Research on MICP Restoration Technology for Earthen City Walls Damaged by Primary Vegetation Capping in China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design
2.3. Characterization Parameters
- (1)
- Growth characteristics
- (2)
- Urease production characteristics
- (3)
- Mineralization characteristics
2.4. Study Methods
3. Results
3.1. Feature Importance Evaluation
3.1.1. Longitudinal Analysis
3.1.2. Cross-Sectional Analysis
3.2. Breeding Conditions
3.2.1. Activation Culture Time of Different Media
3.2.2. Temperature
3.2.3. pH Value
3.2.4. Dissolved Oxygen
3.2.5. Inoculation Age
3.2.6. Inoculation Volume
3.3. Mineralization Conditions
3.3.1. Ca2+ Concentration
- (1)
- Experiment with a molar ratio of 1:1
- (2)
- Experiment with a molar ratio of n:1
3.3.2. Addition Order and Reaction Condition
3.3.3. Filtration and Drying Methods
- (1)
- Quality of mineralization products
- (2)
- Crystal form of mineralization products
4. Discussion
4.1. S. pasteurii Features of Urease Production
- (1)
- Longitudinal Analysis
- (2)
- Cross-sectional analysis
- (3)
- Comprehensive analysis
4.2. S. pasteurii Features of Mineralization
- (1)
- The yield of CaCO3 in output
- (2)
- The yield of calcite in CaCO3
- (3)
- Comprehensive analysis
5. Conclusions
- (1)
- Parameter optimization.
- (2)
- Scheme for improving urease activity.
- (3)
- Scheme for enhancing the yield of mineralization.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lv, Z. (Ed.) Research Collection on the History of Thoughts on the Protection of Cultural Relics and Historical Sites in China; Tsinghua University Press: Beijing, China, 2021. [Google Scholar]
- Lu, D. Liang Sicheng’s Concept of ‘Restoring the Old to Its Original State’ and Related Western Concepts. Time Archit. 2017, 6, 138–143. [Google Scholar] [CrossRef]
- Riegl, A. Moderne Denkmalkultus: Sein Wesen und Seine Entstehung; Nabu Press: Charleston, SC, USA, 2010. [Google Scholar]
- Brandi, C. Theory of Restoration; Lu, D., Translator; Tongji University Press: Shanghai, China, 2016. [Google Scholar]
- Zhu, J.; Wei, R.J.; Peng, J.; Dai, D. Improvement Schemes for Bacteria in MICP: A Review. Materials 2024, 17, 5420. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, G.; Li, X. Geotechnical Engineering Properties of Soils Solidified by Microbially Induced CaCO3 Precipitation (MICP). Adv. Civ. Eng. 2021, 2021, 6683930. [Google Scholar] [CrossRef]
- Bu, C.M.; Lu, X.Y.; Zhu, D.X.; Liu, L.; Sun, Y.; Wu, Q.T.; Zhang, W.T.; Wei, Q.K. Soil improvement by microbially induced calcite precipitation (MICP): A review about mineralization mechanism, factors, and soil properties. Arab. J. Geosci. 2022, 15, 863. [Google Scholar] [CrossRef]
- Zhang, K.; Tang, C.S.; Jiang, N.J.; Pan, X.H.; Liu, B.; Wang, Y.J.; Shi, B. Microbial-induced carbonate precipitation (MICP) technology: A review on the fundamentals and engineering applications. Environ. Earth Sci. 2023, 82, 229. [Google Scholar] [CrossRef]
