Comparative Genomic Analysis of Virulent Vibrio (Listonella) anguillarum Serotypes Revealed Genetic Diversity and Genomic Signatures in the O-Antigen Biosynthesis Gene Cluster
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Culture Conditions
2.2. Phenotypic Characterization
2.2.1. Physiological Characterization of V. anguillarum J382
2.2.2. Siderophore Detection
2.2.3. Biochemical, Enzymatic, and Physiological Characterization
2.2.4. Antibiogram Assays and Vibriostatic Test
2.3. Experimental Fish
2.4. Bacterial Infection and Tissue Sampling
2.5. Genomic DNA Preparation and Whole Genome Sequencing
2.6. Genomes Used in This Study
2.7. Data Preprocessing, Genome Assembly, Mapping and Annotation
2.8. Plasmid Analysis
2.9. Comparative Genomic Analysis, Synteny and Phylogeny Analysis
2.10. Determination of O-Antigen Biosynthesis Genes
2.11. Prediction of Non-Coding RNAs
2.12. Statistical Analysis
3. Results
3.1. Phenotypic Characterization of V. anguillarum J382
3.2. Clinical Signs and Fish Mortality
3.3. Tissue Colonization of V. anguillarum J382 Infected Lumpfish
3.4. Genome Sequencing and Characterization
3.5. Comparative Genomics
3.5.1. Average Nucleotide Identities (ANI) and Phylogeny
3.5.2. Synteny Analysis
3.5.3. Comparison of O-Antigen Biosynthesis Gene Cluster in V. anguillarum Serotypes
3.5.4. Characteristics of ncRNAs in V. anguillarum Serotypes O1 and O2
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Canestrini, G. La malattia dominate delle anguille. Atti. Ist. Veneto Sci. Lett. Arti. Cl Sci. Mat. Nat. 1893, 7, 809–814. [Google Scholar]
- Frans, I.; Michiels, C.W.; Bossier, P.; A Willems, K.; Lievens, B.; Rediers, H. Vibrio anguillarum as a fish pathogen: Virulence factors, diagnosis and prevention. J. Fish Dis. 2011, 34, 643–661. [Google Scholar] [CrossRef] [PubMed]
- Myhr, E.; Larsen, J.L.; Lillehaug, A.; Gudding, R.; Heum, M.; Hastein, T. Characterization of Vibrio anguillarum and closely related species isolated from farmed fish in Norway. Appl. Environ. Microbiol. 1991, 57, 2750–2757. [Google Scholar] [CrossRef] [PubMed]
- Kitao, T.; Aoki, T.; Fukudome, M.; Kawano, K.; Wada, Y.; Mizuno, Y. Serotyping of Vibrio anguillarum isolated from diseased freshwater fish in Japan. J. Fish Dis. 1983, 6, 175–181. [Google Scholar] [CrossRef]
- Vasquez, I.; Cao, T.; Chakraborty, S.; Gnanagobal, H.; O’Brien, N.; Monk, J.; Boyce, D.; Westcott, J.D.; Santander, J. Comparative Genomics Analysis of Vibrio anguillarum Isolated from Lumpfish (Cyclopterus lumpus) in Newfoundland Reveal Novel Chromosomal Organizations. Microorganisms 2020, 8, 1666. [Google Scholar] [CrossRef]
- Pedersen, K.; Grisez, L.; van Houdt, R.; Tiainen, T.; Ollevier, F.; Larsen, J.L. Extended Serotyping Scheme for Vibrio anguillarum with the Definition and Characterization of Seven Provisional O-Serogroups. Curr. Microbiol. 1999, 38, 183–189. [Google Scholar] [CrossRef]
- Santos, Y.; Pazos, F.; Toranzo, A. Biochemical and serological analysis of Vibrio anguillarum related organisms. Dis. Aquat. Org. 1996, 26, 67–73. [Google Scholar] [CrossRef]
