Effects of Fibrous By-Products on Growth Performance, Ileal Nutrient Digestibility, Intestinal Morphology, and Microbiota Composition in Weaned Piglets
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Diets, and Sampling
2.2. Growth Performance
2.3. Chemical Analyses and Nutrient Digestibility
2.4. Histological Analyses
2.5. Determination of Colonic Microbiota
2.6. Statistical Analysis
3. Results
3.1. Growth Performance and Apparent Ileal Digestibility
3.2. Histomorphology
3.3. Microbial Metabolites
3.4. Microbial Composition and Diversity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| Carrot Pomace | Brewers’ Spent Grain | Carob Pods | |
|---|---|---|---|
| Analysed composition (g/kg) | |||
| Dry matter | 927 | 912 | 909 |
| Starch | 202 | 28.3 | 54.4 |
| Crude fat | 7.01 | 88.1 | 6.20 |
| Crude protein | 75.5 | 266 | 83.4 |
| Crude ash | 47.8 | 54.6 | 36.5 |
| Crude fibre | 181 | 140 | 159 |
| Total dietary fibre | 623 | 507 | 715 |
| Insoluble dietary fibre | 428 | 490 | 698 |
| Soluble dietary fibre | 195 | 16.1 | 17.4 |
| Calcium | 4.05 | 6.98 | 9.57 |
| Phosphorus | 1.66 | 6.57 | 0.53 |
| Particle size (mm) | |||
| >4.00 | 0% | 0% | 0% |
| 4.00–2.50 | 0% | 0% | 0% |
| 2.50–1.00 | 0% | 0% | 0% |
| 1.00–0.63 | 1.40% | 0.20% | 0.20% |
| 0.63–0.40 | 22.6% | 11.1% | 14.9% |
| 0.40–0.20 | 38.2% | 42.2% | 35.1% |
| 0.20–0.15 | 11.8% | 15.0% | 10.5% |
| 0.15–0.10 | 11.6% | 13.3% | 10.7% |
| 0.10–0 | 14.4% | 18.2% | 28.6% |
References
- Noblet, J.; Le Goff, G. Effect of dietary fibre on the energy value of feeds for pigs. Anim. Feed Sci. Technol. 2001, 90, 35–52. [Google Scholar] [CrossRef]
- Le Gall, M.; Warpechowski, M.; Jaguelin-Peyraud, Y.; Noblet, J. Influence of dietary fibre level and pelleting on the digestibility of energy and nutrients in growing pigs and adult sows. Animal 2009, 3, 352–359. [Google Scholar] [CrossRef] [PubMed]
- Koo, B.; Hossain, M.M.; Nyachoti, C.M. Effect of dietary wheat bran inclusion on nutrient and energy digestibility and microbial metabolites in weaned pigs. Livest. Sci. 2017, 203, 110–113. [Google Scholar] [CrossRef]
- Grześkowiak, Ł.; Saliu, E.M.; Martínez-Vallespín, B.; Aschenbach, J.R.; Brockmann, G.A.; Fulde, M.; Hartmann, S.; Kuhla, B.; Lucius, R.; Metges, C.C.; et al. Dietary fiber and its role in performance, welfare, and health of pigs. Anim. Health Res. Rev. 2022, 23, 165–193. [Google Scholar] [CrossRef]
- Bach Knudsen, K.E.; Lærke, H.N.; Ingerslev, A.K.; Hedemann, M.S.; Nielsen, T.S.; Theil, P.K. Carbohydrates in pig nutrition—Recent advances. J. Anim. Sci. 2016, 94, 1–11. [Google Scholar] [CrossRef]