- Boruah, R.P.; Mohanadhas, B.; K, J. Microbially Induced Calcite Precipitation for Soil Stabilization: A State-of-Art Review. Geomicrobiol. J. 2025, 42, 1122–1137. [Google Scholar] [CrossRef]
- Varnitha, M.S.; Ganesh, B.; Naagesh, S.; Manjunatha, B.V.; Ramesh, H.N. Use of Biosensors for Assessing Soil Stabilization with MICP—A Review. In Soil Dynamics; Sitharam, T.G., Dinesh, S.V., Jakka, R., Eds.; Lecture Notes in Civil Engineering; Springer: Singapore, 2021; Volume 119, pp. 63–72. [Google Scholar] [CrossRef]
- Wu, F.S.; Zhang, Y.; Su, M.; He, D.P.; Li, J.; Feng, H.Y. Research Progress on the Application of Biotechnology in the Conservation and Restoration of Cultural Relics. Sci. Conserv. Archaeol. 2022, 1, 133–143. [Google Scholar] [CrossRef]
- Liu, X.B.; Meng, H.; Wang, Y.L.; Katayama, Y.; Gu, J.D. Water is a critical factor in evaluating and assessing microbial colonization and destruction of Angkor sandstone monuments. Int. Biodeterior. Biodegrad. 2018, 133, 9–16. [Google Scholar] [CrossRef]
- Wang, J.X.; Nyanzi, A.S.; Nong, X.Z.; Huang, J.; Wang, X.Q. Thermal–hydraulic-mechanical-chemical-biological (THMCB) coupling in microbial induced carbonate precipitation (MICP): A comprehensive review. Environ. Earth Sci. 2025, 84, 339. [Google Scholar] [CrossRef]
- Whiffin, V.S.; van Paassen, L.; Harkes, M.P. Microbial carbonate precipitation as a soil improvement technique. Geomicrobiol. J. 2007, 24, 417–423. [Google Scholar] [CrossRef]
- Al-Tabbaa, A.; Litina, C.; Giannaros, P.; Kanellopoulos, A.; Souza, L. First UK field application and performance of microcapsule-based self-healing concrete. Constr. Build. Mater. 2019, 208, 669–685. [Google Scholar] [CrossRef]
- Simone, G.; Andrea, C.; Pitiporn, A.; Shideh, S.; Maggie, L.; Daniela, F.; Michael, H.; Mehran, R. Innovative Approaches to Enhancing Concrete Compressive Strength: An Extensive Investigation of Biochar-Embedded and Self-Repairing Techniques. J. Mater. Civ. Eng. 2025, 37, 04025112. [Google Scholar] [CrossRef]
- Daryono, L.R.; Abe, T.; Kano, M.; Nakashima, K.; Kawasaki, S. Fiber-Reinforcement MICP for Durability Improvements. Indones. Geotech. J. 2024, 3, 1–16. [Google Scholar] [CrossRef]
- Deng, X.Q.; Wang, Z.Y.; Qin, Y.C.; Cao, L.; Cao, P.; Xie, Y.; Xie, Y.Q. Experimental Study on the Reinforcement of Calcareous Sand Using Combined Microbial-Induced Carbonate Precipitation (MICP) and Festuca arundinacea Techniques. J. Mar. Sci. Eng. 2025, 13, 883. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, X.H.; Miao, L.C.; Wang, H.X.; Wu, L.Y.; Shi, W.B.; Kawasaki, S. State-of-the-art review of soil erosion control by MICP and EICP techniques: Problems, applications, and prospects. Sci. Total Environ. 2024, 912, 169016. [Google Scholar] [CrossRef]
- Murugan, R.; Suraishkumar, G.K.; Mukherjee, A.; Dhami, N.K. Insights into the influence of cell concentration in design and development of microbially induced calcium carbonate precipitation (MICP) process. PLoS ONE 2021, 16, e0254536. [Google Scholar] [CrossRef]
