knee arthroplasty. Bone Joint J. 2015, 97-B (10 Suppl. A), 20. [Google Scholar] [CrossRef]
- Baker, R.P.; Furustrand Tafin, U.; Borens, O. Patient-adapted treatment for prosthetic hip joint infection. Hip Int. 2015, 25, 316. [Google Scholar] [CrossRef]
- Li, C.; Renz, N.; Trampuz, A.; Ojeda-Thies, C. Twenty common errors in the diagnosis and treatment of periprosthetic joint infection. Int. Orthop. 2020, 44, 3. [Google Scholar] [CrossRef]
- Rudelli, B.A.; Giglio, P.N.; de Carvalho, V.C.; Pecora, J.R.; Gurgel, H.M.C.; Gobbi, R.G.; Vicente, J.R.N.; Lima, A.; Helito, C.P. Bacteria drug resistance profile affects knee and hip periprosthetic joint infection outcome with debridement, antibiotics and implant retention. BMC Musculoskelet. Disord. 2020, 21, 574. [Google Scholar] [CrossRef]
- Villa, J.M.; Pannu, T.S.; Theeb, I.; Buttaro, M.A.; Onativia, J.I.; Carbo, L.; Rienzi, D.H.; Fregeiro, J.I.; Kornilov, N.N.; Bozhkova, S.A.; et al. International Organism Profile of Periprosthetic Total Hip and Knee Infections. J. Arthroplast. 2021, 36, 274. [Google Scholar] [CrossRef]
- Mozella, A.P.; Assuncao, T.N.; Cobra, H.; Minamoto, S.T.N.; Salim, R.; Leal, A.C. Microbiological Profile of Periprosthetic Knee Infections in a Brazilian Unified Health System Hospital Specialized in Highly Complex Orthopedic Surgeries. Rev. Bras. De Ortop. 2023, 58, 443. [Google Scholar] [CrossRef]
- Hu, L.; Fu, J.; Zhou, Y.; Chai, W.; Zhang, G.; Hao, L.; Chen, J. Trends in microbiological profiles and antibiotic resistance in periprosthetic joint infections. J. Int. Med. Res. 2021, 49, 3000605211002784. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, V.K.; Bakhshi, H.; Ecker, N.U.; Parvizi, J.; Gehrke, T.; Kendoff, D. Organism profile in periprosthetic joint infection: Pathogens differ at two arthroplasty infection referral centers in Europe and in the United States. J. Knee Surg. 2014, 27, 399. [Google Scholar] [CrossRef]
- Aslam, B.; Wang, W.; Arshad, M.I.; Khurshid, M.; Muzammil, S.; Rasool, M.H.; Nisar, M.A.; Alvi, R.F.; Aslam, M.A.; Qamar, M.U.; et al. Antibiotic resistance: A rundown of a global crisis. Infect. Drug Resist. 2018, 11, 1645. [Google Scholar] [CrossRef] [PubMed]
- Casenaz, A.; Piroth, L.; Labattut, L.; Sixt, T.; Magallon, A.; Guilloteau, A.; Neuwirth, C.; Amoureux, L. Epidemiology and antibiotic resistance of prosthetic joint infections according to time of occurrence, a 10-year study. J. Infect. 2022, 85, 492. [Google Scholar] [CrossRef]
- Ravi, S.; Zhu, M.; Luey, C.; Young, S.W. Antibiotic resistance in early periprosthetic joint infection. ANZ J. Surg. 2016, 86, 1014. [Google Scholar] [CrossRef]
- Froschen, F.S.; Randau, T.M.; Franz, A.; Molitor, E.; Hischebeth, G.T.R. Microbiological Profiles of Patients with Periprosthetic Joint Infection of the Hip or Knee. Diagnostics 2022, 12, 1654. [Google Scholar] [CrossRef]
