Cascade Nonlinear Observer-Based Speed-Sensorless Adaptive Twisting Sliding Mode Control of Linear Induction Motor
Abstract
1. Introduction
- (1)
- An observer scheme connected with an estimator is designed in order to reconstruct the LIM speed of a sensorless linear induction motor, whereas the estimator is used to estimate the rotor fluxes.
- (2)
- Using Lyapunov-like arguments, the exponential convergence of the estimation errors in the designed cascade nonlinear observer is proved.
- (3)
- Based on estimated variables with the proposed cascade nonlinear observer, two ATCs are designed in order to track desired LIM speed and rotor flux in a finite time, in the presence of the bounded disturbances with unknown boundaries.
2. LIM’s State-Space Equation
3. Cascade Nonlinear Observer for LIM System
3.1. LIM Model Observability
3.2. Design of Cascade Nonlinear Observer
- (1)
- and k are known and remain constant.
- (2)
- The load torque is constant.
3.3. Analysis of Cascade Nonlinear Observer Stability
4. Adaptive Twisting Controller Design
5. Hardware-in-the-Loop Experiment
5.1. CNO Performance
5.2. CNO-ATC Performance
5.2.1. Nominal System
5.2.2. Perturbed System
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ahmed, A.H.; Yahya, A.S.; Ali, A.J. Speed Control for Linear Induction Motor Based on Intelligent PI-Fuzzy Logic. J. Robot. Control 2024, 5, 1470–1478. [Google Scholar]
- Rametti, S.; Pierrejean, L.; Hodder, A.; Paolone, M. Pseudo-three-dimensional Analytical Model of Linear Induction Motors for high-speed applications. IEEE Trans. Transp. Electrif. 2024, 10, 9109–9120. [Google Scholar] [CrossRef]
- Shiri, A.; Tessarolo, A. Normal force elimination in single-sided linear induction motor using design parameters. IEEE Trans. Transp. Electrif. 2022, 9, 394–403. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, H.; Ai, H.; Chen, Z. Design and Research on the Variable Polar Distance of the Double-Sided Linear Induction Motor for Electromagnetic Catapult. Energies 2024, 18, 33. [Google Scholar] [CrossRef]
- Wu, S.; Lu, Q. Eddy current analysis and optimization design of the secondary of the linear induction motor with an approximation and prediction method. IEEE Trans. Magn. 2021, 58, 8200105. [Google Scholar] [CrossRef]
- Xu, W.; Zou, J.; Liu, Y.; Zhu, J. Weighting factorless model predictive thrust control for linear induction machine. IEEE Trans. Power Electron. 2019, 34, 9916–9928. [Google Scholar] [CrossRef]
- Xu, W.; Ali, M.M.; Elmorshedy, M.F.; Allam, S.M.; Mu, C. One improved sliding mode DTC for linear induction machines based on linear metro. IEEE Trans. Power Electron. 2020, 36, 4560–4571. [Google Scholar] [CrossRef]
- Accetta, A.; Cirrincione, M.; Pucci, M.; Vitale, G. Closed-loop MRAS speed observer for linear induction motor drives. IEEE Trans. Ind. Appl. 2014, 51, 2279–2290. [Google Scholar] [CrossRef]
- Duncan, J. Linear induction motor-equivalent-circuit model. IEE Proc.-Electr. Power Appl. 1983, 130, 51–57. [Google Scholar] [CrossRef]
- Pucci, M. State space-vector model of linear induction motors. IEEE Trans. Ind. Appl. 2013, 50, 195–207. [Google Scholar] [CrossRef]
- Zhang, L.; Obeid, H.; Laghrouche, S.; Cirrincione, M. Second order sliding mode observer of linear induction motor. IET Electr. Power Appl. 2019, 13, 38–47. [Google Scholar] [CrossRef]
- Zhang, L.; Dong, Z.; Zhao, L.; Laghrouche, S. Sliding mode observer for speed sensorless linear induction motor drives. IEEE Access 2021, 9, 51202–51213. [Google Scholar] [CrossRef]
- Yildiz, R.; Barut, M.; Zerdali, E. A comprehensive comparison of extended and unscented Kalman filters for speed-sensorless control applications of induction motors. IEEE Trans. Ind. Inform. 2020, 16, 6423–6432. [Google Scholar] [CrossRef]
- Alonge, F.; Cirrincione, M.; D’Ippolito, F.; Pucci, M.; Sferlazza, A.; Vitale, G. Descriptor-type Kalman filter and TLS EXIN speed estimate for sensorless control of a linear induction motor. IEEE Trans. Ind. Appl. 2014, 50, 3754–3766. [Google Scholar] [CrossRef]
- Wu, L.; Liu, J.; Vazquez, S.; Mazumder, S.K. Sliding mode control in power converters and drives: A review. IEEE/CAA J. Autom. Sin. 2021, 9, 392–406. [Google Scholar] [CrossRef]
- Shi, Q.; He, S.; Wang, H.; Stojanovic, V.; Shi, K.; Lv, W. Extended state observer based fractional order sliding mode control for steer?by?wire systems. IET Control Theory Appl. 2024, 18, 2287–2295. [Google Scholar] [CrossRef]
- Mousavi, Y.; Bevan, G.; Kucukdemiral, I.B.; Fekih, A. Sliding mode control of wind energy conversion systems: Trends and applications. Renew. Sustain. Energy Rev. 2022, 167, 112734. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, D.; Jian, W.; Hu, W.; Peng, G.; Chen, Y.; Wang, Z. Fractional order complementary non-singular terminal sliding mode control of PMSM based on neural network. Int. J. Automot. Technol. 2024, 25, 213–224. [Google Scholar] [CrossRef]