- Xu, Y.B.; Qian, C.X.; Lu, Z.W. Glycerol Enhances the Thermal Stability of Urease from Bacillus pasteurii. J. Southeast Univ. (Nat. Sci. Ed.) 2013, 43, 147–151. [Google Scholar]
- Arias, D.; Gallardo, K.; Saldana, M.; Galleguillos-Madrid, F. Urease-Driven Microbially Induced Carbonate Precipitation (MICP) for the Circular Valorization of Reverse Osmosis Brine Waste: A Perspective Review. Minerals 2025, 15, 543. [Google Scholar] [CrossRef]
- Wang, R.X. Microbial Regulation of Calcium Carbonate Formation and Its Application in Defect Repair of Cement-Based Materials. Ph.D. Thesis, Southeast University, Nanjing, China, 2009. [Google Scholar] [CrossRef]
- Torres-Aravena, Á.E.; Duarte-Nass, C.; Azócar, L.; Mella-Herrera, R.; Rivas, M.; Jeison, D. Can Microbially Induced Calcite Precipitation (MICP) through a Ureolytic Pathway Be Successfully Applied for Removing Heavy Metals from Wastewaters? Crystals 2018, 8, 438. [Google Scholar] [CrossRef]
- Chen, L.; Song, Y.; Huang, J.; Lai, C.; Jiao, H.; Fang, H.; Zhu, J.; Song, X. Critical Review of Solidification of Sandy Soil by Microbially Induced Carbonate Precipitation (MICP). Crystals 2021, 11, 1439. [Google Scholar] [CrossRef]
- He, P.L.; Guo, J.J.; Zhang, S.X. Investigating the Potential of Microbially Induced Carbonate Precipitation Combined with Modified Biochar for Remediation of Lead-Contaminated Loess. Sustainability 2024, 16, 7550. [Google Scholar] [CrossRef]
- Liu, B.; Tang, C.S.; Pan, X.H.; Xu, J.J.; Zhang, X.Y. Suppressing Drought-Induced Soil Desiccation Cracking Using MICP: Field Demonstration and Insights. J. Geotech. Geoenviron. Eng. 2024, 150, 04024006. [Google Scholar] [CrossRef]
- Liu, B.; Tang, C.S.; Pan, X.H.; Zhu, C.; Cheng, Y.J.; Xu, J.J.; Shi, B. Potential Drought Mitigation Through Microbial Induced Calcite Precipitation-MICP. Water Resour. Res. 2020, 57, e2020WR029434. [Google Scholar] [CrossRef]
- Wang, D.L.; Tang, C.S.; Pan, X.H.; Liu, B.; Shi, B. Coupling effect of fiber reinforcement and MICP stabilization on the tensile behavior of calcareous sand. Eng. Geol. 2023, 317, 107090. [Google Scholar] [CrossRef]
- Liang, Y.; Weng, L.L.; Yu, J.T.; Xu, J.P.; Zhang, H.J.; Yang, T.T. Erosion Resistance Mechanisms in MICP-Treated Sandy Soil: Experimental Evaluation. Geotech. Geol. Eng. 2025, 43, 408. [Google Scholar] [CrossRef]
- Payan, M.; Sangdeh, M.K.; Salimi, M.; Ranjbar, P.Z.; Arabani, M.; Hosseinpour, I. A comprehensive review on the application of microbially induced calcite precipitation (MICP) technique in soil erosion mitigation as a sustainable and environmentally friendly approach. Results Eng. 2024, 24, 103235. [Google Scholar] [CrossRef]
- Lopes, B.d.C.F.L.; Chrusciak, M.R.; Ramos, V.d.V.; Cavalcanti, V.C.V.; César, I.J.V.C. Low-carbon erosion mitigation using bio-stimulating MICP. Géotech. Lett. 2025, 15, 192–198. [Google Scholar] [CrossRef]
- Zheng, X.G.; Lu, X.Y.; Zhou, M.; Huang, W.; Zhong, Z.T.; Wu, X.H.; Zhao, B.Y. Experimental Study on Mechanical Properties of Root–Soil Composite Reinforced by MICP. Materials 2022, 15, 3586. [Google Scholar] [CrossRef]