- Darwich, A.; Dally, F.J.; Abu Olba, K.; Mohs, E.; Gravius, S.; Hetjens, S.; Assaf, E.; Bdeir, M. Superinfection with Difficult-to-Treat Pathogens Significantly Reduces the Outcome of Periprosthetic Joint Infections. Antibiotics 2021, 10, 1145. [Google Scholar] [CrossRef]
- Gundtoft, P.H.; Pedersen, A.B.; Schonheyder, H.C.; Moller, J.K.; Overgaard, S. One-year incidence of prosthetic joint infection in total hip arthroplasty: A cohort study with linkage of the Danish Hip Arthroplasty Register and Danish Microbiology Databases. Osteoarthr. Cartil. 2017, 25, 685. [Google Scholar] [CrossRef] [PubMed]
- Runner, R.P.; Mener, A.; Roberson, J.R.; Bradbury, T.L.; Guild, G.N.; Boden, S.D.; Erens, G.A. Prosthetic Joint Infection Trends at a Dedicated Orthopaedics Specialty Hospital. Adv. Orthop. 2019, 2019, 4629503. [Google Scholar] [CrossRef]
- Hays, M.R.; Kildow, B.J.; Hartman, C.W.; Lyden, E.R.; Springer, B.D.; Fehring, T.K.; Garvin, K.L. Increased Incidence of Methicillin-Resistant Staphylococcus aureus in Knee and Hip Prosthetic Joint Infection. J. Arthroplast. 2023, 38, S326. [Google Scholar] [CrossRef]
- Parvizi, J.; Tan, T.L.; Goswami, K.; Higuera, C.; Della Valle, C.; Chen, A.F.; Shohat, N. The 2018 Definition of Periprosthetic Hip and Knee Infection: An Evidence-Based and Validated Criteria. J. Arthroplast. 2018, 33, 1309. [Google Scholar] [CrossRef] [PubMed]
- Brogden, K.A.; Guthmiller, J.M.; Taylor, C.E. Human polymicrobial infections. Lancet 2005, 365, 253. [Google Scholar] [CrossRef]
- Parvizi, J.; Gehrke, T.; International Consensus Group on Periprosthetic Joint Infection. Definition of periprosthetic joint infection. J. Arthroplast. 2014, 29, 1331. [Google Scholar] [CrossRef]
- Drago, L.; De Vecchi, E.; Bortolin, M.; Zagra, L.; Romano, C.L.; Cappelletti, L. Epidemiology and Antibiotic Resistance of Late Prosthetic Knee and Hip Infections. J. Arthroplast. 2017, 32, 2496. [Google Scholar] [CrossRef] [PubMed]
- Liukkonen, R.; Honkanen, M.; Skytta, E.; Eskelinen, A.; Karppelin, M.; Reito, A. Trends in Revision Knee Arthroplasty for Prosthetic Joint Infection: A Single-Center Study of 384 Knees at a High-Volume Center Between 2008 and 2021. J. Arthroplast. 2023, 38, 2447. [Google Scholar] [CrossRef]
- Dedeogullari, E.S.; Caglar, O.; Danisman, M.; Tokgozoglu, A.M.; Kamaci, S.; Atilla, B. Low dose vancomycin-loaded spacers for two-stage revision knee arthroplasty: High success, low toxicity. Knee 2023, 40, 63. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.M.; Zhou, Z.K.; Wang, F.; Yan, S.G.; Xu, P.; Shang, X.F.; Zheng, J.; Zhu, Q.S.; Cao, L.; Weng, X.S. Microbiology of Periprosthetic Hip and Knee Infections in Surgically Revised Cases from 34 Centers in Mainland China. Infect. Drug Resist. 2021, 14, 2411. [Google Scholar] [CrossRef]