- Madigan, M.T.; Martinko, J.M.; Parker, J. Brock Biology of Microorganisms; Prentice Hall: Upper Saddle River, NJ, USA, 1997; Volume 11. [Google Scholar]
- Frans, I.; Dierckens, K.; Crauwels, S.; Van Assche, A.; Leisner, J.; Larsen, M.; Michiels, C.; Willems, K.; Lievens, B.; Bossier, P. Does virulence assessment of Vibrio anguillarum using sea bass (Dicentrarchus labrax) larvae correspond with genotypic and phenotypic characterization? PLoS ONE 2013, 8, e70477. [Google Scholar] [CrossRef]
- Naka, H.; Dias, G.M.; Thompson, C.C.; Dubay, C.; Thompson, F.L.; Crosa, J.H. Complete Genome Sequence of the Marine Fish Pathogen Vibrio anguillarum Harboring the pJM1 Virulence Plasmid and Genomic Comparison with Other Virulent Strains of V. anguillarum and V. ordalii. Infect. Immun. 2011, 79, 2889–2900. [Google Scholar] [CrossRef]
- Di Lorenzo, M.; Stork, M.; Tolmasky, M.E.; Actis, L.A.; Farrell, D.; Welch, T.J.; Crosa, L.M.; Wertheimer, A.M.; Chen, Q.; Salinas, P.; et al. Complete Sequence of Virulence Plasmid pJM1 from the Marine Fish Pathogen Vibrio anguillarum Strain 775. J. Bacteriol. 2003, 185, 5822–5830. [Google Scholar] [CrossRef]
- Austin, B.; Alsina, M.; Austin, D.; Blanch, A.; Grimont, F.; Grimont, P.; Jofre, J.; Koblavi, S.; Larsen, J.; Pedersen, K.; et al. Identification and Typing of Vibrio anguillarum: A Comparison of Different Methods. Syst. Appl. Microbiol. 1995, 18, 285–302. [Google Scholar] [CrossRef]
- Sørensen, U.B.; Larsen, J.L. Serotyping of Vibrio anguillarum. Appl. Environ. Microbiol. 1986, 51, 593–597. [Google Scholar] [CrossRef] [PubMed]
- Chart, H.; Trust, T.J. Characterization of the surface antigens of the marine fish pathogens Vibrio anguillarum and Vibrio ordalii. Can. J. Microbiol. 1984, 30, 703–710. [Google Scholar] [CrossRef] [PubMed]
- Samuel, G.; Reeves, P. Biosynthesis of O-antigens: Genes and pathways involved in nucleotide sugar precursor synthesis and O-antigen assembly. Carbohydr. Res. 2003, 338, 2503–2519. [Google Scholar] [CrossRef] [PubMed]
- Sadovskaya, I.; Brisson, J.-R.; Altman, E.; Mutharia, L.M. Structural studies of the lipopolysaccharide O-antigen and capsular polysaccharide of Vibrio anguillarum serotype O:2. Carbohydr. Res. 1996, 283, 111–127. [Google Scholar] [CrossRef]
- Kendall, N.W.; Marston, G.W.; Klungle, M.M. Declining patterns of Pacific Northwest steelhead trout (Oncorhynchus mykiss) adult abundance and smolt survival in the ocean. Can. J. Fish. Aquat. Sci. 2017, 74, 1275–1290. [Google Scholar] [CrossRef]
- Breyta, R.; Jones, A.; Stewart, B.; Brunson, R.; Thomas, J.; Kerwin, J.; Bertolini, J.; Mumford, S.; Patterson, C.; Kurath, G. Emergence of MD type infectious hematopoietic necrosis virus in Washington State coastal steelhead trout. Dis. Aquat. Org. 2013, 104, 179–195. [Google Scholar] [CrossRef]
- Cipriano, R.C.; Holt, R.A. Flavobacterium psychrophilum, Cause of Bacterial Cold-Water Disease and Rainbow Trout Fry Syndrome; NFHRL United States Department of the Interior, U.S. Geological Service, Ed.; Fish Disease Leaflet No. 86; US Department of the Interior, US Geological Survey, National Fish Health: Kearneysville, WV, USA, 2005.
