Effect of Temperature on Carbapenemase-Encoding Plasmid Transfer in Klebsiella pneumoniae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources and Collection
2.2. Bacterial Isolates and Detection of CPE
2.3. PCR-Based Replicon Typing (PBRT) and Multilocus Sequence Typing (MLST)
2.4. Plasmid Transfer by Bacterial Conjugation
2.5. Confirmation of Plasmid Stability
2.6. Statistical Analysis
3. Results
3.1. Antibiotic Resistance Rates of K. pneumoniae According to Local Temperature
3.2. Genetic Characteristics of blaKPC- and blaNDM-Encoding K. pneumoniae
3.3. Effect of Temperature on Conjugation of Plasmids Carrying blaKPC and blaNDM
3.4. Stability of blaKPC- and blaNDM-Carrying Plasmids According to Temperature
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. HM Government and Wellcome Trust. 2016. Available online: https://wellcomecollection.org/works/thvwsuba (accessed on 19 February 2024).
- Alcorn, K.; Gerrard, J.; Macbeth, D.; Steele, M. Seasonal variation in health care-associated bloodstream infection: Increase in the incidence of gram-negative bacteremia in nonhospitalized patients during summer. Am. J. Infect. Control 2013, 41, 1205–1208. [Google Scholar] [CrossRef] [PubMed]
- MacFadden, D.R.; McGough, S.F.; Fisman, D.; Santillana, M.; Brownstein, J.S. Antibiotic resistance increases with local temperature. Nat. Clim. Chang. 2018, 8, 510–514. [Google Scholar] [CrossRef] [PubMed]
- Richet, H. Seasonality in Gram-negative and healthcare-associated infections. Clin. Microbiol. Infect. 2012, 18, 934–940. [Google Scholar] [CrossRef] [PubMed]
- Schwab, F.; Gastmeier, P.; Meyer, E. The warmer the weather, the more Gram-negative bacteria—Impact of temperature on clinical isolates in intensive care units. PLoS ONE 2014, 9, e91105. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Verdugo, A.; Lozano-Huntelman, N.; Cruz-Loya, M.; Savage, V.; Yeh, P. Compounding effects of climate warming and antibiotic resistance. iScience 2020, 23, 101024. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Dong, N.; Chan, E.W.-C.; Zhang, R.; Chen, S. Carbapenem resistance-encoding and virulence-encoding conjugative plasmids in Klebsiella pneumoniae. Trends Microbiol. 2021, 29, 65–83. [Google Scholar] [CrossRef] [PubMed]
- Cañada-García, J.E.; Moure, Z.; Sola-Campoy, P.J.; Delgado-Valverde, M.; Cano, M.E.; Gijón, D.; González, M.; Gracia-Ahufinger, I.; Larrosa, N.; Mulet, X.; et al. CARB-ES-19 multicenter study of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli From All Spanish provinces reveals interregional spread of high-risk clones such as ST307/OXA-48 and ST512/KPC-3. Front. Microbiol. 2022, 13, 918362. [Google Scholar] [CrossRef] [PubMed]
- Barbadoro, P.; Bencardino, D.; Carloni, E.; Omiccioli, E.; Ponzio, E.; Micheletti, R.; Acquaviva, G.; Luciani, A.; Masucci, A.; Pocognoli, A.; et al. Carriage of carbapenem-resistant Enterobacterales in adult patients admitted to a university hospital in Italy. Antibiotics 2021, 10, 61. [Google Scholar] [CrossRef]
- Lee, H.M.; Yoon, E.J.; Kim, D.K.; Jeong, S.H.; Shin, J.H.; Shin, J.H.; Shin, K.S.; Kim, Y.A.; Uh, Y.; Park, C.; et al. Establishment of the South Korean national antimicrobial resistance surveillance system, Kor-GLASS, in 2016. Eurosurveillance 2018, 23, 1700734. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 31st ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2021. [Google Scholar]