- Kandel, C. The Incidence of Prosthetic Hip and Knee Joint Infections in Ontario and Risk Factors for Treatment Failure. In Dalla Lana School of Public Health; University of Toronto: Toronto, ON, Cannada, 2021; Volume 102. [Google Scholar]
- Tsai, Y.; Chang, C.H.; Lin, Y.C.; Lee, S.H.; Hsieh, P.H.; Chang, Y. Different microbiological profiles between hip and knee prosthetic joint infections. J. Orthop. Surg. 2019, 27, 2309499019847768. [Google Scholar] [CrossRef]
- Marculescu, C.E.; Cantey, J.R. Polymicrobial prosthetic joint infections: Risk factors and outcome. Clin. Orthop. Relat. Res. 2008, 466, 1397. [Google Scholar] [CrossRef]
- Tan, T.L.; Kheir, M.M.; Tan, D.D.; Parvizi, J. Polymicrobial Periprosthetic Joint Infections: Outcome of Treatment and Identification of Risk Factors. J. Bone Joint Surg. Am. 2016, 98, 2082. [Google Scholar] [CrossRef]
- Tan, T.L.; Kheir, M.M.; Shohat, N.; Tan, D.D.; Kheir, M.; Chen, C.; Parvizi, J. Culture-Negative Periprosthetic Joint Infection: An Update on What to Expect. JBJS Open Access 2018, 3, e0060. [Google Scholar] [CrossRef] [PubMed]
- Goh, G.S.; Parvizi, J. Diagnosis and Treatment of Culture-Negative Periprosthetic Joint Infection. J. Arthroplast. 2022, 37, 1488. [Google Scholar] [CrossRef]
- Abdel, M.P.; Akgun, D.; Akin, G.; Akinola, B.; Alencar, P.; Amanatullah, D.F.; Babazadeh, S.; Borens, O.; Vicente Cabral, R.M.; Cichos, K.H.; et al. Hip and Knee Section, Diagnosis, Pathogen Isolation, Culture: Proceedings of International Consensus on Orthopedic Infections. J. Arthroplast. 2019, 34, S361. [Google Scholar] [CrossRef]
- Hughes, H.C.; Newnham, R.; Athanasou, N.; Atkins, B.L.; Bejon, P.; Bowler, I.C. Microbiological diagnosis of prosthetic joint infections: A prospective evaluation of four bacterial culture media in the routine laboratory. Clin. Microbiol. Infect. 2011, 17, 1528. [Google Scholar] [CrossRef]
- Osmon, D.R.; Berbari, E.F.; Berendt, A.R.; Lew, D.; Zimmerli, W.; Steckelberg, J.M.; Rao, N.; Hanssen, A.; Wilson, W.R. Diagnosis and management of prosthetic joint infection: Clinical practice guidelines by the Infectious Diseases Society of America. Clin. Infect. Dis. 2013, 56, e1. [Google Scholar] [CrossRef]
- KG-CLRH Intraoperative Tests to Aid in Diagnosis of Periprosthetic Joint Infection. In Periprosthetic Joint Infection of the Hip and Knee; Bryan, D., Springer, J.P., Eds.; Springer: New York, NY, USA, 2014; p. 79. [Google Scholar]
- Goswami, K.; Clarkson, S.; Phillips, C.D.; Dennis, D.A.; Klatt, B.A.; O’Malley, M.J.; Smith, E.L.; Gililland, J.M.; Pelt, C.E.; Peters, C.L.; et al. An Enhanced Understanding of Culture-Negative Periprosthetic Joint Infection with Next-Generation Sequencing: A Multicenter Study. J. Bone Joint Surg. Am. 2022, 104, 1523. [Google Scholar] [CrossRef] [PubMed]