- Schaaf, C.J.; Kelson, S.J.; Nusslé, S.C.; Carlson, S.M. Black spot infection in juvenile steelhead trout increases with stream temperature in northern California. Environ. Biol. Fishes 2017, 100, 733–744. [Google Scholar] [CrossRef]
- A Glenn, R.; Taylor, P.W.; Hanson, K.C. The use of a real-time PCR primer/probe set to observe infectivity of Yersinia ruckeri in Chinook salmon, Oncorhynchus tshawytscha (Walbaum), and steelhead trout, Oncorhynchus mykiss (Walbaum). J. Fish Dis. 2011, 34, 783–791. [Google Scholar] [CrossRef]
- Hansen, M.J.; Kudirkiene, E.; Dalsgaard, I. Analysis of 44 Vibrio anguillarum genomes reveals high genetic diversity. PeerJ 2020, 8, e10451. [Google Scholar] [CrossRef]
- Semple, S.L.; Heath, G.; Filice, C.T.; Heath, D.D.; Dixon, B. The impact of outbreeding on the immune function and disease status of eight hybrid Chinook salmon crosses after Vibrio anguillarum challenge. Aquac. Res. 2021, 53, 957–973. [Google Scholar] [CrossRef]
- Kim, D.-G.; Bae, J.-Y.; Hong, G.-E.; Min, M.-K.; Kim, J.-K.; Kong, I.-S. Application of therpoSgene for the detection of Vibrio anguillarumin flounder and prawn by polymerase chain reaction. J. Fish Dis. 2008, 31, 639–647. [Google Scholar] [CrossRef] [PubMed]
- Louden, B.C.; Haarmann, D.; Lynne, A.M. Use of Blue Agar CAS Assay for Siderophore Detection. J. Microbiol. Biol. Educ. 2011, 12, 51–53. [Google Scholar] [CrossRef] [PubMed]
- Ramasamy, P.; Sujatha Rani, J.; Gunasekaran, D.R. Assessment of antibiotic sensitivity and pathogenicity of Vibrio spp. and Aeromonas spp. from aquaculture environment. MOJ. Ecol. Environ. Sci. 2018, 3, 128–136. [Google Scholar] [CrossRef]
- Pedersen, K.; Tiainen, T.; Larsen, J.L. Antibiotic Resistance of Vibrio anguillarum, in Relation to Serovar and Plasmid Contents. Acta Veter.- Scand. 1995, 36, 55–64. [Google Scholar] [CrossRef]
- Umasuthan, N.; Valderrama, K.; Vasquez, I.; Segovia, C.; Hossain, A.; Cao, T.; Gnanagobal, H.; Monk, J.; Boyce, D.; Santander, J. A Novel Marine Pathogen Isolated from Wild Cunners (Tautogolabrus adspersus): Comparative Genomics and Transcriptome Profiling of Pseudomonas sp. Strain J380. Microorganisms 2021, 9, 812. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Chin, C.-S.; Alexander, D.H.; Marks, P.; Klammer, A.A.; Drake, J.; Heiner, C.; Clum, A.; Copeland, A.; Huddleston, J.; Eichler, E.E.; et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 2013, 10, 563–569. [Google Scholar] [CrossRef]
- Andrews, S.; Krueger, F.; Segonds-Pichon, A.; Biggins, L.; Krueger, C.; Wingett, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2010. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 27 March 2020).