- Poirel, L.; Walsh, T.R.; Cuvillier, V.; Nordmann, P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn. Microbiol. Infect. Dis. 2011, 70, 119–123. [Google Scholar] [CrossRef]
- Wang, Y.; Tong, M.-K.; Chow, K.-H.; Cheng, V.C.-C.; Tse, C.W.-S.; Wu, A.K.-L.; Lai, R.W.-M.; Luk, W.-K.; Tsang, D.N.-C.; Ho, P.-L. Occurrence of highly conjugative IncX3 epidemic plasmid carrying blaNDM in Enterobacteriaceae isolates in geographically widespread areas. Front. Microbiol. 2018, 9, 2272. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chan, E.W.-C.; Chen, S. Transmission and stable inheritance of carbapenemase gene (blaKPC−2 or blaNDM−1)-encoding and mcr-1-encoding plasmids in clinical Enterobacteriaceae strains. J. Glob. Antimicrob. Resist. 2021, 26, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Baomo, L.; Lili, S.; Moran, R.A.; van Schaik, W.; Chao, Z. Temperature-regulated IncX3 plasmid characteristics and the role of plasmid-encoded H-NS in thermoregulation. Front. Microbiol. 2021, 12, 765492. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Liu, C.; Ho, H.C.; Shi, L.; Zeng, Y.; Yang, X.; Huang, Q.; Pei, Y.; Huang, C.; Yang, L. Association between antibiotic resistance and increasing ambient temperature in China: An ecological study with nationwide panel data. Lancet Reg. Health West. Pac. 2023, 30, 100628. [Google Scholar] [CrossRef] [PubMed]
- Magnano San Lio, R.; Favara, G.; Maugeri, A.; Barchitta, M.; Agodi, A. How Antimicrobial Resistance Is Linked to Climate Change: An Overview of Two Intertwined Global Challenges. Int. J. Environ. Res. Public Health 2023, 20, 1681. [Google Scholar] [CrossRef] [PubMed]
- Al-Hasan, M.N.; Lahr, B.D.; Eckel-Passow, J.E.; Baddour, L.M. Epidemiology and outcome of Klebsiella species bloodstream infection: A population-based study. Mayo Clin. Proc. 2010, 85, 139–144. [Google Scholar] [CrossRef]
- Jeong, H.S.; Hyun, J.H.; Lee, Y.K. Characteristics of Carbapenem-resistant Enterobacteriaceae (CRE) in the Republic of Korea, 2021. Public Health Wkly. Rep. 2022, 15, 2360–2363. [Google Scholar]
- Zhou, Y.; Tang, Y.; Fu, P.; Tian, D.; Yu, L.; Huang, Y.; Li, G.; Li, M.; Wang, Y.; Yang, Z.; et al. The type I-E CRISPR-Cas system influences the acquisition of blaKPC-IncF plasmid in Klebsiella pneumoniae. Emerg. Microbes Infect. 2020, 9, 1011–1022. [Google Scholar] [CrossRef]
- Kopotsa, K.; Sekyere, J.O.; Mbelle, N.M. Plasmid evolution in carbapenemase-producing. Enterobacteriaceae 2019, 1457, 61–91. [Google Scholar] [CrossRef]
- Lee, C.R.; Lee, J.H.; Park, K.S.; Kim, Y.B.; Jeong, B.C.; Lee, S.H. Global dissemination of carbapenemase-producing Klebsiella pneumoniae: Epidemiology, genetic context, treatment options, and detection methods. Front. Microbiol. 2016, 7, 895. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Chen, R.; Wang, Q.; Li, C.; Ge, H.; Qiao, J.; Li, Y. Global prevalence, characteristics, and future prospects of IncX3 plasmids: A review. Front. Microbiol. 2022, 13, 979558. [Google Scholar] [CrossRef]