- Mensah, N.; Tang, Y.; Cawthraw, S.; AbuOun, M.; Fenner, J.; Thomson, N.R.; Mather, A.E.; Petrovska-Holmes, L. Determining antimicrobial susceptibility in Salmonella enterica serovar Typhimurium through whole genome sequencing: A comparison against multiple phenotypic susceptibility testing methods. BMC Microbiol. 2019, 19, 148. [Google Scholar] [CrossRef]
- Rabbi, F.; Banfield, L.; Munir, M.; Chagla, Z.; Mayhew, A.; de Souza, R.J. Overprescription of antibiotics for treating hospitalized COVID-19 patients: A systematic review & meta-analysis. Heliyon 2023, 9, e20563. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhou, P.; Wang, J.; Li, H.; Xu, H.; Meng, Y.; Ye, F.; Tan, Y.; Gong, Y.; Yin, X. Worldwide dispensing of non-prescription antibiotics in community pharmacies and associated factors: A mixed-methods systematic review. Lancet Infect. Dis. 2023, 23, e361. [Google Scholar] [CrossRef]
- Versporten, A.; Bolokhovets, G.; Ghazaryan, L.; Abilova, V.; Pyshnik, G.; Spasojevic, T.; Korinteli, I.; Raka, L.; Kambaralieva, B.; Cizmovic, L.; et al. Antibiotic use in eastern Europe: A cross-national database study in coordination with the WHO Regional Office for Europe. Lancet Infect. Dis. 2014, 14, 381. [Google Scholar] [CrossRef]
- Hillerton, J.E.; Irvine, C.R.; Bryan, M.A.; Scott, D.; Merchant, S.C. Use of antimicrobials for animals in New Zealand, and in comparison with other countries. New Zealand Vet. J. 2017, 65, 71. [Google Scholar] [CrossRef]
- Shabana, N.S.; Seeber, G.; Soriano, A.; Jutte, P.C.; Westermann, S.; Mithoe, G.; Pirii, L.; Siebers, T.; Have, B.T.; Zijlstra, W.; et al. The Clinical Outcome of Early Periprosthetic Joint Infections Caused by Staphylococcus epidermidis and Managed by Surgical Debridement in an Era of Increasing Resistance. Antibiotics 2022, 12, 40. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.B.; Wynne, R.; Joshi, A.; Liu, H.; Good, R.P. Is it time to include vancomycin for routine perioperative antibiotic prophylaxis in total joint arthroplasty patients? J. Arthroplast. 2012, 27 (Suppl. 8), 55. [Google Scholar] [CrossRef]
- Peel, T.N.; Astbury, S.; Cheng, A.C.; Paterson, D.L.; Buising, K.L.; Spelman, T.; Tran-Duy, A.; Adie, S.; Boyce, G.; McDougall, C.; et al. Trial of Vancomycin and Cefazolin as Surgical Prophylaxis in Arthroplasty. N. Engl. J. Med. 2023, 389, 1488. [Google Scholar] [CrossRef] [PubMed]
- Courtney, P.M.; Melnic, C.M.; Zimmer, Z.; Anari, J.; Lee, G.C. Addition of Vancomycin to Cefazolin Prophylaxis Is Associated With Acute Kidney Injury After Primary Joint Arthroplasty. Clin. Orthop. Relat. Res. 2015, 473, 2197. [Google Scholar] [CrossRef] [PubMed]
- Fridkin, S.K.; Edwards, J.R.; Courval, J.M.; Hill, H.; Tenover, F.C.; Lawton, R.; Gaynes, R.P.; McGowan, J.E., Jr.; Intensive Care Antimicrobial Resistance Epidemiology Project; the National Nosocomial Infections Surveillance (NNIS) System Hospitals. The effect of vancomycin and third-generation cephalosporins on prevalence of vancomycin-resistant enterococci in 126 U.S. adult intensive care units. Ann. Intern. Med. 2001, 135, 175. [Google Scholar] [CrossRef]