- Overbeek, R.; Olson, R.; Pusch, G.D.; Olsen, G.J.; Davis, J.J.; Disz, T.; Edwards, R.A.; Gerdes, S.; Parrello, B.; Shukla, M.; et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 2014, 42, D206–D214. [Google Scholar] [CrossRef]
- Davis, J.J.; Wattam, A.R.; Aziz, R.K.; Brettin, T.; Butler, R.; Butler, R.M.; Chlenski, P.; Conrad, N.; Dickerman, A.; Dietrich, E.M.; et al. The PATRIC Bioinformatics Resource Center: Expanding data and analysis capabilities. Nucleic Acids Res. 2020, 48, D606–D612. [Google Scholar] [CrossRef]
- Kado, C.I.; Liu, S.T. Rapid procedure for detection and isolation of large and small plasmids. J. Bacteriol. 1981, 145, 1365–1373. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [CrossRef]
- Kanehisa, M.; Sato, Y.; Morishima, K. BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. J. Mol. Biol. 2016, 428, 726–731. [Google Scholar] [CrossRef]
- Kanehisa, M.; Sato, Y.; Kawashima, M. KEGG mapping tools for uncovering hidden features in biological data. Protein Sci. 2021, 31, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; (use R!); Springer: New York, NY, USA, 2009. [Google Scholar]
- Santander, J.; Martin, T.; Loh, A.; Pohlez, C.; Gatlin, G.M., III; Curtiss, R., III. Mechanisms of intrinsic resistance to antimicrobial peptides of Edwardsiella ictaluri and its influence on fish gut inflammation and virulence. Microbiology 2013, 159, 1471–1486. [Google Scholar] [CrossRef] [PubMed]
- Hitchcock, P.J.; Brown, T.M. Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. J. Bacteriol. 1983, 154, 269–277. [Google Scholar] [CrossRef]
- Tsai, C.-M.; Frasch, C.E. A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal. Biochem. 1982, 119, 115–119. [Google Scholar] [CrossRef]
- Segovia, C.; Arias-Carrasco, R.; Yañez, A.J.; Maracaja-Coutinho, V.; Santander, J. Core non-coding RNAs of Piscirickettsia salmonis. PLoS ONE 2018, 13, e0197206. [Google Scholar] [CrossRef] [PubMed]
- Arias-Carrasco, R.; Vásquez-Morán, Y.; Nakaya, H.I.; Maracaja-Coutinho, V. StructRNAfinder: An automated pipeline and web server for RNA families prediction. BMC Bioinform. 2018, 19, 55. [Google Scholar] [CrossRef] [PubMed]
- Denman, R.B. Using RNAFOLD to predict the activity of small catalytic RNAs. Biotechniques 1993, 15, 1090–1095. [Google Scholar]
- Nawrocki, E.P.; Eddy, S.R. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 2013, 29, 2933–2935. [Google Scholar] [CrossRef]
- Kalvari, I.; Nawrocki, E.P.; Ontiveros-Palacios, N.; Argasinska, J.; Lamkiewicz, K.; Marz, M.; Griffiths-Jones, S.; Toffano-Nioche, C.; Gautheret, D.; Weinberg, Z.; et al. Rfam 14: Expanded coverage of metagenomic, viral and microRNA families. Nucleic Acids Res. 2020, 49, D192–D200. [Google Scholar] [CrossRef]
- Quinlan, A.R. BEDTools: The Swiss-army tool for genome feature analysis. Curr. Protoc. Bioinform. 2014, 47, 11.12.1–11.12.34. [Google Scholar] [CrossRef] [PubMed]
- Bardou, P.; Mariette, J.; Escudié, F.; Djemiel, C.; Klopp, C. jvenn: An interactive Venn diagram viewer. BMC Bioinform. 2014, 15, 293. [Google Scholar] [CrossRef] [PubMed]