- Gong, L.X.; Zhu, S.Y.; Cao, R.H.; Jin, Y.; Liu, L.; Hu, Z.Z.; Xu, Y.; He, Y.Y.; Hao, T.C. Enhancing rainwater erosion resistance of black soil slopes in erosion gullies through microbially induced carbonate mineralization. CATENA 2024, 247, 108471. [Google Scholar] [CrossRef]
- Zhu, R.; Xing, W.; Guo, W.L.; Zhou, F.; Liu, C.; Feng, Y.Y. Performance and Mechanism of MICP-Treated Silty Soil Subjected to Freeze-Thaw Cycles. J. Mater. Civil. Eng. 2025, 37, 04025298. [Google Scholar] [CrossRef]
- Tang, C.S.; Yin, L.Y.; Jiang, N.J.; Zhu, C.; Zeng, H.; Li, H.; Shi, B. Factors affecting the performance of microbial-induced carbonate precipitation (MICP) treated soil: A review. Environ. Earth Sci. 2020, 79, 94. [Google Scholar] [CrossRef]
- Wu, Y.; Lian, J.J.; Yan, Y.; Qi, H. Molecular Mechanism and Application of Biomineralization of Bacillus subtilis Pasteurii and Related Microorganisms. Chin. Biotechnol. J. 2017, 37, 96–103. [Google Scholar] [CrossRef]
- Kang, C.H.; Han, S.H.; Shin, Y.; Oh, S.J.; So, J.S. Bioremediation of Cd by microbially induced calcite precipitation. Appl. Biochem. Biotech. 2014, 172, 2907–2915. [Google Scholar] [CrossRef] [PubMed]
- Wong, L.S. Microbial cementation of ureolytic bacteria from the genus Bacillus: A review of the bacterial application on cement-based materials for cleaner production. J. Clean. Prod. 2015, 93, 5–17. [Google Scholar] [CrossRef]
- Achal, V.; Mukherjee, A.; Basu, P.C.; Reddy, M.S. Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite production. J. Ind. Microbiol. Biotechnol. 2009, 7, 981–988. [Google Scholar] [CrossRef]
- Ojha, A.; Bandyopadhyay, T.K.; Das, D.; Dey, P. Microbial Carbonate Mineralization: A Comprehensive Review of Mechanisms, Applications, and Recent Advancements. Mol. Biotechnol. 2025. online ahead of print. [Google Scholar] [CrossRef]
- Lv, C.; Tang, C.S.; Zhang, J.Z.; Hao, L.; Pan, X.H. Dissolution and recrystallization behavior of microbially induced calcium carbonate: Influencing factors, kinetics and cementation effect. Can. Geotech. J. 2025, 62, 1–13. [Google Scholar] [CrossRef]
- Wang, X.Q.; Yuan, X.Q. Overview of MICP Geotechnical Engineering Applications and Development Prospects. J. Sci. Eng. Res. 2025, 7, 17–22. [Google Scholar] [CrossRef]
- Alvarado-Mata, L.Y.; Sánchez-Lozano, J.M.; Cervantes-de la Torre, J.I.; Álvarez-Valdez, A.R.; Salinas-Mireles, J.P.; Chávez Hita-Wong, A.Y.; Castro-Alonso, M.J.; Luévanos-Escareño, M.P.; Narayanasamy, R.; Balagurusamy, N. Advances in microbially induced carbonate precipitation metabolic pathways and regulatory mechanisms for bioconcrete development. J. Sustain. Cem. Based Mater. 2025, 14, 1987–2011. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Konstantinou, C. A Comprehensive optimization study of Microbially Induced Carbonate Precipitation (MICP) for soil strength enhancement: Impact of biochemical and environmental factors. arXiv 2024, arXiv:2409.19358. [Google Scholar] [CrossRef]
- Do, J.; Jin, J. Roadside devegetation by microbially induced carbonate precipitation using osmosis, ammonium toxicity, and cementation effects. Bull. Eng. Geol. Environ. 2025, 84, 408. [Google Scholar] [CrossRef]