- Li, M.; Zeng, Y.; Wu, Y.; Si, H.; Bao, X.; Shen, B. Performance of Sequencing Assays in Diagnosis of Prosthetic Joint Infection: A Systematic Review and Meta-Analysis. J. Arthroplast. 2019, 34, 1514. [Google Scholar] [CrossRef]
- Chowdhry, M.; Dipane, M.V.; Duncan, S.T.; Pena, D.; Stavrakis, A.; McPherson, E.J. Next generation sequencing identifies an increased diversity of microbes in post lavage specimens in infected TKA using a biofilm disrupting irrigant. Knee 2024, 51, 231. [Google Scholar] [CrossRef]
Microorganism | Argentina n (%) | New Zealand n (%) | England n (%) | Turkey n (%) | Canada n (%) | p Value |
---|---|---|---|---|---|---|
Aerobic gram-positive | ||||||
Staphylococcus aureus | 31 (41.3) | 23 (40.4) | 31 (17) | 12 (24.5) | 69 (30) | <0.001 |
Coagulase-negative | 13 (17.3) | 7 (12.3) | 38 (20.9) | 18 (36.7) | 46 (20) | 0.03 |
Staphylococci | ||||||
Streptococcus species | 11 (14.4) | 14 (24.6) | 15 (8.2) | 4 (8.1) | 34 (14.8) | >0.05 |
Other Staphylococcus sp. | 5 (6.5) | 5 (8.7) | 17 (9.3) | 1 (2) | 4 (1.7) | >0.05 |
Listeria monocytogenes | 1 (1.3) | . | . | . | . | >0.05 |
Enterococcus faecalis | . | 1 (1.7) | 17 (9.3) | . | 13 (5.6) | >0.05 |
Enterococcus faecium | . | . | 2 (1) | . | . | >0.05 |
Corynebacterium species | . | . | 8 (4.4) | 1 (2) | . | >0.05 |
Bacillus sp. | . | . | 4 (2.2) | . | . | >0.05 |
Unspecified | . | . | 3 (1.6) | . | . | >0.05 |
Anaerobes | ||||||
Cutibacterium acnes | 1 (1.3) | . | 4 (2.2) | . | 6 (2.6) | >0.05 |
Peptostreptococcus species | . | . | 3 (1.6) | . | . | >0.05 |
Clostridium species | . | . | 3 (1.6) | . | 1 (0.4) | >0.05 |
Bacteroides fragilis | . | . | 2 (1) | . | . | >0.05 |
Prevotella species | . | . | . | . | . | >0.05 |
Finegoldia magna | . | 1 (1.7) | 2 (1) | . | 5 (2.2) | >0.05 |
Unspecified | . | . | . | . | 1 (0.4) | >0.05 |
Gram-negative | ||||||
E. coli | 3 (3.9) | 2 (3.5) | 7 (3.8) | 5 (10.2) | 11 (4.8) | >0.05 |
Klebsiella sp. | 1 (1.3) | . | 5 (2.7) | 2 (4) | 2 (0.8) | >0.05 |
Enterobacter species | 1 (1.3) | . | 2 (1) | . | 1 (0.4) | >0.05 |
Proteus mirabilis | . | . | 4 (2.2) | . | 1 (0.4) | >0.05 |
Salmonella enterica | . | . | . | . | 1 (0.4) | >0.05 |
Pseudomonas aeruginosa | 2 (2.6) | . | 2 (1) | 1 (2) | 2 (0.8) | >0.05 |
Morganella morganii | 2 (2.6) | . | 1 (0.5) | . | 2 (0.8) | >0.05 |
Burkholderia cepacian | . | . | . | 1 (2) | . | >0.05 |
Serratia marcesens | . | 1 (1.7) | 1 (0.5) | . | 1 (0.4) | >0.05 |
Gardnerella adiacens | . | . | 3 (1.6) | . | 1 (0.4) | >0.05 |
Unspecified | . | . | 5 (2.7) | . | . | >0.05 |
Fungus | ||||||
Candida species | 1 (1.3) | . | 1 (0.5) | . | 2 (0.8) | >0.05 |