- Laghrouche, S.; Harmouche, M.; Chitour, Y.; Obeid, H.; Fridman, L.M. Barrier function-based adaptive higher order sliding mode controllers. Automatica 2021, 123, 109355. [Google Scholar] [CrossRef]
- Ye, Z.; Zhang, D.; Cheng, J.; Wu, Z. Event-triggering and quantized sliding mode control of UMV systems under DoS attack. IEEE Trans. Veh. Technol. 2022, 71, 8199–8211. [Google Scholar] [CrossRef]
- Shtessel, Y.B.; Moreno, J.A.; Fridman, L.M. Twisting sliding mode control with adaptation: Lyapunov design, methodology and application. Automatica 2017, 75, 229–235. [Google Scholar] [CrossRef]
- Razmjooei, H.; Palli, G.; Abdi, E.; Terzo, M.; Strano, S. Design and experimental validation of an adaptive fast-finite-time observer on uncertain electro-hydraulic systems. Control Eng. Pract. 2023, 131, 105391. [Google Scholar] [CrossRef]
- Yan, Z.; Deng, S.; Yang, Z.; Zhao, X.; Yang, N.; Lu, Y. Improved nonlinear active disturbance rejection control for a continuous-wave pulse generator with cascaded extended state observer. Control Eng. Pract. 2024, 146, 105897. [Google Scholar] [CrossRef]
- Farza, M.; Hernández-González, O.; Ménard, T.; Targui, B.; M’Saad, M.; Astorga-Zaragoza, C. Cascade observer design for a class of uncertain nonlinear systems with delayed outputs. Automatica 2018, 89, 125–134. [Google Scholar] [CrossRef]
- Holakooie, M.H.; Ojaghi, M.; Taheri, A. Full-order Luenberger observer based on fuzzy-logic control for sensorless field-oriented control of a single-sided linear induction motor. Isa Trans. 2016, 60, 96–108. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, W.; Jiang, D.; Qu, R. Observability Analysis of Q-MRAS Drive of Induction Motor With and Without Virtual Voltage Injection. In Proceedings of the 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China, 11–14 August 2019; pp. 1–6. [Google Scholar]
- Paradowski, T.; Tibken, B.; Swiatlak, R. An approach to determine observability of nonlinear systems using interval analysis. In Proceedings of the 2017 American Control Conference (ACC), Seattle, WA, USA, 24–26 May 2017; pp. 3932–3937. [Google Scholar]
- Martinelli, A. Nonlinear unknown input observability: Extension of the observability rank condition. IEEE Trans. Autom. Control 2018, 64, 222–237. [Google Scholar] [CrossRef]
- Ran, M.; Li, J.; Xie, L. A new extended state observer for uncertain nonlinear systems. Automatica 2021, 131, 109772. [Google Scholar] [CrossRef]
- Zhang, L.; Obeid, H.; Laghrouche, S. Adaptive twisting controller for linear induction motor considering dynamic end effects. In Proceedings of the 2018 15th International Workshop on Variable Structure Systems (VSS), Graz, Austria, 9–11 July 2018. [Google Scholar]
- Gong, W.; Liu, C.; Zhao, X.; Xu, S. A model review for controller-hardware-in-the-loop simulation in EV powertrain application. IEEE Trans. Transp. Electrif. 2023, 10, 925–937. [Google Scholar] [CrossRef]
- Dai, X.; Ke, C.; Quan, Q.; Cai, K.-Y. RFlySim: Automatic test platform for UAV autopilot systems with FPGA-based hardware-in-the-loop simulations. Aerosp. Sci. Technol. 2021, 114, 106727. [Google Scholar] [CrossRef]
Symbol | Quantity |
Conversion from Gaussian and CGS EMU to |
---|---|---|
inductor resistance | ||
induced-part resistance | ||
inductor inductances | H | |
3-phase magnetizing inductance | H | |
M | primary mass | 20 Kg |
D | vicious friction | 20 m/s2 |
pole pairs | 3 | |
inductor length | m | |
h | pole pitch | m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Xie, X.; Wu, D.; Wang, Z.; Wang, J.; Jing, J.; Deng, H.; Li, J.; Huang, J.; Huang, J. Cascade Nonlinear Observer-Based Speed-Sensorless Adaptive Twisting Sliding Mode Control of Linear Induction Motor. Actuators 2025, 14, 318. https://doi.org/10.3390/act14070318
Zhang L, Xie X, Wu D, Wang Z, Wang J, Jing J, Deng H, Li J, Huang J, Huang J. Cascade Nonlinear Observer-Based Speed-Sensorless Adaptive Twisting Sliding Mode Control of Linear Induction Motor. Actuators. 2025; 14(7):318. https://doi.org/10.3390/act14070318
Chicago/Turabian StyleZhang, Lei, Xiaodong Xie, Dabiao Wu, Zicheng Wang, Jianli Wang, Jiaxin Jing, Huazhen Deng, Junkai Li, Jie Huang, and Jingli Huang. 2025. "Cascade Nonlinear Observer-Based Speed-Sensorless Adaptive Twisting Sliding Mode Control of Linear Induction Motor" Actuators 14, no. 7: 318. https://doi.org/10.3390/act14070318
APA StyleZhang, L., Xie, X., Wu, D., Wang, Z., Wang, J., Jing, J., Deng, H., Li, J., Huang, J., & Huang, J. (2025). Cascade Nonlinear Observer-Based Speed-Sensorless Adaptive Twisting Sliding Mode Control of Linear Induction Motor. Actuators, 14(7), 318. https://doi.org/10.3390/act14070318