- Yang, G.K.; Zheng, S.J.; Liu, T.L.; Luo, E.H.; Tang, C.X.; Qu, B.; Lei, G.; Jiang, G.S. Effect of biocarriers on microbially induced carbonate precipitation for sand reinforcement. Acta Geotech. 2025, 20, 3615–3632. [Google Scholar] [CrossRef]
- Qian, C.X.; Wang, J.Y.; Wang, R.X.; Cheng, L. Corrosion protection of cement-based building materials by surface deposition of CaCO3 by Bacillus pasteurii. Mater. Sci. Eng. 2009, 29, 1273–1280. [Google Scholar] [CrossRef]
- Sun, X.H. Research on the Mechanism of Microbial Mineralization and Its Application in Concrete Crack Repair. Ph.D. Thesis, Southeast University, Nanjing, China, 2019. [Google Scholar]
- Wei, H.; Fan, Y.N.; Sun, L.; Du, H.; Liang, R. Experimental Study on High-Temperature Damage Repair of Concrete by Soybean Urease Induced Carbonate Precipitation. Materials 2022, 15, 2436. [Google Scholar] [CrossRef]
- Meng, H.N.; Lu, X.J.; Shaheen, A.; Hussain, S.; Liu, G.W. Effects of Temperature, pH, Culture Time, Oscillation Frequency on Self-Healing Microbes and Growth Predictive Model. J. Nanoelectron. Optoelectron. 2021, 16, 1638–1644. [Google Scholar] [CrossRef]
- Rui, Y.F.; Qian, C.X. The regulation mechanism of bacterial metabolites and cells on the bio-calcium carbonate. Green Mater. 2024, in press. [CrossRef]
- Wei, H. Experimental Research and Mechanism Analysis of Microbial Mineralization Repair for Concrete Damaged by High Temperature. Ph.D. Thesis, Taiyuan University of Technology, Taiyuan, China, 2023. [Google Scholar]
- Fan, Y.N. Research on the Mechanism of Biological Mineralization for Repairing Fire Damage in Concrete and Its Multi-Scale Performance. Ph.D. Thesis, Taiyuan University of Technology, Taiyuan, China, 2022. [Google Scholar]
- Webster, A.; May, E. Bioremediation of weathered-building stone surfaces. Trends Biotechnol. 2006, 24, 255–260. [Google Scholar] [CrossRef]
- Shang, R.H.; Sun, F.R.; Lu, H.X.; Han, P.J.; Fu, J.; Liu, W.W. Impact mechanism of vegetation slope surface on the runoff and sediment producing procedure of Jinyang Ancient City in different periods. Environ. Eng. Manag. J. 2024, 23, 1083–1095. [Google Scholar] [CrossRef]
- Shang, R.H.; Du, X.Y.; Han, P.J.; Liu, W.W. Research on the Mechanism of Root-Penetration Crack Repair in the Earthen Ruins of Jinyang Ancient City Using MICP Technology. Urb. Ecol. Constr. 2024, 1, 30–38. [Google Scholar]
- Xiao, L. Environmental Microbiology Experimental Techniques; China Environmental Science Press: Beijing, China, 2004. [Google Scholar]
- Ghosh, P.; Mandal, S.; Chattopadhyay, B.D.; Pal, S. Use of microorganism to improve the strength of cement mortar. Cem. Concr. Res. 2005, 35, 1980–1983. [Google Scholar] [CrossRef]
- Ahmad, J.; Khan, M.A.; Ahmad, S. State of the art on factors affecting the performance of MICP treated fine aggregates. Mater. Today Proc. 2023, in press. [CrossRef]