Polymicrobial | 4 (5.2) | 3 (5.3) | 2 (1) | 4 (8.1) | 27 (11.7) | 0.003 |
Total # | 76 | 57 | 182 | 49 | 230 |
Comparison of Culture Results Among Countries | ||||||||
---|---|---|---|---|---|---|---|---|
Country | ||||||||
Turkey (TR) | Argentina (AR) | New Zealand (NZ) | England (UK) | Canada (CA) | Total | |||
All patients | Culture results | Negative % | 24.6 UK (<0.001) | 22.7 UK (<0.001) | 9.5 | 4.2 | 23.5 UK (<0.001) | 17.2 |
Single % | 69.2 | 73.2 | 85.7 CA (0.04) | 94.7 TR (<0.001) AR (< 0.001) CA (< 0.001) | 67.5 | 77.3 | ||
Poly % | 6.2 | 4.1 | 4.8 | 1.1 | 8.9 UK (0.003) | 5.6 | ||
Total | case # | 65 | 97 | 63 | 190 | 302 | 717 | |
Hip | Culture results | Negative % | 30.0 UK (0.02) | 27.0 UK (0.005) | 6.7 | 6.1 | 18.6 | 16.3 |
Single % | 65.0 | 68.3 | 86.7 | 92.7 TR (0.009) AR (0.001) CA (0.001) | 69.0 | 76.3 | ||
Poly % | 5.0 | 4.8 | 6.7 | 1.2 | 12.3 UK (0.03) | 7.4 | ||
Total | case # | 20 | 63 | 30 | 82 | 143 | 338 | |
Knee | Culture results | Negative % | 22.2 UK (0.001) | 14.7 | 12.1 | 2.8 | 28.9 UK (<0.001) | 17.9 |
Single % | 71.1 | 82.4 | 84.8 | 96.3 TR (<0.001) CA (<0.001) | 65.4 | 78.1 | ||
Poly % | 6.7 | 2.9 | 3.0 | 0.9 | 5.7 | 4.0 | ||
Total | case # | 45 | 34 | 33 | 108 | 162 | 379 |
Comparison of Antibiotic Resistance Among Countries | ||||||||
---|---|---|---|---|---|---|---|---|
Country | ||||||||
Turkey (TR) | Argentina (AR) | New Zealand (NZ) | England (UK) | Canada (CA) | Total | |||
All patients | Antibiotic resistance | None % | 50.8 | 62.9 NZ (0.02) | 38.1 | 60.0 NZ (0.02) | 50.3 | 53.6 |
Single % | 6.2 | 13.4 | 38.1 TR (<0.001) AR (0.003) UK (<0.001) CA (<0.001) | 4.7 | 13.9 UK (0.01) | 12.8 | ||
Multi % | 43.1 | 23.7 | 23.8 | 35.3 | 35.8 | 33.6 | ||
Total | case # | 65 | 97 | 63 | 190 | 302 | 717 | |
Vancomycin Resistance % | 0.0 | 0.0 | 0.0 | 2.1 | 1.0 | 0.9 | ||
Hip | Antibiotic resistance | None % | 55.0 | 71.4 NZ (0.01) CA (0.03) | 36.7 | 57.3 | 49.7 | 54.7 |
Single % | 5.0 | 6.3 | 30.0 AR (0.02) UK (0.002) CA (0.03) | 4.9 | 9.8 | 9.5 | ||
Multi % | 40.0 | 22.2 | 33.3 | 37.8 | 40.6 | 35.8 | ||
Total | case # | 20 | 63 | 30 | 82 | 143 | 338 | |
Knee | Antibiotic resistance | None % | 48.9 | 47.1 | 39.4 | 62.0 | 50.9 | 52.5 |
Single % | 6.7 | 26.5 UK (.02) | 45.5 TR (0.001) UK (<0.001) CA (0.005) | 4.6 | 17.6 UK (0.01) | 15.8 | ||
Multi % | 44.4 | 26.5 | 15.2 | 33.3 | 31.4 | 31.7 | ||
Total | case # | 45 | 34 | 33 | 108 | 159 | 379 |
Study |
# Case | Countries | The Most Common Organism (Prevalence) |
Negative-Culture Rate |
Poly-Microbial Culture Results |
Gram neg. Bacteria |
Anaerobic Bacteria | Antibiotic Susceptibility |
MRSA Prevalence | Point of Interest |
---|---|---|---|---|---|---|---|---|---|---|
Villa et. al., 2021 [9] | 654 | All cohorts | Staphylococcus aureus (24.8%) | n/a | 9.3% | n/a | n/a | 42% | n/a | The rates of resistant organisms and polymicrobial infections vary significantly among countries. |