- Le, M.H.A.; Buchet, A.D.G.; Beltranena, E.; Gerrits, W.J.J.; Zijlstra, R.T. Digestibility and intestinal fermentability of canola meal from Brassica juncea and Brassica napus fed to ileal-cannulated grower pigs. Anim. Feed Sci. Technol. 2017, 234, 43–53. [Google Scholar] [CrossRef]
- Montagne, L.; Pluske, J.R.; Hampson, D.J. A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Anim. Feed Sci. Technol. 2003, 108, 95–117. [Google Scholar] [CrossRef]
- Schley, P.D.; Field, C.J. The immune-enhancing effects of dietary fibres and prebiotics. Br. J. Nutr. 2002, 87 (Suppl. S2), S221–S230. [Google Scholar] [CrossRef]
- Liu, X.F.; Shao, J.H.; Liao, Y.T.; Wang, L.N.; Jia, Y.; Dong, P.J.; Liu, Z.Z.; He, D.D.; Li, C.; Zhang, X. Regulation of short-chain fatty acids in the immune system. Front. Immunol. 2023, 14, 1186892. [Google Scholar] [CrossRef]
- Qu, S.; Gao, Y.; Ma, J.; Yan, Q. Microbiota-derived short-chain fatty acids functions in the biology of B lymphocytes: From differentiation to antibody formation. Biomed. Pharmacother. 2023, 168, 115773. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; Li, S.; Diao, H.; Huang, C.; Yan, J.; Wei, X.; Zhou, M.; He, P.; Wang, T.; Fu, H.; et al. The interaction between dietary fiber and gut microbiota, and its effect on pig intestinal health. Front. Immunol. 2023, 14, 1095740. [Google Scholar] [CrossRef]
- Gibbs, H.K.; Ruesch, A.S.; Achard, F.; Clayton, M.K.; Holmgren, P.; Ramankutty, N.; Foley, J.A. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl. Acad. Sci. USA 2010, 107, 16732–16737. [Google Scholar] [CrossRef] [PubMed]
- Florou-Paneri, P.; Christaki, E.; Giannenas, I.; Bonos, E.; Skoufos, I.; Tsinas, A.; Tzora, A.; Peng, J. Alternative protein sources to soybean meal in pig diets. J. Food Agric. Environ. 2014, 12, 655–660. [Google Scholar]
- van Zanten, H.H.E.; Mollenhorst, H.; Oonincx, D.G.A.B.; Bikker, P.; Meerburg, B.G.; de Boer, I.J.M. From environmental nuisance to environmental opportunity: Housefly larvae convert waste to livestock feed. J. Clean. Prod. 2015, 102, 362–369. [Google Scholar] [CrossRef]
- Pérez de Nanclares, M.; Trudeau, M.P.; Hansen, J.Ø.; Mydland, L.T.; Urriola, P.E.; Shurson, G.C.; Piercey Åkesson, C.; Kjos, N.P.; Arntzen, M.Ø.; Øverland, M. High-fiber rapeseed co-product diet for Norwegian Landrace pigs: Effect on digestibility. Livest. Sci. 2017, 203, 1–9. [Google Scholar] [CrossRef]
- GfE. Empfehlungen zur Energie- und Nährstoffversorgung von Schweinen; GfE: Frankfurt, Germany, 2006; p. 247. [Google Scholar]
- Naumann, C.; Bassler, R. VDLUFA. Die Chemische Untersuchung von Futtermitteln; VDLUFA-Verlag: Darmstadt, Germany, 2012. [Google Scholar]
- Liu, P.; Pieper, R.; Tedin, L.; Martin, L.; Meyer, W.; Rieger, J.; Plendl, J.; Vahjen, W.; Zentek, J. Effect of dietary zinc oxide on jejunal morphological and immunological characteristics in weaned piglets. J. Anim. Sci. 2014, 92, 5009–5018. [Google Scholar] [CrossRef]