- Xu, N.; Wang, J.X.; Liu, X.T.; Zhang, X. Effect of Oxygen Supply on Behavior of Microbially Induced Carbonate Precipitation (MICP) Cemented Soil. In Engineering Geology for a Habitable Earth: IAEG XIV Congress 2023 Proceedings, Chengdu, China; Wang, S., Huang, R., Azzam, R., Marinos, V.P., Eds.; Environmental Science and Engineering; Springer: Singapore, 2024; pp. 113–123. [Google Scholar] [CrossRef]

















| Names | M1 | M2 | M3 | ||||
|---|---|---|---|---|---|---|---|
| CASO AGAR Medium 220 | Medium LB | ATCC Medium 1376 | |||||
| Nitrogen source | Organic | Peptone from casein | 15 g | Peptone | 5 g | Yeast extract | 20 g |
| Peptone from soymeal | 5 g | Beef extract | 3 g | ||||
| Urea * | 20 g | Urea | 20 g | Urea | 20 g | ||
| Inorganic | — ** | — | — | — | (NH4)2SO4 | 10 g | |
| Inorganic salts | NaCl | 5 g | — | — | |||
| NaCl | 1 g | ||||||
| Solvent | Deionized water | 1000 mL | Deionized water | 1000 mL | Deionized water | 1000 mL | |
| pH value | pH | 7.3 | pH | 7.0 | pH | 7.3 | |
| Buffer system | — | — | — | — | Tris buffer | 0.13 mol | |
| Gelling agent *** | Agar | 15 g | Agar | 15 g | Agar | 15 g | |
| Experiment Names | Parallel Experiments | Replicates | Culture Capacity (mL) | G | T (°C) | Initial pH | DO (r/min) | IA (h) | IV (%) | t (h) | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ACt | M1 | 1 | 4 | 300 | 1 | 30 | 7.3 | 170 | / | 10~100 µg | 72 | ||||||
| M2 | 1 | 4 | 7 | ||||||||||||||
| M3 | 1 | 4 | 7.3 | ||||||||||||||
| T | M1 | 13 | 2 | 100 | 2 | / | 7.3 | 170 | 24 | 2 | 24 | ||||||
| M2 | 6 | 2 | 7 | ||||||||||||||
| pH | M1 | 14 | 1 | 100 | 1 | 30 | / | 170 | 27 | 2 | 72 | ||||||
| M2 | 3 | 1 | 24 | ||||||||||||||
| M3 | 9 | 1 | |||||||||||||||
| DO | M1 | 7 | 1 | 100 | 2 | 30 | 7.3 | / | 24 | 2 | 24 | ||||||
| IA | M1 | 16 | 1 | 200 | 30 | 7.3 | 170 | / | 1 | 48 | |||||||
| IV | M1 | 16 | 1 | 100 | 3 | 30 | 7.3 | 170 | 24 | / | 24 | ||||||
| Experiment Names | Experimental conditions | ||||||||||||||||
| ACt (h) | M1 | 27 | 54 | 79 | 105 | — | |||||||||||
| M2 | |||||||||||||||||
| M3 | |||||||||||||||||
| T (°C) | M1 | 20 | 25 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 40 | 45 | 50 | — | ||
| M2 | 20 | 25 | 30 | — | — | — | — | — | — | 37 | 40 | 45 | — | ||||
| pH | M1 | — | 5.5 | 6 | 7 | 7.25 | 7.3 | 7.5 | 7.75 | 8 | 8.5 | 9 | 10 | 11 | 12 | 13 | — |
| M2 | — | — | — | 7 | — | — | — | — | 8 | — | 9 | — | — | — | — | ||
| M3 | 5 | — | 6 | 7 | — | — | — | — | 8 | — | 9 | 10 | 11 | 12 | 13 | ||
| DO (r/min) | M1 | 0 | 50 | 100 | 150 | 170 | 200 | 250 | — | ||||||||
| IA (h) | M1 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 22 | 24 | 25 | 27 | 28 | 30 |
| IV (%) | M1 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 |
| Names | Ca2+ Concentration | Urea Concentration | Bacterial Suspension | Mineralization | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Experiments | M | mL | M | mL | G | OD600 | mL | Addition Order | Reaction | Filtration | Drying | |
| Ca2+ concentration | 15 | 0, 0.2, 0.4, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.6, 1.8, 2 | 50 | 1 | 50 | 3 | 0.5 | 5 | Co-add | Quiescent | Centrifuge | Oven |