USA | Staphylococcus aureus (21.4%) | 9.4% | 62.3% | |||||||
UK | Staphylococcus aureus (21.4%) | 4.9% | 59.2% | |||||||
Uruguay | Staphylococcus aureus (34.6%) | 4.6% | 28.5% | |||||||
Argentina | Staphylococcus epidermidis (25.2%) | 11.1% | 33.3% | |||||||
Germany | Staphylococcus epidermidis (27.1%) | 11.9% | 37.3% | |||||||
Russia | Staphylococcus aureus (29.8%) | 16.3% | 22.1% | |||||||
Aggarwal et. al., 2014 [12] | 1670 | USA | Staphylococcus aureus (31.0%) | 15.8% | 7.4% | 6.6% | 0.9% | n/a | 48.1% | The infecting organisms in PJI vary between an orthopedic center in Europe and one in the USA, with higher virulence and greater antibiotic resistance observed in the American institution. |
Germany | Staphylococcus epidermidis (39.3%) | 16.1% | 3.4% | 4.3% | 9% | 12.8% | ||||
Peng et. al., 2021 [27] | 925 | 34 centers within China | Staphylococcus aureus (26.5%) | 9.8% | 26.9% | 8.2% | 3.5% | n/a | 10.5% | PJI-causing organisms differed between hip and knee joints, with enteric Gram-negative bacilli, anaerobes, and polymicrobial infections being more common in prosthetic hip joints. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dedeogullari, E.S.; Slullitel, P.; Horton, I.; Atilla, B.; Salih, S.; Monk, P.; Tokgozoglu, A.M.; Goplen, M.; Tsang, B.; Buljubasich, M.; et al. Comparison of Microbiological Profiles of Primary Hip and Knee Peri-Prosthetic Joint Infections Treated at Specialist Centers Around the World. Microorganisms 2025, 13, 1505. https://doi.org/10.3390/microorganisms13071505
Dedeogullari ES, Slullitel P, Horton I, Atilla B, Salih S, Monk P, Tokgozoglu AM, Goplen M, Tsang B, Buljubasich M, et al. Comparison of Microbiological Profiles of Primary Hip and Knee Peri-Prosthetic Joint Infections Treated at Specialist Centers Around the World. Microorganisms. 2025; 13(7):1505. https://doi.org/10.3390/microorganisms13071505
Chicago/Turabian StyleDedeogullari, Emin Suha, Pablo Slullitel, Isabel Horton, Bulent Atilla, Saif Salih, Paul Monk, Ahmet Mazhar Tokgozoglu, Michael Goplen, Bonita Tsang, Martin Buljubasich, and et al. 2025. "Comparison of Microbiological Profiles of Primary Hip and Knee Peri-Prosthetic Joint Infections Treated at Specialist Centers Around the World" Microorganisms 13, no. 7: 1505. https://doi.org/10.3390/microorganisms13071505
APA StyleDedeogullari, E. S., Slullitel, P., Horton, I., Atilla, B., Salih, S., Monk, P., Tokgozoglu, A. M., Goplen, M., Tsang, B., Buljubasich, M., Abdelbary, H., Garceau, S., & Grammatopoulos, G. (2025). Comparison of Microbiological Profiles of Primary Hip and Knee Peri-Prosthetic Joint Infections Treated at Specialist Centers Around the World. Microorganisms, 13(7), 1505. https://doi.org/10.3390/microorganisms13071505