- Short, F.J.; Gorton, P.; Wiseman, J.; Boorman, K.N. Determination of titanium dioxide added as an inert marker in chicken digestibility studies. Anim. Feed Sci. Technol. 1996, 59, 215–221. [Google Scholar] [CrossRef]
- Grześkowiak, Ł.; Zentek, J.; Vahjen, W. Physical Pre-Treatment Improves Efficient DNA Extraction and qPCR Sensitivity from Clostridium Difficile Spores in Faecal Swine Specimens. Curr. Microbiol. 2016, 73, 727–731. [Google Scholar] [CrossRef]
- Grześkowiak, Ł.; Dadi, T.H.; Zentek, J.; Vahjen, W. Developing Gut Microbiota Exerts Colonisation Resistance to Clostridium (syn. Clostridioides) difficile in Piglets. Microorganisms 2019, 7, 218. [Google Scholar] [CrossRef]
- Luca, M.I.; Ungureanu-Iuga, M.; Mironeasa, S. Carrot Pomace Characterization for Application in Cereal-Based Products. Appl. Sci. 2022, 12, 7989. [Google Scholar] [CrossRef]
- Nawirska, A.; Kwaśniewska, M. Dietary fibre fractions from fruit and vegetable processing waste. Food Chem. 2005, 91, 221–225. [Google Scholar] [CrossRef]
- Ikram, S.; Huang, L.; Zhang, H.; Wang, J.; Yin, M. Composition and Nutrient Value Proposition of Brewers Spent Grain. J. Food Sci. 2017, 82, 2232–2242. [Google Scholar] [CrossRef]
- Lynch, K.M.; Steffen, E.J.; Arendt, E.K. Brewers’ spent grain: A review with an emphasis on food and health. J. Inst. Brew. 2016, 122, 553–568. [Google Scholar] [CrossRef]
- Rtibi, K.; Selmi, S.; Grami, D.; Amri, M.; Eto, B.; El-Benna, J.; Sebai, H.; Marzouki, L. Chemical constituents and pharmacological actions of carob pods and leaves (Ceratonia siliqua L.) on the gastrointestinal tract: A review. Biomed. Pharmacother. 2017, 93, 522–528. [Google Scholar] [CrossRef] [PubMed]
- Kotrotsios, N.V.; Christaki, E.V.; Bonos, E.M.; Florou-Paneri, P.C. The effect of dietary carob pods on nutrient digestibility in weaning, growing and fattening periods of pigs. J. Food Agric. Environ. 2010, 8, 779–782. [Google Scholar]
- Inserra, L.; Luciano, G.; Bella, M.; Scerra, M.; Cilione, C.; Basile, P.; Lanza, M.; Priolo, A. Effect of including carob pulp in the diet of fattening pigs on the fatty acid composition and oxidative stability of pork. Meat Sci. 2015, 100, 256–261. [Google Scholar] [CrossRef]
- Eisenhauer, L.; Vahjen, W.; Dadi, T.; Kohn, B.; Zentek, J. Effects of brewer’s spent grain and carrot pomace on digestibility, fecal microbiota, and fecal and urinary metabolites in dogs fed low- or high-protein diets. J. Anim. Sci. 2019, 97, 4124–4133. [Google Scholar] [CrossRef]