| 5 | 0.7 | 200 | 0.7 | 200 | 3 | 0.5 | 20 | |||||
| 0.9 | 0.9 | |||||||||||
| 1 | 1 | |||||||||||
| 1.1 | 1.1 | |||||||||||
| 1.3 | 1.3 | |||||||||||
| Addition order and reaction | 7 | 0.5, 0.8, 0.9, 1, 1.1, 1.2, 1.5 | 50 | 1 | 50 | 3 | 0.5 | 5 | Premix | Shaking | Centrifuge | Oven |
| Post-add | ||||||||||||
| Premix | Quiescent | |||||||||||
| Post-add | ||||||||||||
| Filtration and drying | 5 | 0.5, 0.9, 1, 1.1, 1.5 | 50 | 1 | 50 | 3 | 0.5 | 5 | Co-add | Quiescent | Centrifuge | Room |
| Oven | ||||||||||||
| Undisturbed | Room | |||||||||||
| Oven | ||||||||||||
| Characteristics of X | No Interaction | Interaction with U | Difference | |||||
|---|---|---|---|---|---|---|---|---|
| Importance | Ranked Importance | SD | Importance | Ranked Importance | SD | Importance | Ranked Importance | |
| CT | 0.601 | 1.517 | 0.067 | 0.568 | 1.134 | 0.067 | ↓5.49% | ↓25.25% |
| IV | 0.073 | 0.255 | 0.008 | 0.058 | 0.177 | 0.003 | ↓20.55% | ↓30.59% |
| M | 0.047 | 0.21 | 0.003 | 0.04 | 0.097 | 0.003 | ↓14.89% | ↓53.81% |
| IA | 0.077 | 0.208 | 0.023 | 0.076 | 0.285 | 0.026 | ↓1.3% | ↑37.02% |
| pH | 0.135 | 0.173 | 0.007 | 0.096 | 0.092 | 0.007 | ↓28.89% | ↓46.82% |
| T | 0.016 | 0.036 | 0.004 | 0.005 | 0.006 | 0.001 | ↓68.75% | ↓83.33% |
| B | 0.019 | 0.028 | 0.002 | 0.025 | 0.029 | 0.003 | ↑31.58% | ↑3.57% |
| G | 0.016 | 0.027 | 0.001 | 0.011 | 0.02 | 0.001 | ↓31.25% | ↓25.93% |
| DO | 0.015 | 0.008 | 0 | 0.012 | 0.009 | 0 | ↓20% | ↑12.5% |
| U | — | — | — | 0.108 | 0.267 | 0.023 | — | — |
| Characteristicsof U | No interaction | Interaction with X | Difference | |||||
| Importance | Ranked importance | SD | Importance | Ranked importance | SD | Importance | Ranked importance | |
| CT | 0.276 | 1.027 | 0.017 | 0.122 | 0.236 | 0.006 | ↓55.8% | ↓77.02% |
| IA | 0.081 | 0.093 | 0.003 | 0.101 | 0.213 | 0.007 | ↑24.69% | ↑129.03% |
| B | 0.115 | 0.235 | 0.025 | 0.076 | 0.177 | 0.013 | ↓33.91% | ↓24.68% |
| pH | 0.349 | 0.299 | 0.02 | 0.062 | 0.094 | 0.007 | ↓82.23% | ↓68.56% |
| IV | 0.041 | 0.076 | 0.003 | 0.041 | 0.074 | 0.002 | ↓0.18% | ↓2.63% |
| M | 0.111 | 0.26 | 0.024 | — | — | — | — | — |
| T | 0.018 | 0.024 | 0.002 | — | — | — | — | — |
| G | 0.008 | 0.006 | 0 | — | — | — | — | — |
| X | — | — | — | 0.598 | 1.016 | 0.014 | — | — |
| Characteristics of u | No interaction | — * | ||||||
| Importance | Ranked importance | SD | ||||||
| t | 0.269 | 1.341 | 0.137 | — | — | — | — | — |
| IA | 0.441 | 1.234 | 0.154 | — | — | — | — | — |
| pH | 0.214 | 0.916 | 0.043 | — | — | — | — | — |
| B | 0.033 | 0.094 | 0.009 | — | — | — | — | — |
| IV | 0.016 | 0.031 | 0.004 | — | — | — | — | — |
| M | 0.008 | 0.015 | 0.001 | — | — | — | — | — |
| T | 0.015 | 0.012 | 0.001 | — | — | — | — | — |
| G | 0.004 | 0.004 | 0 | — | — | — | — | — |
| Name | X | U | u | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 4 h | 8 h | 12 h | 24 h | 4 h | 8 h | 12 h | 24 h | 4 h | 8 h | 12 h | 24 h | |