- Pazos, F.; Santos, Y.; Magariños, B.; Bandín, I.; Núñez, S.; Toranzo, A. Phenotypic Characteristics and Virulence of Vibrio anguillarum -Related Organisms. Appl. Environ. Microbiol. 1993, 59, 2969–2976. [Google Scholar] [CrossRef] [PubMed]
- Powell, J.L.; Loutit, M.W. Isolation and characterisation of Vibrio anguillarumfrom selected marine sites in New Zealand. N. Z. J. Mar. Freshw. Res. 1990, 24, 267–273. [Google Scholar] [CrossRef]
- Erkinharju, T.; Dalmo, R.A.; Hansen, M.; Seternes, T. Cleaner fish in aquaculture: Review on diseases and vaccination. Rev. Aquac. 2020, 13, 189–237. [Google Scholar] [CrossRef]
- Miller, S.M.; Mitchell, M.A. Ornamental Fish. In Manual of Exotic Pet Practice; Elsevier: Amsterdam, The Netherlands, 2009; pp. 39–72. [Google Scholar]
- Paillard, C.; Le Roux, F.; Borrego, J. Bacterial disease in marine bivalves, a review of recent studies: Trends and evolution. Aquat. Living Resour. 2004, 17, 477–498. [Google Scholar] [CrossRef]
- Hickey, M.E.; Lee, J. A comprehensive review of Vibrio (Listonella ) anguillarum: Ecology, pathology and prevention. Rev. Aquac. 2017, 10, 585–610. [Google Scholar] [CrossRef]
- Lages, M.A.; Balado, M.; Lemos, M.L. The Expression of Virulence Factors in Vibrio anguillarum Is Dually Regulated by Iron Levels and Temperature. Front. Microbiol. 2019, 10, 2335. [Google Scholar] [CrossRef] [PubMed]
- Heidelberg, J.F.; Eisen, J.A.; Nelson, W.C.; Clayton, R.A.; Gwinn, M.L.; Dodson, R.J.; Haft, D.H.; Hickey, E.K.; Peterson, J.D.; Umayam, L. DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 2000, 406, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Arahal, D.R. Whole-genome analyses: Average nucleotide identity. In Methods in Microbiology; Elsevier: Amsterdam, The Netherlands, 2014; pp. 103–122. [Google Scholar]
- Svetlitsky, D.; Dagan, T.; Ziv-Ukelson, M. Discovery of multi-operon colinear syntenic blocks in microbial genomes. Bioinformatics 2020, 36 (Suppl. 1), i21–i29. [Google Scholar] [CrossRef]
- Reeves, P. Biosynthesis and assembly of lipopolysaccharide. In New Comprehensive Biochemistry; Elsevier: Amsterdam, The Netherlands, 1994; pp. 281–317. [Google Scholar]
- Lindell, K.; Fahlgren, A.; Hjerde, E.; Willassen, N.P.; Fällman, M.; Milton, D.L. Milton, Lipopolysaccharide O-antigen prevents phagocytosis of Vibrio anguillarum by rainbow trout (Oncorhynchus mykiss) skin epithelial cells. PLoS ONE 2012, 7, e37678. [Google Scholar] [CrossRef]
- Thoden, J.B.; Holden, H.M. Molecular Structure of WlbB, a Bacterial N-Acetyltransferase Involved in the Biosynthesis of 2,3-Diacetamido-2,3-dideoxy-d-mannuronic Acid. Biochemistry 2010, 49, 4644–4653. [Google Scholar] [CrossRef]
- Olaitan, A.; Morand, S.; Rolain, J.-M. Mechanisms of polymyxin resistance: Acquired and intrinsic resistance in bacteria. Front. Microbiol. 2014, 5, 643. [Google Scholar] [CrossRef]
- Lacour, S.; Bechet, E.; Cozzone, A.J.; Mijakovic, I.; Grangeasse, C. Tyrosine Phosphorylation of the UDP-Glucose Dehydrogenase of Escherichia coli Is at the Crossroads of Colanic Acid Synthesis and Polymyxin Resistance. PLoS ONE 2008, 3, e3053. [Google Scholar] [CrossRef]