- Liakopoulos, A.; van der Goot, J.; Bossers, A.; Betts, J.; Brouwer, M.S.M.; Kant, A.; Smith, H.; Ceccarelli, D.; Mevius, D. Genomic and functional characterisation of IncX3 plasmids encoding blaSHV−12 in Escherichia coli from human and animal origin. Sci. Rep. 2018, 8, 7674. [Google Scholar] [CrossRef]
- Potron, A.; Poirel, L.; Nordmann, P. Plasmid-mediated transfer of the bla(NDM-1) gene in Gram-negative rods. FEMS Microbiol. Lett. 2011, 324, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Rozwandowicz, M.; Brouwer, M.S.M.; Fischer, J.; Wagenaar, J.A.; Gonzalez-Zorn, B.; Guerra, B.; Mevius, D.J.; Hordijk, J. Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J. Antimicrob. Chemother. 2018, 73, 1121–1137. [Google Scholar] [CrossRef] [PubMed]
- Walsh, T.R.; Weeks, J.; Livermore, D.M.; Toleman, M.A. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: An environmental point prevalence study. Lancet Infect. Dis. 2011, 11, 355–362. [Google Scholar] [CrossRef]
- Yigit, H.; Queenan, A.M.; Anderson, G.J.; Domenech-Sanchez, A.; Biddle, J.W.; Steward, C.D.; Alberti, S.; Bush, K.; Tenover, F.C. Novel carbapenem-hydrolyzing β-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2001, 45, 1151–1161. [Google Scholar] [CrossRef]
- Yong, D.; Toleman, M.A.; Giske, C.G.; Cho, H.S.; Sundman, K.; Lee, K.; Walsh, T.R. Characterization of a new metallo-blactamase gene, blaNDM−1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob. Agents Chemother. 2009, 53, 5046–5054. [Google Scholar] [CrossRef]
Antibiotics | No. of Resistant Isolates (%) | |||||
---|---|---|---|---|---|---|
Class | Drug | <0 °C | 0–10 °C | 10–20 °C | ≥20 °C | X2 |
(N = 795) | (N = 2644) | (N = 2928) | (N = 3614) | |||
Carbapenems | Meropenem | 9 (1.1) | 37 (1.4) | 61 (2.1) | 78 (2.2) | 0.047 * |
Penicillins | Piperacillin | 371 (46.7) | 1125 (42.5) | 1218 (41.6) | 1611 (44.6) | 0.018 * |
β-lactam-lactamase inhibitors | Ampicillin-sulbactam | 345 (43.4) | 1000 (37.8) | 1100 (37.6) | 1477 (40.9) | 0.001 * |
Cephems | Cefotaxime | 307 (38.6) | 895 (33.9) | 996 (34.0) | 1316 (36.4) | 0.016 * |
Ceftazidime | 252 (31.7) | 710 (26.9) | 831 (28.4) | 1076 (29.8) | 0.018 * | |
Cefepime | 291 (36.6) | 824 (31.2) | 929 (31.7) | 1221 (33.8) | 0.009 * | |
Cefoxitin | 95 (11.9) | 286 (10.8) | 307 (10.5) | 427 (11.8) | 0.293 | |
Monobactams | Aztreonam | 263 (33.1) | 737 (27.9) | 871 (29.7) | 1126 (31.2) | 0.009 * |
Aminoglycosides | Gentamicin | 152 (19.1) | 511 (19.3) | 536 (18.3) | 716 (19.8) | 0.492 |
Fluoroquinolones | Ciprofloxacin | 287 (36.1) | 828 (31.3) | 923 (31.5) | 1223 (33.8) | 0.015 * |
Pathogens | MLST Type | Replicon Type | Conjugation Efficiency | Pathogens | MLST Type | Replicon Type | Conjugation Efficiency |
---|---|---|---|---|---|---|---|
KP-KPC-01 | ST258 | IncFII | (9.0 ± 0.6) × 10−7 | KP-KPC-15 | ST101 | IncFIIK | (3.3 ± 0.3) × 10−7 |
KP-KPC-02 | ST258 | IncFII | (6.5 ± 0.4) × 10−7 | KP-KPC-16 | ST307 | IncFIB | (4.1 ± 0.3) × 10−7 |
KP-KPC-03 | ST258 | IncFIIK | (1.0 ± 0.5) × 10−7 | KP-KPC-18 | ST307 | IncN | (14.8 ± 0.4) × 10−7 |
KP-KPC-04 | ST258 | IncFIIK | (4.8 ± 0.8) × 10−7 | KP-KPC-19 | ST307 | IncN | (2.6 ± 0.5) × 10−7 |
KP-KPC-05 | ST258 | IncX3 | (7.8 ± 0.6) × 10−7 | KP-KPC-21 | ST307 | IncN | (1.1 ± 0.2) × 10−6 |