| pH-0 h | 0.189 | 0.498 | 0.42 | — | — | 1.566 | 0.32 | — | 0.58 | 0.58 | 0.112 | 0.147 |
| pH- | 1.055 | — | 0.116 | — | 0.532 | — | — | 0.109 | 0.316 | 0.282 | — | 0.28 |
| X-0 h | 0.154 | 1.477 | 1.317 | — | 0.263 | — | — | 1.127 | — | — | — | 0.236 |
| X- | — | — | — | — | 0.589 | 0.242 | 0.248 | 0.259 | — | — | — | — |
| IV | — | — | 0.113 | 0.486 | — | — | 0.33 | — | — | — | 0.882 | 0.355 |
| G | — | — | — | 0.322 | — | — | — | 0.133 | — | — | — | 0.279 |
| t | — | — | — | 0.122 | — | — | 0.125 | — | — | — | — | — |
| M | Cultivation Conditions | ACt (h) | T (℃) | pH | DO (r/min) | IA (h) | IV (%) |
|---|---|---|---|---|---|---|---|
| M1 | X | 105 | 30 | 7.25 | 170 | 48 | 3 |
| U | 27 | 32 | 8 | 16 | 1 | ||
| M2 | X | 105 | 37 | 7 | — | — | — |
| U | 54 | 30 | 9 | — | — | — | |
| M3 | X | 105 | — | 7 | — | — | — |
| U | 27 | — | 8 | — | — | — |
| Name | B | C | D | I | II | III | IV |
|---|---|---|---|---|---|---|---|
| Addition | Post-add | Premix | Post-add | Co-add | Co-add | Co-add | Co-add |
| Reaction | Shaking | Quiescent | Quiescent | Quiescent | Quiescent | Quiescent | Quiescent |
| Filtration | Centrifuge | Centrifuge | Centrifuge | Undisturbed | Centrifuge | Undisturbed | Centrifuge |
| Drying | Oven | Oven | Oven | Room | Room | Oven | Oven |
| Calcite yield | 5.6% | 100% | 5.6% | 7.0% | 7.9% | 6.1% | 5.0% |
| Calcium Acetate | I | II | III | IV | Theoretical Mass (g) | ||||
|---|---|---|---|---|---|---|---|---|---|
| Net Mass (g) | Caco3 Yield | Net Mass (g) | CaCO3 Yield | Net Mass (g) | CaCO3 Yield | Net Mass (g) | CaCO3 Yield | ||
| 0.5 | 1.616 | 0.65 | 2.072 | 0.83 | 2.125 | 0.85 | 1.892 | 0.76 | 2.5 |
| 0.9 | 2.794 | 0.62 | 1.762 | 0.39 | 2.172 | 0.48 | 2.72 | 0.6 | 4.5 |
| 1 | 3.031 | 0.61 | 3.14 | 0.63 | 3.38 | 0.68 | 2.664 | 0.53 | 5 |
| 1.1 | 3.275 | 0.66 | 2.905 | 0.58 | 3.701 | 0.74 | 3.542 | 0.71 | 5 |
| 1.5 | 4.405 | 0.88 | 4.066 | 0.81 | 1.903 | 0.38 | 3.609 | 0.72 | 5 |
| Total | 15.12 | 0.687 | 13.945 | 0.634 | 13.281 | 0.604 | 14.427 | 0.656 | 22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shang, R.; Li, C.; Yang, X.; Han, P.; Liu, W. Research on MICP Restoration Technology for Earthen City Walls Damaged by Primary Vegetation Capping in China. Microorganisms 2025, 13, 2802. https://doi.org/10.3390/microorganisms13122802
Shang R, Li C, Yang X, Han P, Liu W. Research on MICP Restoration Technology for Earthen City Walls Damaged by Primary Vegetation Capping in China. Microorganisms. 2025; 13(12):2802. https://doi.org/10.3390/microorganisms13122802
Chicago/Turabian StyleShang, Ruihua, Chenyang Li, Xiaoju Yang, Pengju Han, and Weiwei Liu. 2025. "Research on MICP Restoration Technology for Earthen City Walls Damaged by Primary Vegetation Capping in China" Microorganisms 13, no. 12: 2802. https://doi.org/10.3390/microorganisms13122802
APA StyleShang, R., Li, C., Yang, X., Han, P., & Liu, W. (2025). Research on MICP Restoration Technology for Earthen City Walls Damaged by Primary Vegetation Capping in China. Microorganisms, 13(12), 2802. https://doi.org/10.3390/microorganisms13122802