- Montagne, L.; Le Floc’h, N.; Arturo-Schaan, M.; Foret, R.; Urdaci, M.C.; Le Gall, M. Comparative effects of level of dietary fiber and sanitary conditions on the growth and health of weanling pigs. J. Anim. Sci. 2012, 90, 2556–2569. [Google Scholar] [CrossRef]
- Wang, L.F.; Beltranena, E.; Zijlstra, R.T. Diet nutrient digestibility and growth performance of weaned pigs fed sugar beet pulp. Anim. Feed Sci. Technol. 2016, 211, 145–152. [Google Scholar] [CrossRef]
- Shang, Q.; Ma, X.; Liu, H.; Liu, S.; Piao, X. Effect of fibre sources on performance, serum parameters, intestinal morphology, digestive enzyme activities and microbiota in weaned pigs. Arch. Anim. Nutr. 2020, 74, 121–137. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liu, C.; Niu, J.; Cui, Z.; Zhao, X.; Li, W.; Zhang, Y.; Yang, Y.; Gao, P.; Guo, X.; et al. Impacts of dietary fiber level on growth performance, apparent digestibility, intestinal development, and colonic microbiota and metabolome of pigs. J. Anim. Sci. 2023, 101, skad174. [Google Scholar] [CrossRef]
- Dégen, L.; Halas, V.; Babinszky, L. Effect of dietary fibre on protein and fat digestibility and its consequences on diet formulation for growing and fattening pigs: A review. Acta Agric. Scand. Sect. A 2007, 57, 1–9. [Google Scholar] [CrossRef]
- Bindelle, J.; Leterme, P.; Buldgen, A. Nutritional and environmental consequences of dietary fibre in pig nutrition: A review. Biotechnol. Agron. Soc. Environ. 2008, 12, 69–80. [Google Scholar]
- Hedemann, M.S.; Eskildsen, M.; Lærke, H.N.; Pedersen, C.; Lindberg, J.E.; Laurinen, P.; Knudsen, K.E.B. Intestinal morphology and enzymatic activity in newly weaned pigs fed contrasting fiber concentrations and fiber properties1. J. Anim. Sci. 2006, 84, 1375–1386. [Google Scholar] [CrossRef] [PubMed]
- Schedle, K.; Pfaffl, M.W.; Plitzner, C.; Meyer, H.H.; Windisch, W. Effect of insoluble fibre on intestinal morphology and mRNA expression pattern of inflammatory, cell cycle and growth marker genes in a piglet model. Arch. Anim. Nutr. 2008, 62, 427–438. [Google Scholar] [CrossRef]
- Molist, F.; Van Oostrum, M.; Pérez, J.; Mateos, G.; Nyachoti, C.; Van Der Aar, P. Relevance of functional properties of dietary fibre in diets for weanling pigs. Anim. Feed Sci. Technol. 2014, 189, 1–10. [Google Scholar] [CrossRef]
- Plaisancié, P. Impact of nutrients on the functioning of intestinal goblet cells: Health and therapeutic perspectives. Curr. Nutr. Food Sci. 2006, 2, 399–408. [Google Scholar] [CrossRef]
- Barcelo, A.; Claustre, J.; Moro, F.; Chayvialle, J.A.; Cuber, J.C.; Plaisancié, P. Mucin secretion is modulated by luminal factors in the isolated vascularly perfused rat colon. Gut 2000, 46, 218–224. [Google Scholar] [CrossRef]