KP-KPC-06 | ST258 | IncX3 | (7.0 ± 1.4) × 10−7 | KP-KPC-23 | ST307 | IncFIB | NT |
KP-KPC-07 | ST258 | IncX3 | (6.8 ± 3.9) × 10−8 | KP-KPC-25 | ST307 | IncFIB | NT |
KP-KPC-08 | ST258 | IncFIB | NT | KP-KPC-26 | ST307 | IncHI1 | NT |
KP-KPC-10 | ST258 | IncX3 | (2.1 ± 0.3) × 10−7 | KP-KPC-17 | ST392 | IncHI2 | (3.5 ± 0.3) × 10−7 |
KP-KPC-13 | ST258 | IncFIIK | (4.4 ± 0.3) × 10−7 | KP-KPC-20 | ST392 | IncFIIK | (3.4 ± 0.3) × 10−8 |
KP-KPC-09 | ST273 | IncN | (1.0 ± 0.7) × 10−6 | KP-KPC-22 | ST392 | IncFIB | (2.0 ± 0.6) × 10−7 |
KP-KPC-11 | ST11 | IncHI2 | (2.2 ± 0.4) × 10−7 | KP-KPC-24 | ST392 | IncFIB | (4.8 ± 1.1) × 10−7 |
KP-KPC-12 | ST11 | IncL | (3.9 ± 0.3) × 10−7 | KP-KPC-27 | ST392 | IncFIIK | NT |
KP-KPC-14 | ST11 | IncFIB | (1.3 ± 0.1) × 10−6 | KP-KPC-28 | ST392 | IncFIB | NT |
KP-KPC-29 | ST392 | IncFIIK | NT |
Pathogens | MLST Type | Replicon Type | Conjugation Efficiency | Pathogens | MLST Type | Replicon Type | Conjugation Efficiency |
---|---|---|---|---|---|---|---|
KP-NDM-01 | ST340 | IncX3 | (3.7 ± 1.4) × 10−6 | KP-NDM-16 | ST1061 | IncX3 | (1.1 ± 0.1) × 10−6 |
KP-NDM-02 | ST340 | IncX3 | (1.7 ± 0.9) × 10−8 | KP-NDM-19 | ST1061 | IncA/C | (1.8 ± 1.2) × 10−7 |
KP-NDM-03 | ST340 | IncX3 | NT | KP-NDM-08 | ST14 | IncX2 | (3.6 ± 1.5) × 10−6 |
KP-NDM-04 | ST340 | IncX3 | (7.5 ± 5.9) × 10−7 | KP-NDM-14 | ST14 | IncX3 | (3.6 ± 0.8) × 10−6 |
KP-NDM-05 | ST340 | IncX3 | NT | KP-NDM-17 | ST14 | IncX3 | (1.7 ± 0.6) × 10−6 |
KP-NDM-06 | ST340 | IncX3 | NT | KP-NDM-18 | ST14 | IncX3 | (1.8 ± 0.4) × 10−6 |
KP-NDM-07 | ST340 | IncFIB | (2.1 ± 0.5) × 10−7 | KP-NDM-20 | ST14 | IncX3 | (1.8 ± 0.6) × 10−6 |
KP-NDM-09 | ST11 | IncX3 | (2.3 ± 1.1) × 10−6 | KP-NDM-21 | ST14 | IncX3 | (1.4 ± 0.2) × 10−6 |
KP-NDM-10 | ST11 | IncX3 | (3.5 ± 1.1) × 10−6 | KP-NDM-22 | ST14 | IncHI | (2.1 ± 0.8) × 10−6 |
KP-NDM-11 | ST1061 | IncX3 | (1.3 ± 0.6) × 10−6 | KP-NDM-23 | ST307 | IncX3 | (5.7 ± 2.3) × 10−7 |
KP-NDM-12 | ST1061 | IncX3 | (8.5 ± 3.9) × 10−7 | KP-NDM-24 | ST307 | IncX3 | (1.0 ± 0.4) × 10−6 |
KP-NDM-13 | ST1061 | IncX3 | (9.9 ± 4.1) × 10−7 | KP-NDM-25 | ST147 | IncFII | (4.9 ± 0.4) × 10−7 |
KP-NDM-15 | ST1061 | IncA/C | (2.2 ± 1.9) × 10−7 | KP-NDM-27 | ST147 | IncX3 | (2.8 ± 0.5) × 10−6 |
KP-NDM-26 | ST789 | IncX3 | (8.4 ± 2.2) × 10−7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.W.; Nam, J.-H.; Lee, K.J.; Yoo, J.S. Effect of Temperature on Carbapenemase-Encoding Plasmid Transfer in Klebsiella pneumoniae. Microorganisms 2024, 12, 454. https://doi.org/10.3390/microorganisms12030454
Yang JW, Nam J-H, Lee KJ, Yoo JS. Effect of Temperature on Carbapenemase-Encoding Plasmid Transfer in Klebsiella pneumoniae. Microorganisms. 2024; 12(3):454. https://doi.org/10.3390/microorganisms12030454
Chicago/Turabian StyleYang, Ji Woo, Ji-Hyun Nam, Kwang Jun Lee, and Jung Sik Yoo. 2024. "Effect of Temperature on Carbapenemase-Encoding Plasmid Transfer in Klebsiella pneumoniae" Microorganisms 12, no. 3: 454. https://doi.org/10.3390/microorganisms12030454
APA StyleYang, J. W., Nam, J.-H., Lee, K. J., & Yoo, J. S. (2024). Effect of Temperature on Carbapenemase-Encoding Plasmid Transfer in Klebsiella pneumoniae. Microorganisms, 12(3), 454. https://doi.org/10.3390/microorganisms12030454