- Aghapour, Z.; Gholizadeh, P.; Ganbarov, K.; Bialvaei, A.Z.; Mahmood, S.S.; Tanomand, A.; Yousefi, M.; Asgharzadeh, M.; Yousefi, B.; Kafil, H.S. Molecular mechanisms related to colistin resistance in Enterobacteriaceae. Infect. Drug Resist. 2019, 12, 965–975. [Google Scholar] [CrossRef] [PubMed]
- Stroeher, U.; E Jedani, K.; A Manning, P. Genetic organization of the regions associated with surface polysaccharide synthesis in Vibrio cholerae O1, O139 and Vibrio anguillarum O1 and O2: A review. Gene 1998, 223, 269–282. [Google Scholar] [CrossRef]
- Zhao, X.; Creuzenet, C.; Bélanger, M.; Egbosimba, E.; Li, J.; Lam, J.S. WbpO, a UDP-N-acetyl-d-galactosamine Dehydrogenase from Pseudomonas aeruginosa Serotype O6. J. Biol. Chem. 2000, 275, 33252–33259. [Google Scholar] [CrossRef]
- Liu, B.; Furevi, A.; Perepelov, A.V.; Guo, X.; Cao, H.; Wang, Q.; Reeves, P.R.; Knirel, Y.A.; Wang, L.; Widmalm, G. Structure and genetics of Escherichia coli O antigens. FEMS Microbiol. Rev. 2019, 44, 655–683. [Google Scholar] [CrossRef] [PubMed]
- Bélanger, M.; Burrows, L.L.; Lam, J.S. Functional analysis of genes responsible for the synthesis of the B-band O antigen of Pseudomonas aeruginosa serotype O6 lipopolysaccharide The GenBank accession number for the sequence reported in this paper is AF035937. Microbiology 1999, 145, 3505–3521. [Google Scholar] [CrossRef] [PubMed]
- Harris, K.A.; Breaker, R.R. Large noncoding RNAs in bacteria. In Regulating with RNA in Bacteria and Archaea; Wiley Online Library: Hoboken, NJ, USA, 2018; pp. 515–526. [Google Scholar]
- Cech, T.R.; Steitz, J.A. The Noncoding RNA Revolution—Trashing Old Rules to Forge New Ones. Cell 2014, 157, 77–94. [Google Scholar] [CrossRef]
- Gottesman, S. Micros for microbes: Non-coding regulatory RNAs in bacteria. Trends Genet. 2005, 21, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Lenz, D.H.; Mok, K.C.; Lilley, B.N.; Kulkarni, R.V.; Wingreen, N.S.; Bassler, B.L. The Small RNA Chaperone Hfq and Multiple Small RNAs Control Quorum Sensing in Vibrio harveyi and Vibrio cholerae. Cell 2004, 118, 69–82. [Google Scholar] [CrossRef]
- Huang, L.; Hu, J.; Su, Y.; Qin, Y.; Kong, W.; Zhao, L.; Ma, Y.; Xu, X.; Lin, M.; Zheng, J.; et al. Genome-Wide Detection of Predicted Non-coding RNAs Related to the Adhesion Process in Vibrio alginolyticus Using High-Throughput Sequencing. Front. Microbiol. 2016, 7, 619. [Google Scholar] [CrossRef]
- Pérez-Reytor, D.; Plaza, N.; Espejo, R.T.; Navarrete, P.; Bastías, R.; Garcia, K. Role of Non-coding Regulatory RNA in the Virulence of Human Pathogenic Vibrios. Front. Microbiol. 2017, 7, 2160. [Google Scholar] [CrossRef]
- Dang, T.H.Y.; Tyagi, S.; D’Cunha, G.; Bhave, M.; Crawford, R.; Ivanova, E.P. Computational prediction of microRNAs in marine bacteria of the genus Thalassospira. PLoS ONE 2019, 14, e0212996. [Google Scholar] [CrossRef]
Strain (Serotype) | Host (Year) | Geographical Location | Accession | Size (bp) | GC% |
---|---|---|---|---|---|