- Ito, H.; Satsukawa, M.; Arai, E.; Sugiyama, K.; Sonoyama, K.; Kiriyama, S.; Morita, T. Soluble fiber viscosity affects both goblet cell number and small intestine mucin secretion in rats. J. Nutr. 2009, 139, 1640–1647. [Google Scholar] [CrossRef]
- Luo, Y.; Liu, Y.; Li, H.; Zhao, Y.; Wright, A.G.; Cai, J.; Tian, G.; Mao, X. Differential Effect of Dietary Fibers in Intestinal Health of Growing Pigs: Outcomes in the Gut Microbiota and Immune-Related Indexes. Front. Microbiol. 2022, 13, 843045. [Google Scholar] [CrossRef]
- Bach Knudsen, K.E. The nutritional significance of “dietary fibre” analysis. Anim. Feed Sci. Technol. 2001, 90, 3–20. [Google Scholar] [CrossRef]
- Glitsø, L.V.; Gruppen, H.; Schols, H.A.; Højsgaars, S.; Sandström, B.; Bach Knudsen, K.E. Degradation of rye arabinoxylans in the large intestine of pigs. J. Sci. Food Agric. 1999, 79, 961–969. [Google Scholar] [CrossRef]
- Scheppach, W. Effects of short chain fatty acids on gut morphology and function. Gut 1994, 35, S35–S38. [Google Scholar] [CrossRef]
- Willemsen, L.E.; Koetsier, M.A.; van Deventer, S.J.; van Tol, E.A. Short chain fatty acids stimulate epithelial mucin 2 expression through differential effects on prostaglandin E(1) and E(2) production by intestinal myofibroblasts. Gut 2003, 52, 1442–1447. [Google Scholar] [CrossRef]
- Niemi, P.; Martins, D.; Buchert, J.; Faulds, C.B. Pre-hydrolysis with carbohydrases facilitates the release of protein from brewer’s spent grain. Bioresour. Technol. 2013, 136, 529–534. [Google Scholar] [CrossRef]
- De Rodas, B.; Youmans, B.P.; Danzeisen, J.L.; Tran, H.; Johnson, T.J. Microbiome profiling of commercial pigs from farrow to finish. J. Anim. Sci. 2018, 96, 1778–1794. [Google Scholar] [CrossRef] [PubMed]
- Frese, S.A.; Parker, K.; Calvert, C.C.; Mills, D.A. Diet shapes the gut microbiome of pigs during nursing and weaning. Microbiome 2015, 3, 28. [Google Scholar] [CrossRef] [PubMed]
- Pu, G.; Li, P.; Du, T.; Niu, Q.; Fan, L.; Wang, H.; Liu, H.; Li, K.; Niu, P.; Wu, C. Adding appropriate fiber in diet increases diversity and metabolic capacity of distal gut microbiota without altering fiber digestibility and growth rate of finishing pig. Front. Microbiol. 2020, 11, 533. [Google Scholar] [CrossRef]
- Niu, Q.; Pu, G.; Fan, L.; Gao, C.; Lan, T.; Liu, C.; Du, T.; Kim, S.W.; Niu, P.; Zhang, Z.; et al. Identification of Gut Microbiota Affecting Fiber Digestibility in Pigs. Curr. Issues Mol. Biol. 2022, 44, 4557–4569. [Google Scholar] [CrossRef] [PubMed]
- Gibson, G.R.; Roberfroid, M.B. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr. 1995, 125, 1401–1412. [Google Scholar] [CrossRef]
- Simpson, H.L.; Campbell, B.J. Review article: Dietary fibre-microbiota interactions. Aliment. Pharmacol. Ther. 2015, 42, 158–179. [Google Scholar] [CrossRef] [PubMed]
- Zhai, X.; Lin, D.; Zhao, Y.; Li, W.; Yang, X. Effects of Dietary Fiber Supplementation on Fatty Acid Metabolism and Intestinal Microbiota Diversity in C57BL/6J Mice Fed with a High-Fat Diet. J. Agric. Food Chem. 2018, 66, 12706–12718. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Chen, D.; Tian, G.; Zheng, P.; Mao, X.; Yu, J.; He, J.; Huang, Z.; Luo, Y.; Luo, J.; et al. Soluble Fiber and Insoluble Fiber Regulate Colonic Microbiota and Barrier Function in a Piglet Model. Biomed. Res. Int. 2019, 2019, 7809171. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, J.; Zhong, Y.; Liu, S.; Liu, L.; Mu, X.; Chen, C.; Yang, S.; Li, G.; Zhang, D.; et al. Insoluble/soluble fraction ratio determines effects of dietary fiber on gut microbiota and serum metabolites in healthy mice. Food Funct. 2024, 15, 338–354. [Google Scholar] [CrossRef]
| CON | CRT | BSG | CRB | |
|---|---|---|---|---|
| Ingredients (%) | ||||
| Corn | 30.3 | 16.2 | 23.6 | 16.6 |
| Soybean meal | 22.3 | 23.7 | 18.7 | 23.5 |
| Barley | 20.0 | 20.0 | 20.0 | 20.0 |
| Wheat | 20.0 | 20.0 | 20.0 | 20.0 |
| Soybean oil | 2.14 | 6.72 | 3.97 | 6.54 |
| Monocalcium phosphate | 1.45 | 1.58 | 1.65 | 1.60 |
| Calcium carbonate | 1.24 | 1.20 | 1.19 | 1.17 |
| Vitamin–mineral premix 1 | 1.20 | 1.20 | 1.20 | 1.20 |
| L-Lysine HCL | 0.54 | 0.54 | 0.67 | 0.52 |
| DL-Methionine | 0.19 | 0.22 | 0.27 | 0.22 |
| L-Threonine | 0.17 | 0.19 | 0.27 | 0.19 |
| L-Tryptophan | 0.05 | 0.05 | 0.08 | 0.05 |
| Titanium dioxide | 0.40 | 0.40 | 0.40 | 0.40 |
| Carrot pomace | - | 8.00 | - | - |
| Brewers’ spent grain | - | - | 8.00 | - |
| Carob pods | - | - | - | 8.00 |
| Analysed composition (g/kg) | ||||
| Dry matter | 898 | 906 | 900 | 903 |
| Starch | 424 | 351 | 388 | 346 |
| Crude fat | 40.5 | 78.9 | 65.5 | 76.2 |
| Crude protein | 207 | 208 | 209 | 207 |
| Crude ash | 53.8 | 56.1 | 56.2 | 56.0 |
| Crude fibre | 31.5 | 49.2 | 43.9 | 43.3 |
| Neutral detergent fibre | 119 | 155 | 148 | 147 |
| Acid detergent fibre | 38.2 | 58.9 | 51.7 | 90.0 |
| Lignin | 5.45 | 5.03 | 8.65 | 36.5 |
| Total dietary fibre | 129 | 173 | 158 | 181 |
| Insoluble dietary fibre | 125 | 149 | 152 | 177 |
| Soluble dietary fibre | 4.92 | 24.4 | 5.99 | 4.38 |
| Calcium | 7.76 | 7.64 | 8.15 | 8.01 |
| Phosphorus | 6.73 | 6.71 | 7.51 | 6.83 |
| CON 1 | CRT | BSG | CRB | SEM 2 | p-Value | |
|---|---|---|---|---|---|---|
| Body weight (kg) | ||||||
| Weaning | 7.12 | 7.12 | 7.20 | 7.13 | 0.16 | 0.997 |
| Day 35 | 15.1 | 16.2 | 15.0 | 16.7 | 0.46 | 0.520 |
| Average daily gain (g) | 286 | 319 | 307 | 337 | 11.8 | 0.491 |
| Daily feed intake (g) | 406 | 430 | 428 | 491 | 15.0 | 0.205 |
| Feed conversion ratio | 1.43 | 1.37 | 1.40 | 1.47 | 0.02 | 0.344 |
| CON 1 | CRT | BSG | CRB | SEM 2 | p-Value | |