V. anguillarum J382 (O1) | Oncorhynchus mykiss irideus (1999) | Canada: British Columbia | CP091185/CP091186 | 4,171,832 | 44.34 |
V. anguillarum 775 (O1) | Oncorhynchus kisutch (2011) | USA: Pacific Ocean coast | CP002284.1/CP002285.1 | 4,052,047 | 44.48 |
V. anguillarum ATCC-68554 (O1) | Oncorhynchus kisutch (1977) | USA: Pacific Ocean coast | CP023208.1/CP023209.1 | 4,141,910 | 44.52 |
V. anguillarum VIB43 (O1) | Dicentrarchus labrax | UK: Scotland | CP023054.1/CP023055.1 | 4,407,865 | 44.54 |
V. anguillarum JLL237 (O1) | Oncorhynchus mykiss (1995) | Denmark | CP022101.1/CP022102.1 | 4,286,989 | 44.48 |
V. anguillarum87-9-116 (O1) | Salmo salar (1987) | Finland | CP021980.1/CP021981.1 | 4,338,125 | 44.34 |
V. anguillarum M3 (O1) | Paralichthys olivaceus (1999) | China: Shandong | CP006699.1/CP006700.1 | 4,117,885 | 44.45 |
V. anguillarum NB10 (O1) | Oncorhynchus mykiss (2016) | Sweden: Baltic Sea, Norrbyn Umeaa | LK021130.1/LK021129.1 | 4,373,835 | 44.37 |
V. anguillarum J360 (O2) | Cyclopterus lumpus (2018) | Canada: St John’s, Newfoundland | CP034672.1/CP034673.1 | 4,549,570 | 44.46 |
V. anguillarum VIB12 (O2) | Dicentrarchus labrax | Greece | CP023310.1/CP023311.1 | 4,897,690 | 44.46 |
V. anguillarum MHK3 (other) | Paralichthys olivaceus (2006) | China: Weihai | CP022468.1/CP022469.1 | 4,015,925 | 44.71 |
V. anguillarum425 (O1) | Dicentrarchus labrax (1999) | China: Yellow Sea | CP020534.1/CP020533.1 | 4,373,373 | 44.41 |
V. anguillarum S3 4/9 (O1) | Oncorhynchus mykiss (1995) | Denmark | CP022099.1/CP022100.1 | 4,182,973 | 44.56 |
V. anguillarum CNEVA NB11008 (O3) | Dicentrarchus labrax (1997) | France: Brest | CP022103.1/CP022104.1 | 4,256,429 | 44.56 |
V. fluvialis ATCC 33809 | Homo sapiens | Bangladesh: Dacca | CP014034.2/CP014035.2 | 4,827,733 | 49.90 |
V. parahaemolyticus R14 | Penaeus vannamei (2016) | Pacific Ocean | CP028141.1/CP028142.1 | 5,444,136 | 45.27 |
V. cholerae RFB05 (O1) | Freshwater (2017) | Water USA: Pittsburgh | CP043557.1/CP043558.1 | 4,357,322 | 47.03 |
V. splendidus BST398 | coastal sea water (2015) | North Pacific Ocean | CP031055.1/CP031056.1 | 5,508,387 | 44.12 |
V. campbellii ATCC 25920, CAIM 519T | Ocean water (1972) | USA: Hawaii | CP015863.1/CP015864.1 | 5,178,103 | 45.09 |
Photobacterium damselae subsp. Piscicida91-197 | Morone chrysops × Morone saxatilis | USA | AP018045.1/AP018046.1 | 4,293,175 | 41.01 |
Phenotypic Test | API20NE | API20E | APIZYM | ||||
---|---|---|---|---|---|---|---|
Hemolysis | + | Reduction of nitrates to nitrites | + | β-Galactosidase | + | Alkaline phosphatase | + |
Motility | + | Indole production | + | Indole production | + | Esterase (C4) | + |
Siderophore synthesis | + | Glucose fermentation | + | Acetoin production | + | Esterase lipase (C8) | + |
O/F glucose | + | Urease | - | Urease | - | Lipase (C14) | + |
O/F arabinose | + | H2S production | - | Leucine arylamidase | + | ||
Catalase | + | Citrate utilization | + | Valine arylamidase | + | ||
Oxidase | + | Hydrolysis of: | Hydrolysis of: | Cystine arylamidase | + | ||
Growth at: | Arginine | + | L-Arginine | + | Trypsin | - | |