|---|---|---|---|---|---|---|
| Crude protein | 0.675 | 0.661 | 0.607 | 0.621 | 0.016 | 0.357 |
| Alanine | 0.613 | 0.618 | 0.591 | 0.619 | 0.021 | 0.969 |
| Arginine | 0.735 | 0.767 | 0.756 | 0.771 | 0.015 | 0.830 |
| Asparagine | 0.680 | 0.638 | 0.635 | 0.687 | 0.019 | 0.700 |
| Cystine | 0.568 | 0.561 | 0.561 | 0.598 | 0.025 | 0.954 |
| Glutamic acid | 0.703 | 0.730 | 0.742 | 0.765 | 0.018 | 0.668 |
| Glycine | 0.352 | 0.442 | 0.354 | 0.459 | 0.036 | 0.633 |
| Histidine | 0.680 | 0.684 | 0.692 | 0.692 | 0.015 | 0.991 |
| Isoleucine | 0.634 | 0.642 | 0.670 | 0.670 | 0.020 | 0.888 |
| Leucine | 0.707 | 0.709 | 0.691 | 0.715 | 0.017 | 0.973 |
| Lysine | 0.726 | 0.756 | 0.797 | 0.777 | 0.020 | 0.635 |
| Methionine | 0.875 | 0.899 | 0.862 | 0.860 | 0.008 | 0.396 |
| Phenylalanine | 0.737 | 0.730 | 0.732 | 0.738 | 0.014 | 0.997 |
| Proline | 0.670 | 0.674 | 0.691 | 0.704 | 0.019 | 0.920 |
| Serine | 0.692 a | 0.683 a | 0.686 a | 0.491 b | 0.024 | 0.002 |
| Threonine | 0.698 | 0.715 | 0.729 | 0.727 | 0.015 | 0.876 |
| Tyrosine | 0.727 | 0.679 | 0.716 | 0.732 | 0.017 | 0.713 |
| Valine | 0.595 | 0.553 | 0.615 | 0.625 | 0.021 | 0.672 |
| CON 1 | CRT | BSG | CRB | SEM 2 | p-Value | |
|---|---|---|---|---|---|---|
| Jejunum | ||||||
| Villus height (μm) | 426 | 473 | 486 | 575 | 22.9 | 0.224 |
| Crypt depth (μm) | 409 | 358 | 318 | 384 | 14.7 | 0.127 |
| V/C ratio 3 | 1.13 | 1.33 | 1.59 | 1.53 | 0.09 | 0.217 |
| Proximal colon | ||||||
| Crypt depth (μm) | 356 | 325 | 341 | 334 | 8.49 | 0.645 |
| Acidic goblet cells 4 | 55.2 | 47.7 | 55.9 | 52.3 | 2.86 | 0.764 |
| Neutral goblet cells | 2.94 | 2.09 | 0.40 | 4.07 | 0.79 | 0.305 |
| Mixed goblet cells | 11.0 | 14.5 | 9.02 | 13.5 | 2.16 | 0.820 |
| Total goblet cells | 69.1 | 72.4 | 66.70 | 69.9 | 1.63 | 0.708 |
| CON 1 | CRT | BSG | CRB | SEM 2 | p-Value | ||
|---|---|---|---|---|---|---|---|
| Total SCFA | (µmol/g) | 86.6 | 86.5 | 87.4 | 83.6 | 3.04 | 0.975 |
| Acetate | % | 54.0 b | 60.2 a | 53.0 b | 60.2 a | 0.89 | <0.001 |
| Propionate | % | 30.3 ab | 26.5 b | 31.4 a | 25.9 b | 0.70 | 0.005 |
| Butyrate | % | 13.0 | 11.2 | 13.2 | 12.0 | 0.40 | 0.266 |
| Valerate | % | 2.67 | 2.02 | 2.42 | 1.83 | 0.13 | 0.084 |
| CON 1 | CRT | BSG | CRB | SEM 2 | p-Value | |
|---|---|---|---|---|---|---|
| Clostridium sensu stricto 1 | 25.0 | 17.7 | 20.4 | 16.3 | 2.76 | 0.928 |
| Lactobacillus | 19.5 | 22.8 | 17.6 | 19.2 | 2.19 | 0.818 |
| Terrisporobacter | 5.53 | 8.52 | 6.68 | 3.57 | 0.95 | 0.563 |
| Ruminococcaceae UCG 005 | 4.24 a | 1.54 b | 1.83 ab | 1.56 b | 0.30 | 0.008 |
| Unknown Family Lachnospiraceae | 3.11 | 1.53 | 1.90 | 1.95 | 0.30 | 0.487 |
| Catenisphaera | 2.80 | 2.64 | 1.60 | 1.37 | 0.36 | 0.674 |
| Dialister | 2.75 | 2.66 | 2.51 | 5.16 | 0.35 | 0.075 |
| Lachnospiraceae XPB1014 group | 2.72 | 4.19 | 2.63 | 3.15 | 0.40 | 0.576 |
| Christensenellaceae R 7 group | 2.13 | 3.20 | 2.18 | 1.46 | 0.34 | 0.495 |
| Erysipelotrichaceae UCG 002 | 2.03 | 1.19 | 0.89 | 1.84 | 0.25 | 0.322 |
| Unknown Family Muribaculaceae | 1.48 | 0.95 | 2.04 | 2.40 | 0.28 | 0.254 |
| Agathobacter | 1.42 | 0.95 | 0.41 | 1.00 | 0.24 | 0.159 |
| Blautia | 1.22 | 3.48 | 1.36 | 0.59 | 0.56 | 0.755 |
| Coprococcus 3 | 1.14 | 7.49 | 5.99 | 1.01 | 0.41 | 0.063 |
| Turicibacter | 1.09 | 0.76 | 0.95 | 1.34 | 0.10 | 0.211 |
| Alloprevotella | 0.75 | 0.64 | 0.70 | 0.83 | 0.06 | 0.628 |
| Ruminococcaceae UCG 002 | 0.63 | 0.24 | 0.17 | 0.24 | 0.06 | 0.172 |
| Bifidobacterium | 0.61 ab | 0.82 a | 0.40 ab | 0.29 b | 0.07 | 0.042 |
| Olsenella | 0.60 | 0.75 | 1.12 | 1.67 | 0.15 | 0.065 |
| Ruminococcaceae UCG 008 | 0.48 | 1.87 | 0.51 | 1.06 | 0.20 | 0.057 |
| Syntrophococcus | 0.45 | 0.65 | 0.44 | 0.48 | 0.05 | 0.284 |
| Streptococcus | 0.32 | 1.72 | 1.56 | 1.02 | 0.27 | 0.326 |
| Subdoligranulum | 0.25 | 1.58 | 1.08 | 0.83 | 0.20 | 0.118 |
| Unknown Family Ruminococcaceae | 0.24 | 0.14 | 0.13 | 0.10 | 0.05 | 0.684 |
| Richness index | 158 b | 163 b | 169 ab | 220 a | 8.09 | 0.009 |
| Shannon index | 3.39 | 3.46 | 3.57 | 3.93 | 0.09 | 0.222 |
| Evenness index | 0.67 | 0.68 | 0.70 | 0.73 | 0.02 | 0.692 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouyang, H.; Grześkowiak, Ł.; Vahjen, W.; Zentek, J.; Martínez-Vallespín, B. Effects of Fibrous By-Products on Growth Performance, Ileal Nutrient Digestibility, Intestinal Morphology, and Microbiota Composition in Weaned Piglets. Microorganisms 2025, 13, 2482. https://doi.org/10.3390/microorganisms13112482
Ouyang H, Grześkowiak Ł, Vahjen W, Zentek J, Martínez-Vallespín B. Effects of Fibrous By-Products on Growth Performance, Ileal Nutrient Digestibility, Intestinal Morphology, and Microbiota Composition in Weaned Piglets. Microorganisms. 2025; 13(11):2482. https://doi.org/10.3390/microorganisms13112482
Chicago/Turabian StyleOuyang, Huilin, Łukasz Grześkowiak, Wilfried Vahjen, Jürgen Zentek, and Beatriz Martínez-Vallespín. 2025. "Effects of Fibrous By-Products on Growth Performance, Ileal Nutrient Digestibility, Intestinal Morphology, and Microbiota Composition in Weaned Piglets" Microorganisms 13, no. 11: 2482. https://doi.org/10.3390/microorganisms13112482
APA StyleOuyang, H., Grześkowiak, Ł., Vahjen, W., Zentek, J., & Martínez-Vallespín, B. (2025). Effects of Fibrous By-Products on Growth Performance, Ileal Nutrient Digestibility, Intestinal Morphology, and Microbiota Composition in Weaned Piglets. Microorganisms, 13(11), 2482. https://doi.org/10.3390/microorganisms13112482