4 °C | + | Esculin | + | L-Lysine | - | α-Chymotrypsin | - |
15 °C | +++ | Gelatin | + | Gelatin | + | Acid phosphatase | + |
28 °C | +++ | L-Tryptophane | - | Naphthol-AS-BI Phosphohydrolase | + | ||
37 °C | - | L-Ornithine | - | α-Galactosidase | - | ||
LB NaCl 0% | - | Assimilation of: | Assimilation of | β-Galactosidase | + | ||
LB NaCl 0.5% | + | D-Glucose | + | D-Glucose | + | β-Glucoronidase | - |
LB NaCl 2% | + | L-Arabinose | + | L-Arabinose | + | α-Glucosidase | + |
Plate Count Agar 50% seawater | + | D-Mannose | + | Inositol | - | β-Glucosidase | - |
Antibiogram: | Halo diameter (mm) | D-Mannitol | + | D-Mannitol | + | N-Acetyl-β-glucosaminidase | + |
Vibriostatic agent (0/129) | 22 (sensitive) | N-acetyl-glucosamine | + | L-Rhamnose | - | α-Mannosidase | - |
Tetracycline (10 µg) | 39 (sensitive) | D-maltose | - | D-Saccharose | + | α-Fucosidase | - |
Oxytetracycline (30 µg) | 40 (sensitive) | Potassium gluconate | + | D-Melibiose | - | ||
Ampicillin (10 µg) | 0 (resistant) | Capric acid | - | D-Amygdaline | + | ||
Sulfamethoxazole (25 µg) | 25 (sensitive) | Adipic acid | - | D-Sorbitol | + | ||
Chloramphenicol (30 µg) | 32 (sensitive) | Malic acid | + | ||||
Colistin sulphate (10 µg) | 0 (resistant) | Trisodium citrate | - | ||||
Oxalinic acid (2 µg) | 38 (sensitive) | Phenylacetic acid | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machimbirike, V.I.; Vasquez, I.; Cao, T.; Chukwu-Osazuwa, J.; Onireti, O.; Segovia, C.; Khunrae, P.; Rattanarojpong, T.; Booman, M.; Jones, S.; et al. Comparative Genomic Analysis of Virulent Vibrio (Listonella) anguillarum Serotypes Revealed Genetic Diversity and Genomic Signatures in the O-Antigen Biosynthesis Gene Cluster. Microorganisms 2023, 11, 792. https://doi.org/10.3390/microorganisms11030792
Machimbirike VI, Vasquez I, Cao T, Chukwu-Osazuwa J, Onireti O, Segovia C, Khunrae P, Rattanarojpong T, Booman M, Jones S, et al. Comparative Genomic Analysis of Virulent Vibrio (Listonella) anguillarum Serotypes Revealed Genetic Diversity and Genomic Signatures in the O-Antigen Biosynthesis Gene Cluster. Microorganisms. 2023; 11(3):792. https://doi.org/10.3390/microorganisms11030792
Chicago/Turabian StyleMachimbirike, Vimbai Irene, Ignacio Vasquez, Trung Cao, Joy Chukwu-Osazuwa, Oluwatoyin Onireti, Cristopher Segovia, Pongsak Khunrae, Triwit Rattanarojpong, Marije Booman, Simon Jones, and et al. 2023. "Comparative Genomic Analysis of Virulent Vibrio (Listonella) anguillarum Serotypes Revealed Genetic Diversity and Genomic Signatures in the O-Antigen Biosynthesis Gene Cluster" Microorganisms 11, no. 3: 792. https://doi.org/10.3390/microorganisms11030792
APA StyleMachimbirike, V. I., Vasquez, I., Cao, T., Chukwu-Osazuwa, J., Onireti, O., Segovia, C., Khunrae, P., Rattanarojpong, T., Booman, M., Jones, S., Soto-Davila, M., Dixon, B., & Santander, J. (2023). Comparative Genomic Analysis of Virulent Vibrio (Listonella) anguillarum Serotypes Revealed Genetic Diversity and Genomic Signatures in the O-Antigen Biosynthesis Gene Cluster. Microorganisms, 11(3), 792. https://doi.org/10.3390/microorganisms11030792